数学初一上册第五章教学方案
- 格式:docx
- 大小:37.39 KB
- 文档页数:3
5.3实际问题与一元一次方程(第3课时)教学目标1.学会分析表格,并能从表格中提取信息,能够根据表格列出一元一次方程.2.明确在利用方程解决实际问题时,不仅要检验解方程是否正确,还要检验方程的解是否符合实际意义.教学重点分析表格,并根据表格中数据找到等量关系.教学难点针对实际问题,检验方程的解是否符合实际意义.教学过程新课导入今天,我们来探究如何用一元一次方程解决与实际生活联系更为紧密的问题——比赛积分问题.注意:积分问题多出现在球赛和知识竞赛中,赛事的规则不同,积分也不一样.解决这类问题的关键是弄清比赛积分规则.新知探究一、探究学习【材料】某次篮球联赛积分.队名前进东方光明蓝天雄鹰远大卫星钢铁比赛场次1414141414141414胜场1010997740负场4455771014积分2424232321211814【问题】从表格中,你能得到什么信息?【师生活动】教师引导学生直观分析表格,罗列出能直接得到的信息.【答案】这次篮球联赛共有8支队伍参赛,每队都打了14场比赛.从积分表中可以知道每队的胜场数、负场数和积分.【设计意图】通过罗列信息,让学生知道如何从表格中获取基础信息.【问题】这张表格中的数据之间有什么样的数量关系?【师生活动】在上个问题的基础上,引导学生从数量方面去分析表格.【答案】每队的胜场数+负场数=这个队的比赛场次14;每队胜场总积分+负场总积分=这个队的总积分;每队胜场总积分=胜1场得分×胜场数;每队负场总积分=负1场得分×负场数.【设计意图】循序渐进地引导学生,从表格中挖掘出尽量多的信息.【问题】胜一场和负一场各积多少分?【师生活动】学生分组讨论,通过观察表格和计算,得出胜一场和负一场各积多少分.【答案】根据表格中最下面一行数据可以看出,钢铁队14场全负,总积分是14分,所以,负一场积1分.设胜一场积x分,根据负一场积1分,由表中前进队的胜负场数和积分,可列方程10x +1×4=24,解得x=2,所以,胜一场积2分.得到积分规则:负一场积1分,胜一场积2分.【设计意图】多角度引导学生对表格进行分析,结合计算,得出表格中隐藏的数量关系.【问题】用代数式表示一支球队的总积分与胜、负场数之间的数量关系.【师生活动】教师对学生进行提醒,可以用未知数来表示胜场数或负场数.【答案】若一支球队胜m场,则负(14-m)场,胜场积分为2m,负场积分为14-m,总积分为2m+(14-m),即m+14.【设计意图】列式表示,量化表格中的信息.【问题】某队的胜场总积分能等于它的负场总积分吗?【师生活动】学生独立列式解答,教师根据解题结果进行点评.【答案】设一支球队胜了y场,则负了(14-y)场,依题意,得2y=14-y.解得y=143.【设计意图】能够根据表格所得到的信息列出方程并解答.【问题】y表示什么量?它可以不取整数吗?由此你能得出什么结论?【师生活动】教师引导学生进行分析,判断结果是否符合实际意义.【答案】y表示某队获胜的场数,它应该是自然数,不能是分数.结论:解决实际问题时,要考虑得到的结果是不是符合实际.因为y(所胜的场数)的值必须是整数,所以y=143不符合实际,由此可以判定没有哪支球队的胜场总积分等于负场总积分.【设计意图】通过对此问题进行分析,让学生意识到对于实际问题,有必要检验解出的结果是否合乎实际.【归纳】通过对球赛积分表的探究,你有什么收获?1.生活中数据信息的传递形式是多样的.2.解决表格问题,首先根据表格中给出的有关信息,找出数量间的关系,再运用数学知识解决问题.二、典例精讲【例题】某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况.(1)参赛者F得76分,他答对了几道题?(2)参赛者G说他得80分,你认为可能吗?为什么?【分析】通过表格,你能得到什么信息?【师生活动】在前面探究的基础上,学生单独分析这个表格并找出直接信息.【答案】答对题数+答错题数=20;答对题得分+答错题得分=总得分;答对(错)题得分=答对(错)题数×对(错)一题得分.【设计意图】巩固学生对表格的分析能力,为下面列方程计算做好铺垫.【问题】通过表格,能求得哪些数值?【师生活动】学生通过分析表格隐藏信息,求出答对一题和答错一题分别得多少分.【答案】A答对题得分=100=20×5,答错题得分0,可知答对一题得5分;E答对题得分=10×5=50,总得分=40,答错题目数是10,答错题得分=40-50=-10,可知答错一题得-1分.【设计意图】根据表格求出基本数据,以便于后续列方程.【问题】参赛者F得76分,他答对了几道题?【师生活动】学生独立列方程解答,小组交流互判对错.【答案】解:设F答对了x道题,则答错了(20-x)道题.列出方程5x+(-1)×(20-x)=76.解方程,得x=16.答:他答对了16道题.【设计意图】让学生学会运用表格中所得到的信息,列方程解决问题.【问题】参赛者G说他得80分,你认为可能吗?为什么?【师生活动】小组交流合作,解答本题,派出学生代表回答.【答案】解:设G答对了m道题,则答错了(20-m)道题.假设G得80分,可列方程5m+(-1)×(20-m)=80.解方程,得m=503.因为m不可能是分数,所以参赛者G不可能得80分.【设计意图】通过此题,强化学生对结果检验的认识,知道针对实际问题,要检验方程的解是否符合实际意义.【归纳】解决这类问题的关键是要弄清积分规则,正确找出相等关系,从而列出方程.课堂小结板书设计一、比赛积分问题中的相等关系二、比赛积分问题所涉及的关系式三、解决比赛积分问题的关键课后任务完成教材第137页练习1~2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
5.3 实际问题与一元一次方程(第1课时) 1.会运用方程解决实际问题中的配套问题与工程问题,掌握利用一元一次方程解决实际问题的一般步骤.2.在实际问题的分析与解决的过程中,经历利用字母表示未知量和借助图表寻找量与量之间关系的过程,体会“方程”是解决实际问题的常用工具.通过分析题意,寻找相等关系,建立方程模型.厘清数量关系,多角度找相等关系.新课导入 根据前面的学习,我们已经知道,方程是分析和解决问题的一种很有用的数学工具.本节课我们来研究如何用一元一次方程解决实际问题中的配套问题与工程问题.在学习新课之前,先让我们一起来解决下面这个问题:【问题】一种配套产品由一个螺栓和两个螺母组成,现已生产x 个螺栓,需生产多少个螺母刚好配套?如果生产了x 个螺母,那么需要生产多少个螺栓刚好配套呢?【答案】2x 12x 【设计意图】使用教材中的例题情境,让学生对配套问题有一个初步的认识,为后面的新课学习做好铺垫.新知探究 一、探究学习【问题】某车间有22名工人,每人每天可以生产1 200个螺栓或2 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?教学目标 教学重点 教学难点 教学过程【师生活动】学生读题,逐句进行分析,初步找出题目中的有用信息.【思考】已知量是什么?未知量是什么?【师生活动】引导学生对找出的有用信息进行归纳,分别对已知量和未知量进行分类.【答案】已知量:工人22名,每人每天生产1 200个螺栓或2 000个螺母,1个螺栓和2个螺母配套.未知量:分别安排生产螺栓和螺母的工人人数.【设计意图】通过对题目中给出的信息进行归纳分类,为后续设未知数做好铺垫.【思考】“为使每天生产的螺栓和螺母刚好配套”,什么叫刚好配套?【师生活动】学生分组讨论,得出对“刚好配套”的理解,教师进行点评.【答案】因为1个螺栓需要配2个螺母,每天生产的螺栓和螺母刚好配套应满足:1=2螺栓数目螺母数目,即螺母数量是螺栓数量的2倍. 【设计意图】通过理解“刚好配套”的意思,找到配套问题中物品之间的数量关系,为后续列方程提供依据.【思考】在此配套基础上,可以将哪个量设为未知数呢?【师生活动】教师引导学生设出未知数,同时用未知数表示出相关的数量关系.【答案】可将生产螺栓的人数设为x ,那么生产螺母的人数应为22-x .则每天共生产螺栓 1 200x 个,生产螺母 2 000(22-x ) 个.【设计意图】用含有未知数的式子表示相关量,逐步找出列方程所需要的各元素.【问题】根据前面的分析,完成表格:【师生活动】师生合作,完成表格.【答案】【设计意图】采用表格便于学生从纷繁的实际情境中分析问题,有条理地获取数量关系,体现了数形结合的数学思想.【问题】列出方程,对本题进行解答.【师生活动】学生独立列出方程,并解方程,教师根据答题结果进行点评.【答案】解:设应安排x 名工人生产螺栓,(22-x )名工人生产螺母.根据螺母数量应是螺栓数量的2倍,列得方程2 000(22-x )=2×1 200x .解方程,得x =10,进而22-x =12.答:应安排10名工人生产螺栓,12名工人生产螺母.【问题】如果设x 名工人生产螺母,又该怎样列方程呢?尝试列出方程并解答.【师生活动】教师引导学生列出方程,并解方程.【答案】解:设应安排x 名工人生产螺母,(22-x )名工人生产螺栓.根据螺母数量是螺栓数量的2倍,列得方程2 000x =2×1 200(22-x ).解方程,得x =12,22-x =10.答:应安排12名工人生产螺母,10名工人生产螺栓.【设计意图】通过本问题让学生意识到,一道应用题中往往含有多个未知量,可以选择设不同的未知量为未知数,一般设未知数的原则是“问什么设什么”.【师生活动】组内交流,提炼解题思路.【设计意图】通过对解题思路的回顾和分析,让学生初步了解列一元一次方程解决实际问题的一般步骤.【归纳】解答配套问题的关键在配套问题中,一套物品的各个零部件之间会有一定的倍数关系,这个倍数关系就是列方程的关键.其中最常见的配套问题的相等关系是如果a 件甲产品和b 件乙产品配成一套,那么a b甲产品数乙产品数.由等式的性质可得,甲产品数的b 倍等于乙产品数的a 倍. 二、典例精讲【例1】一张方桌由1个桌面、4条桌腿组成,如果1 m 3木料可以做方桌的桌面50个或做桌腿300条.现有5 m 3木料,为使做出的桌面和桌腿恰好配成方桌,应分别用多少木料做桌面和桌腿?能配成多少张方桌?【分析】本题的配套关系是:桌面∶桌腿=1∶4,即1个桌面需要4条桌腿. 相等关系是:桌面的数量×4=桌腿的数量.【设计意图】通过分析,找到本题中桌面和桌腿之间的数量关系.【问题】列出方程,对本题进行解答.【师生活动】学生独立列出方程,并解方程,教师根据解题结果是否正确进行指导.【答案】解:设用x m3木料做桌面,(5-x) m3木料做桌腿,则可做桌面50x个,做桌腿300(5-x)条.根据题意,列得方程:4×50x=300(5-x).解方程,得x=3,5-x=2.配成方桌的数量为:3×50=150(张).答:用3 m3木料做桌面,2 m3木料做桌腿,恰能配成150张方桌.【设计意图】通过解答本题,巩固解题方法,加深学生对配套问题解题思路的理解.【例2】服装厂要生产一批某种型号的学生运动服,已知每3 m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.计划用600 m长的这种布料生产运动服,应分别用多少布料生产上衣和裤子,才能配套?共能生产多少套运动服?【师生活动】学生尝试独立解答,派出学生代表回答.【答案】解:设用x m布料生产上衣,则用(600-x) m布料生产裤子,根据题意列方程:23x=600-x,解方程,得x=360.则生产裤子的布料:600-360=240(m),生产上衣:360×23=240(件),即240套运动服.答:分别用360 m和240 m布料生产上衣和裤子,才能配套,共能生产240套运动服.【设计意图】该题继续巩固解决配套问题的一般方法,同时要注意数量关系的细微变化,增强运算能力.【例3】某车间有85名工人加工齿轮,平均每人每天加工大齿轮16个或小齿轮10个.2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的齿轮刚好配套?【师生活动】学生独立解决,并派学生代表板书写出答案,教师进行点评.【答案】解:设x名工人加工大齿轮,则(85-x)名工人加工小齿轮.根据题意,列得方程:3×16x=10(85-x)×2.解方程,得x=25,85-x=60.答:应安排25名工人加工大齿轮,60名工人加工小齿轮,可使每天加工的齿轮刚好配套.【设计意图】加深学生对利用一元一次方程解决实际问题的理解,知道列方程最关键的是找出问题中的相等关系.新课导入前面我们学习了如何运用一元一次方程来解决实际问题中的配套问题,接下来,我们来探究一元一次方程与实际问题——工程问题.在学习新知识之前,先完成下面的填空:工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率.【设计意图】对前面学过的工程问题中存在的一些等量关系进行复习,为接下来的学习做好铺垫,有助于准确地找到相等关系并列出方程.新知探究三、探究学习【问题】整理一批图书,由1人整理需要40 h完成.现计划由一部分人先整理4 h,然后增加2人与他们一起整理8 h,完成这项工作.假设这些人的工作效率相同,应先安排多少人进行整理?【师生活动】学生读题,逐句进行分析,初步找出题目中的有用信息.【思考】(1)工作总量通常看作______.(2)人均工作效率为______.(3)工作量=_______________________________________.【师生活动】引导学生结合已经学过的知识填空.【答案】(1)1(2)140(3)人均工作效率×人数×工作时间【设计意图】明确解答本题需要用到的一些数量关系,为后面设未知数做好铺垫.【思考】整项工作由几部分组成?存在怎样的等量关系?【师生活动】学生分组讨论,找出问题中的等量关系.【答案】整项工作由两个阶段的工作量组成,存在的等量关系:一部分人先整理4 h完成的工作量+增加了2人之后再整理8 h完成的工作量=总工作量.【设计意图】找到等量关系,为设出未知数后列方程做好准备.【思考】你能根据已知条件,分别表示出两个阶段的工作量吗?【师生活动】师生配合,表示出两个阶段的工作量.【答案】第一阶段工作量:140×4×第一阶段人数; 第二阶段工作量:140×8×第二阶段人数. 【问题】我们可以怎样设未知数?设出未知数后,相关的量可以如何表示呢?【师生活动】教师引导学生结合前面所学内容,设出未知数,表示出列方程所需要的相关量.【答案】根据前面讲过的“求什么设什么”的原则,可以设先安排x 人工作.第一阶段的工作人数是x ,则第二阶段的工作人数是x +2;第一阶段的工作量可以表示为440x ,第二阶段的工作量可以表示为8240x +(). 【设计意图】用含有未知数的式子表示相关量,逐步找出列方程所需要的各元素.【问题】根据前面的分析,完成表格:【师生活动】师生合作,完成表格.【答案】【设计意图】采用表格便于从纷繁的实际情境中发现数量关系,有条理地获取数量关系,有助于提升学生思考问题的条理性.【问题】列出方程,对本题进行解答.【师生活动】根据前面的分析和所完成的表格,列出方程,并解方程.【答案】解:设先安排x 人整理4 h .根据先后两个时段的工作量之和等于总工作量,列得方程48(2)14040x x ++=. 解方程,得x =2.答:应先安排2人进行整理.【师生活动】组内交流,提炼解题思路.【设计意图】通过对解题过程的分析回顾,让学生能清晰地掌握利用一元一次方程解决工程问题的一般步骤.【问题】整理一批图书,由1人整理需要40 h 完成,现计划由2人先整理4 h ,然后增加若干人与他们一起又整理4 h 完成这项工作,应增加多少人?【师生活动】教师引导学生列出方程,并解方程.【答案】解:设增加x 人.根据先后两个时段的工作量之和等于总工作量,列得方程244(2)14040x ⨯++=. 解方程,得x =6.答:应增加6人一起完成工作.【设计意图】通过变式问题,巩固学生对列一元一次方程解决工程问题的应用.【归纳】工程问题中的等量关系.(1)在工作总量不明确、不具体的情况下,通常把工作总量看成单位1.(2)工作总量=工作效率×工作时间.(3)甲、乙合作的工作效率=甲的工作效率+乙的工作效率.(4)所有人工作量的和等于总工作量.四、典例精讲【例4】甲每天生产某种零件80个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产这种零件940个,问乙每天生产这种零件多少个?【分析】画出示意图如下:等量关系式:前3天甲生产零件的个数+后5天甲生产零件的个数+后5天乙生产零件的个数=940.【设计意图】数和形是数学中两种重要的表示形式,在列方程解应用题时,我们可以利用图形分析问题中的数量关系,进行求解.本题通过使用示意图,得出等量关系式,给学生展示使用图形分析题目的方法.【问题】列出方程,解答本题.【师生活动】学生独立列出方程,并解方程,教师根据解题结果是否正确进行指导.【答案】解:设乙每天生产零件的个数为x .由题意,得3×80+5×80+5x =940.解方程,得x =60.答:乙每天生产这种零件60个.【设计意图】让学生掌握另一种形式的工程问题的解题思路.【例5】某项工作,甲单独做需要4小时,乙单独做需要6小时,甲先做30分钟,然后甲、乙合作.甲、乙合作还需要多少小时才能完成全部工作?【师生活动】教师引导学生从不同的角度思考问题,列出方程.【答案】解法1:设甲、乙合作还需要x 小时才能完成全部工作.根据题意,得1111426x x ⎛⎫++= ⎪⎝⎭. 解方程,得x =2.1.答:甲、乙合作还需要2.1小时才能完成全部工作.解法2:设甲、乙合作还需要x 小时才能完成全部工作.根据题意,得111114246x ⎛⎫⨯++= ⎪⎝⎭. 解方程,得x =2.1.答:甲、乙合作还需要2.1小时才能完成全部工作.【设计意图】该题继续巩固工程问题的解题方法,同时帮助学生寻找不同的列方程切入点,知道列式的不同并不会影响最终结果.【例6】某工人安装一批机器,若每天安装4台,预计若干天完成,安装23后,改用新方法安装,工作效率提高到原来的32倍,因此比预计时间提前一天完工.这批机器有多少台?预计几天完成?【师生活动】学生独立解决,并派学生代表板书写出答案,教师进行点评.【答案】解:设这批机器有x 台,则预计4x 天完成.根据题意,得113441 332x x⎡⎤⎛⎫⎛⎫÷-÷⨯=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.解方程,得x=36.进而369 44x==.答:这批机器有36台,预计9天完成.【设计意图】此题有一定难度,可以更好地巩固学生对工程问题解法的掌握.【归纳】工程问题中的三个基本量:工作量、工作效率、工作时间.列方程解应用题时要牢记:如果甲量已知,从乙量设元,那么需从丙量找相等关系列方程.【思考】用一元一次方程解决实际问题的基本步骤是什么?【归纳】用一元一次方程解决实际问题的基本步骤包括:审、设、列、解、检、答.即分析题意,设未知数,列方程,解方程,检验所得结果,确定答案.正确分析问题中的相等关系是列方程的基础.【设计意图】通过前面一系列的学习,师生共同归纳出用一元一次方程解决实际问题的基本步骤,为之后的教学做铺垫.课堂小结板书设计一、配套问题二、列一元一次方程解决配套问题的方法三、工程问题四、列一元一次方程解决工程问题的方法五、列一元一次方程解决实际问题的基本步骤课后任务完成教材第134页练习1~3题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
5.1.1从算式到方程课时目标1.通过引入实际问题情境,让学生在算式、代数两种方式下解决问题,体会由算术到代数是数学的一大进步,从而培养学生分析、归纳和抽象概括的思维能力,初步认识建立数学模型的思想.2.经历用含有未知数的等式表示实际问题中的相等关系,感悟方程的现实意义,理解方程的概念,培养学生获取信息、分析问题、处理问题的能力,提升方程模型的应用意识.3.通过数学背景材料,让学生理解并掌握方程、一元一次方程及其相关概念的内涵,培养学生的阅读理解、拓展探究的能力,增强学生的数学应用意识,调动学生学习数学的主动性.学习重点寻找相等关系列出方程,方程、一元一次方程及其相关概念.学习难点寻找相等关系列出方程的意识和过程.课时活动设计情境引入问题:甲、乙两支登山队沿同一条路线同时向一山峰进发.甲队从距大本营1 km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km.多长时间后,甲队在途中追上乙队?学生先独立思考、作答,然后小组交流合作,最后选派学生代表板演展示,教师巡视指导.解:甲队追上乙队所用的时间为3−11.2−0.8=20.4=5(小时).教师适时追问:(1)这是算术解法,同学们,你们知道这样做的根据吗?(2)你还有其它的解决方法吗?教师引导学生尝试通过列方程的方法来解决这个问题.解:设x小时后,甲队在途中追上乙队.当甲队追上乙队时,甲队距大本营的路程为(1.2x+1)km,乙队距大本营的路程为(0.8x+3)km.因为甲队在途中追上乙队,即甲队距大本营的路程=乙队距大本营的路程,于是1.2x+1=0.8x+3.设计意图:通过设置这个学生熟悉的行程问题,让学生尝试用自身拥有的数学知识(算术方法)解决,然后逐步引导学生用含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式——方程,目的在于突出方程的根本特征,为引出方程的概念作铺垫.探究新知探究1方程的概念和列方程教师请同学们按照教学活动1中的方法,先设出未知数,再根据问题中的相等关系列出含有未知数的等式.学习先独立思考解答下列两个问题,然后再进行小组谈论,最后选派代表板演展示.问题1:用买3个大水杯的钱,可以买4个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?分析:根据题意,可知3个大水杯的总价=4个小水杯的总价,大水杯的单价-小水杯的单价=5,总价=数量×单价.因此,只要设出大水杯的单价或小水杯的单价,就可以列出方程了.解:设大水杯的单价为x元,那么小水杯的单价为(x-5)元.因为用买3个大水杯的钱,可以买4个小水杯,所以3x=4(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.问题2:如图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为85(即宽是长的58).这枚纪念币的长和宽分别是多少毫米?分析:根据题意,可知这个长方形的宽=58×长方形的长,长方形的面积=长×宽,因此,只要设出长方形的长或宽,就可以列出方程了.解:设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,面积可以表58x2mm2.已知纪念币的面积为4000mm2,所以58x2=4000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.教师引导学生归纳:像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.教师适时追问:(1)你能解释这些方程的左边、右边各表示什么意思吗?(2)对于根据问题中的相等关系列方程,说说你的体会?学生思考,小组讨论交流.教师引导学生归纳:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.这个过程可以表示如下:教师进一步指出:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.探究2解方程和方程的解问题3:请同学们尝试解方程1.2x+1=0.8x+3.学生先独立解答,然后再小组交流,教师巡视指导.解:可以发现,当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,这时方程左右两边的值相等.教师引导学生归纳:一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.例如,x=5就是方程1.2x+1=0.8x+3的解.求方程的解的过程,叫作解方程.判断未知数是否为方程的解的具体步骤:(1)把未知数的值分别代入方程的左、右两边进行计算;(2)若左边=右边,则这个未知数是方程的解;反之,则不是.探究3一元一次方程的概念问题4:观察下列方程,你有什么发现.1.2x+1=0.8x+3;3x=4(x-5).先让学生独立思考,自主探索,然后将分析结果在小组内进行交流,形成共识,最后由学生代表回答问题,教师巡视指导学生的学习情况.解:这些方程中只有1个未知数x,且未知数x的次数都是1.引导学生归纳出一元一次方程的概念:一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.设计意图:通过设置一系列问题,突出方程的根本特征,使学生认识到从算式到方程是更有力、更方便的数学工具,从算术方法到代数方法是数学的一大进步.初步培养了学生由实际问题抽象出方程模型的能力.典例精讲例1根据下列问题,设未知数并列出方程:(1)某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?(2)如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.分析:(1)根据题意,可知女生人数-男生人数=80,并且女生人数=全体学生数×52%,因此,只需设出全体学生数就可以列出方程了;(2)由题意,可知扩大后的绿地的长=正方形绿地的长+5,扩大后的绿地面积=500,所以只需设出原来绿地的长就可以列出方程了.解:(1)设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x-(1-0.52)x=80.(2)设正方形绿地的边长为x m,那么扩大后的绿地面积为(x2+5x)m2,根据“扩大后的绿地面积是500m2”,列得方程x2+5x=500.例2(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.例32x+1=0.8x+3,3x=4(x-5),0.52x-(1-0.52)x=80,它们有什么共同特征?解:(1)只含有一个未知数x;(2)未知数x的次数都是1;(3)整式方程.设计意图:将列方程解决实际问题这一本章的教学难点分散在本章教学的每一节课中是设置这一系列教学活动的目的,化整为零地培养学生由实际问题抽象出方程模型的能力,持续渗透建模思想.教学中,通过先让学生独立思考、然后再进行小组合作的学习活动,既能培养学生的阅读理解能力、分析问题、解决问题的能力,又能提高学生的抽象思维能力.巩固训练1.x=3是下列哪个方程的解(B)A.2x+7=11B.5x-8=2x+1C.3x=1D.-x=32.小芬买了15份礼物,共花了900元,已知每份礼物内都有1包饼干及每支售价20元的棒棒糖2支,若每包饼干的售价为x元,则依题意可列出下列哪一个一元一次方程(C)A.15(2x+20)=900B.15x+20×2=900C.15(x+20×2)=900D.15×x×2+20=9003.当m=3或1时,关于x的方程x|2-m|+1=0是一元一次方程.4.下列式子中,哪些是方程,哪些是一元一次方程?并说明理由.①2x+1;②2m+15=3;③3x-5=5x+4;④x2+2x-6=0;⑤-3x+1.8=3y;⑥3a+9>15.解:上述式子是方程的有②③④⑤,其中②③是一元一次方程.理由:①是含有未知数的式子,不是等式;⑥是不等式;而②③④⑤是含有未知数的等式,符合方程的定义,其中④未知数的次数是2,⑤含有两个未知数,只有②③符合一元一次方程的定义,因此它们是一元一次方程.5.根据下列问题,设未知数并列出方程:(1)某长方形足球场的周长为310米,长和宽之差为25米,求这个足球场的宽;(2)《数学学习方法报》每份0.6元,《数学周报》每份0.5元,小明用10元钱买了两种报纸共18份,他买的两种报纸各多少份?解:(1)设这个足球场的宽为x米,则长为(x+25)米,依题意,得2x+2(x+25)=310.(2)设《数学学习方法报》买了x份,则《数学周报》买了(18-x)份,则有0.6x+0.5(18-x)=10.设计意图:通过练习,巩固方程及一元一次方程的概念,促进学生对知识的理解,使学生更加深刻地把握概念的内涵和外延,持续体会数学建模思想.课堂小结1.这节课你学到了哪些知识?2.在探寻方程的有关概念的学习过程中,你学到了哪些数学方法?积累了哪些活动经验?3.在利用列方程解实际问题的过程中,对你有哪些启示?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯.课堂8分钟.1.教材第118页习题5.1第1,2,3,5,6题.2.七彩作业.5.1.1从算式到方程1.解决数学实际问题的方式:(1)算式方法.(2)用含有未知数的等式表示问题中的相等关系.2.方程:含有未知数的等式叫作方程.3.用方程的方法解决实际问题是更方便的数学工具.4.方程的解、解方程的概念.5.一元一次方程的概念.教学反思5.1.2等式的性质课时目标1.通过使学生亲身经历运用所学知识探索等式的性质的过程,激发学生的数学学习兴趣,增强学生学好数学的信心,进而培养学生自主探究和实践能力.2.通过让学生从事自主学习、合作交流等数学活动,理解并掌握等式的性质,在实际操作中学习知识,在解决问题中深化认知,发展和提高学生的应用意识.3.通过使学生经历利用等式的性质解方程的过程,逐步培养学生观察、分析、概括的逻辑思维能力,从而渗透“化归”的思想.学习重点等式的性质和运用.学习难点应用等式的性质把简单的一元一次方程化成“x=m”的形式.课时活动设计情境引入用观察的方法我们可以求出简单的一元一次方程的解.你能用这种方法求出下列方程的解吗?(1)3x-5=22;(2)0.28-0.13y=0.27y+1.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.解:对于(1),通过观察,可以看出x=9是方程的解;但是(2)不容易直接看出来.追问:既然不容易直接看出来,那么我们还能借助哪些知识来解这个方程呢?设计意图:设置悬念,引出等式的性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法作铺垫.探究新知探究1等式的性质问题1:请同学们填空,使式子成立.(1)如果m=n,那么n=m;(2)如果x+2x=3x,那么3x=x+2x;(3)如果a=3,b=3,那么a= b.(填“>”“=”或“<”)学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师归纳:诸如m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.我们可以用a=b表示一般的等式.首先,给出关于等式的两个基本事实:(1)等式两边可以交换.如果a=b,那么b=a;(2)相等关系可以传递.如果a=b,b=c,那么a=c.思考:在小学,我们已经知道:等式两边同时加(或减)同一个正数,同时乘同一个正数,或同时除以同一个不为0的正数,结果仍相等.引入负数后,这些性质还成立吗?完成下列题目,试试你的猜想是否成立.问题2:用适当的数或整式填空,使所得结果仍是等式.(1)如果3x=-2x-1,那么3x+2x=-1,两边同时加2x;(2)如果12x=5,那么x=10,两边同时乘2;(3)如果13x-2=x-12,那么13x-x=-12+2,两边同时加2-x.学生独立思考解答,然后小组交流,最后选派学生代表板演展示,教师巡视指导.教师根据学生回答情况作出评价,适时进行追问:(1)在运用等式的性质时,等式的两边要做怎样的变化?(2)在等式两边同除以一个数时,应注意什么?师生共同归纳:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.用符号语言描述:如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用符号语言描述:如果a=b,那么ac=bc;如果a=b,c≠0,那么=.探究2利用等式的性质解方程问题3:利用等式的性质解下列方程:(1)x+3=5;(2)3x+2=8.学生独立思考,小组交流讨论,并派学生代表上台板演.解:(1)方程两边减3,得x+3-3=5-3.于是x=2.(2)方程两边减2,得3x+2-2=8-2.化简,得3x=6.方程两边除以3,得x=2.教师引导学生归纳:一般地,从方程解出未知数的值从后,通常需要代入原方程检验,看这个值能否使方程左、右两边的值相等.例如,将x=2代入方程3x+2=8的左边,得3×2+2=8.方程左、右两边的值相等,所以x=2是方程3x+2=8的解.解以x为未知数的方程,就是把方程逐步转化为x=m(常数)的形式,等式的性质是转化的重要依据.设计意图:设置上述教学环节,让学生借助具体的式子来验证等式的两条性质,加深对等式的性质的认知,同时又用文字语言和符号语言两种形式来描述这些性质,目的在于让学生切实理解等式的性质,体会如何用数学的符号语言抽象概括地表示它们.典例精讲例1根据等式的性质填空,并说明依据:(1)如果2x=5-x,那么2x+=5;(2)如果m+2n=5+2n,那么m=;(3)如果x=-4,那么·x=28;(4)如果3m=4n,那么32m=·n.解:(1)2x+x=5;根据等式的性质1,等式两边加x,结果仍相等.(2)m=5;根据等式的性质1,等式两边减2n,结果仍相等.(3)-7·x=28;根据等式的性质2,等式两边乘-7,结果仍相等.(4)32m=2·n;根据等式的性质2,等式两边除以2,结果仍相等.例2利用等式的性质解下列方程:(1)x+7=26;(2)-5x=20;(3)-13x-5=4.分析:要使方程x+7=26转化为x=m(常数)的形式,需要去掉方程左边的7,利用等式的性质1,方程两边减7就得出x的值.类似地,利用等式的性质,可以将另外两个方程转化为x=m的形式.解:(1)方程两边减7,得x+7-7=26-7.于是x=19.(2)方程两边除以-5,得-5-5=20-5.于是x=-4.(3)方程两边加5,得-13x-5+5=4+5.化简,得-13x=9.方程两边乘-3,得x=-27.设计意图:通过例题,让学生在观察等式的两边的变化情况后运用等式的性质做题,进一步加深学生对等式性质的准确把握,同时有助于引导学生利用等式的性质研究方程的解法,对于需要运用两次等式的性质来解方程的题目,需要学生有一定的思维顺序,能够锻炼学生的思维能力.巩固训练1.如果mx=my,那么下列等式中不一定成立的是(D)A.mx+1=my+1B.mx-3=my-3C.-12mx=-12myD.x=y2.下列方程的变形,符合等式的性质的是(D)A.由2x-3=7得2x=7-3B.由-3x=5得x=5+3C.由2x-3=x-1得2x-x=-1-3D.由-14x=1得x=-43.用适当的数或整式填空,使所得的式子仍是等式,并注明根据.(1)如果x+2=3,那么x=3+-2,根据是等式的性质1;(2)如果4x=3x-7,那么4x-3x=-7,根据是等式的性质1;(3)如果-2x=6,那么x=-3,根据是等式的性质2;(4)如果12x=-4,那么x=-8,根据是等式的性质2.4.利用等式的性质解方程:(1)x-4=1;(2)3x+5=0.解:(1)方程两边加4,得x-4+4=1+4.于是x=5.(2)方程两边减5,得3x+5-5=0-5.整理,得3x=-5.方程两边除以3,33=-53.于是x=-53.设计意图:通过巩固训练,进一步巩固学生对等式的性质的认识,让学生充分认识到如何应用等式的性质去解题.课堂小结1.本节课你学到了什么知识?2.在运用等式的性质解题时,应该注意什么?3.在运用等式的性质解方程时,你获得了哪些宝贵的经验?设计意图:通过课堂小结的形式,让学生回顾知识点,形成知识体系,有利于学生养成回顾梳理知识的习惯,让学生在对课堂所学有系统认知的基础上,深化对知识的理解程度.课堂8分钟.1.教材第118页习题5.1第4,7,8,10,11题.2.七彩作业.5.1.2等式的性质1.关于等式的两个基本事实:等式两边可以交换.如果a=b,那么b=a.相等关系可以传递.如果a=b,b=c,那么a=c.2.等式的基本性质:等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.教学反思。
初一数学第五章教案初一数学第五章教案3篇作为一位杰出的老师,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
如何把教案做到重点突出呢?下面是小编精心整理的初一数学第五章教案,希望能够帮助到大家。
初一数学第五章教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方。
师:呢?生:可以记作,读作的五次方。
师:(为正整数)呢?生:可以记作,读作的次方。
师:很好!把个相乘,记作,既简单又明确。
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明。
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作。
第五章一元一次方程
5.1.2 等式的性质
第三章一元一次方程
二、推进新课
知识点1 等式的性质
像m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式.
用等号表示相等关系的式子,叫做等式.
通常可以用a=b表示一般的等式.
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
如果a=b,那么a±c=b±c.
由它你能发现什么规律?
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
如果a=b,那么ac=bc;
如果a=b(c≠0),那么a/c=b/c
知识点2 解方程
例2 利用等式的性质解下列方程
(1)x+7=26
解:两边减7,得
x+7-7=26-7
x = 19
(2)-5x=20
两边除以-5,得
x = -4
两边加5,得
两边乘-3,得
x = -27
备注:解以x 为未知数的方程,就是把方程逐步转化为x=a (常数)的形式,等式的性质是转化的重要依据.
三、随堂演练
练习:用等式的性质解下列方程并检验:
(1)x - 5=6; (2)0.3x =45;
(3)5x +4=0; (4)3x 4
12=-
四、课堂小结
等式的性质:
如果a =b ,那么a ±c =b ±c
如果a =b ,那么ac =bc ;
如果a =b(c ≠0),那么a/c=b/c
等式的性质:。
初一数学第五章教案初一数学第五章教案初一数学第五章教案1 一、素质教育目的(一)知识教学点能按照有理数的运算顺序,正确纯熟地进展有理数的加、减、乘、除、乘方的混合运算.(二)才能训练点培养学生的观察才能和运算才能.(三)德育浸透点培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进展,最后要验算的好的习惯.(四)美育浸透点通过本节课的学习,学生会认识到小学算术里的四那么混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.二、学法引导1.教学方法:尝试指导法,以学生为主体,以训练为主线.2.学生学法:三、重点、难点、疑点及解决方法重点和难点是如何按有理数的运算顺序,正确而合理地进展有理数混合计算.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计老师用投影出示练习题,学生用多种形式完成.七、教学步骤(一)复习提问(出示投影1)1.有理数的运算顺序是什么?2.计算:(口答)①,②,③,④,⑤,⑥.【教法说明】2题都是学生运算中容易出错的题目,学生口答后,假如答对,追问为什么?假如不对,先让他自己找错误原因,假设找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而到达培养运算才能的目的(二)讲授新课1.例2计算师生共同分析^p :观察题目中有乘法、除法、减法运算,还有小括号.考虑:首先计算小括号里的减法,然后再按照从左到右的顺序进展乘除运算,这样运算的步骤根本清楚了.带分数进展乘除运算时,必须化成假分数.动笔:按考虑的步骤进展计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.一个学生板演,其他学生做在练习本上,老师巡回指导,然后师生共同订正.【教法说明】通过此题的分析^p ,引导学生在进展有理数混合运算时,遵循“观察—考虑—动笔—检查”的程序进展计算,有助于培养学生严谨的学风和良好的学习习惯.2.尝试反应,稳固练习(出示投影2)计算:①;②.【教法说明】让学生仿照例题的形式,自己动脑进展分析^p ,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.老师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进展变式训练.3.例3计算:.老师引导学生分析^p :观察题目中有乘方、乘法、除法、加法、减法运算.考虑:容易看到,是彼此独立的,可以首先分别计算,然后再进展加减运算.动笔:按考虑的步骤进展计算,在计算时强调不要“跳步”太多.检查计算结果是否正确.一个学生口述解题过程,老师予以指正并板书做示范,强调解题的标准性.4.尝试反应,稳固练习(出示投影3)计算:①;②;③;④.首先要求学生观察考虑上述题目考察的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.说明:1小题主要考察乘方、除法、减法运算法那么及运算顺序等知识,学生容易出现的错误.通过此题让学生注意运算顺序.3题主要考察:相反数、负数的奇次幂、偶次幂运算法那么及运算顺序等知识点.让学生搞清与的区别;,.计算此题要特别注意符号问题;4题主要考察相反数运算法那么及运算顺序等知识.此题要特别注意运算顺序.【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析^p 才能和运算才能.通过变式训练,也培养学生的思维才能.学生做练习时,老师巡回指导,及时获得反应信息,对学生出现错误较多的问题,老师要进展回授讲解,然后再出一些变式训练进展稳固.(三)归纳小结师:今天我们学习了,要求大家做题时必须遵循“观察—分析^p —动笔—检查”的程序进展计算.【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,进步运算的准确率.(四)反应检测(出示投影4)(1)计算①;②③;④;⑤.(2),时,求以下代数式的值①;②.以小组为单位计分,积分的组为优胜组.【教法说明】通过反应检测,既锻炼学生综合应用所学知识的才能,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感.八、随堂练习1.选择题(1)以下各组数中,其值相等的是A.和B.和C.和D.和(2)以下各式计算正确的选项是A.B.C.D.(4)以下说法正确的选项是A.与互为相反数B.当是负数时,必为正数C.与的值相等D.5的相反数与的倒数差大于-2.2.计算(1);(2).九、布置作业(一)必做题:课本第118页3.(4)、(5);4.(6)、(7)、(8).(二)选做题:课本第119页B组1.十、板书设计初一数学第五章教案2 一、素质教育目的(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)才能训练点1.培养学生观察、分析^p 、比拟、归纳、概括的才能.2.浸透转化思想.(三)德育浸透点:培养学生勤思、认真和勇于探究的精神.(四)美育浸透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探究法,尝试指导,充分表达学生主体地位.2.学生学法:探究的性质→练习稳固三、重点、难点、疑点及解决方法1.重点:运算.2.难点:运算的符号法那么.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计老师引导类比,学生讨论归纳乘方的概念,老师出示探究性练习,学生讨论归纳乘方的性质,老师出示稳固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方。
第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
5.3实际问题与一元一次方程(第4课时)教学目标1.体验建立方程模型解决问题的一般过程.2.体会分类思想和方程思想,增强应用意识和应用能力.教学重点通过分类讨论,将数学问题转化为方程问题.教学难点由实际问题抽象出数学模型的探究过程.教学过程新课导入今天,我们来探究如何用一元一次方程解决与实际生活联系更为紧密的问题——方案选择问题.解决这类问题的关键仍然是在实际问题中分析数量关系,先找出相等关系,再设未知数列方程求解.新知探究一、探究学习【问题】购买空调时,需要综合考虑空调的价格和耗电情况.某人打算从两款空调中选购一台,下表是这两款空调的部分基本信息.如果电价是0.5元/(kW·h),请你分析他购买、使用哪款空调综合费用较低.平均每年匹数能效等级售价/元耗电量/(kW·h)1.51级 3 0006401.53级 2 600800你了解上面表格中这些数字的含义吗?怎样理解综合费用?【师生活动】教师提问,学生思考、回答.教师对回答的方向适当给予提示,然后教师列举出一两个具体的使用时间,让学生通过简单计算回答相应的费用.【设计意图】通过提问和学生的回答,了解学生对表格信息的理解能力,引导学生对表格信息做初步梳理和简单加工;通过计算几个较容易的电费,检验学生是否理解表格信息的含义,并渗透“电费多少与使用时间相关”.【问题】根据对表格的理解,你觉得应该怎么求综合费用?【师生活动】教师引导学生写出综合费用和电费的求法.【答案】综合费用=空调的售价+电费;电费=平均每年耗电量×使用的时间×电价.【设计意图】引导学生写出综合费用的求法,为后面进行比较做好铺垫.【问题】你觉得选择哪款空调的综合费用较低呢?【师生活动】教师提出问题,学生思考回答.根据学生的回答情况,教师适当加以引导.若学生回答1级能效空调或者3级能效空调综合费用较低,可以和班级其他学生一起举例加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并引导学生作进一步的探究.【设计意图】学生有生活基础,所以具备了一定的认识,在给出探究问题后让学生充分发言,表达自己对问题的直观认识,同时学生之间进行交流,为问题的进一步探究做准备.【问题】通过大家的讨论,你对两款空调的综合费用有什么新的认识?【师生活动】教师提出问题,学生思考回答.根据学生回答,教师适当加以归纳引导:若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两款空调的综合费用的比较结果”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“为什么这样分类?”以及“在每一个时间区间内你是怎么分析的”,从而引导学生更合理地解决问题.【设计意图】学生参考了其他同学的观点后再次对问题进行认识,其认识过程与结论已经逐步接近正确而合理的方向,教师在此基础上加以引导和启发,帮助学生确定分类讨论的研究方式.【问题】应该怎么列式表示综合费用.【师生活动】教师提出问题,学生思考并列出式子,教师巡视.【设计意图】引导学生独立思考,同时考察学生列代数式表示未知量的能力.【问题】t取什么值时,两款空调的综合费用相等?【师生活动】教师提出问题,学生思考并小组讨论,教师选小组汇报讨论结果.学生能对“t=5”这种情况作出准确判断,对于“t<5”“t>5”的情况,教师辅助学生加以分析.【问题】当t<5,t>5时,两款空调的综合费用是怎样的呢?【师生活动】学生组内交流,派出学生代表回答.【答案】把表示3级能效空调的综合费用的式子2 600+400t变形为1级能效空调的综合费用与另外一个式子的和,即(3 000+320t)+(80t-400),也就是3 000+320t+80(t-5).当t<5时,80(t-5)是负数,这表明3级能效空调的综合费用较低;当t>5时,80(t-5)是正数,这表明1级能效空调的综合费用较低.【设计意图】学生通过分类讨论得到方程模型,并利用方程求出关键数据,这可使学生认识到方程的重要性和应用价值,增强学生对模型的应用意识和应用能力.【问题】综合以上的分析,可以发现:___________________,选择3级能效空调;___________________,选择1级能效空调.【师生活动】教师提出问题,学生思考并回答.【答案】当t<5时当t>5时【设计意图】在得出方程模型的结论之后,引导学生利用结论解释实际问题,从而完成解题过程.【归纳】方案选择问题的求解方法.方案选择在日常生活中有着广泛的应用,解决方案选择问题时,我们可分别计算每种方案应付的费用,然后进行比较.二、典例精讲【例】在甲复印店用A4纸复印文件,复印页数不超过20页时每页收费0.12元;复印页数超过20页时,超过部分每页收费降为0.09元.在乙复印店用A4纸复印文件,不论复印多少页,每页收费0.1元.如何根据复印的页数选择复印的地点,使总价格比较便宜?(复印的页数不为0)【问题】你能通过分析题目,合理地列出表格吗?【师生活动】教师引导学生列表,将题目中的信息以表格的形式整理出来.【答案】设复印x页,整理数据如下.【设计意图】通过列表,提升学生列表整理信息的能力.【问题】如何根据复印的页数选择复印的地点使总价格比较便宜?【师生活动】根据表格,学生对此问题进行分析,教师巡视进行指导.【答案】解:设复印页数为x页(x是正整数).(1)当x<20时,0.12x>0.1x恒成立,乙复印店价格便宜;(2)当x=20时,2.4>2,乙复印店价格便宜;(3)当x>20时,依题意,得2.4+0.09(x-20)=0.1x.解得x=60.代入数值进行验证,可知当x>60时,甲复印店价格便宜,当x<60时,乙复印店价格便宜.综上所述,当x<60时,乙复印店价格便宜;当x=60时,甲复印店和乙复印店价格相同;当x>60时,甲复印店价格便宜.【设计意图】通过解答此题,使学生进一步熟悉解决问题的方法与过程,从而提高分析与解决问题的能力.【活动1】生活中的阶梯计价问题居民生活用水通常按户计费.下表是某城市居民生活用水的收费标准(户内人口不超过4人),称这样的收费方式为阶梯计价.【问题】(1)设某户居民的年用水量为t m3(t是正整数),请你列表说明,当t在不同范围内取值时,如何计费.(2)已知某户居民一年的水费为930元,这户居民的年用水量是多少立方米?(3)查阅资料,了解自己所在地区的城市居民生活用水收费标准.据此你能提出一些数学问题并加以解决吗?(4)查阅资料,了解生活中还有哪些阶梯计价问题(如电费、停车场收费、出租车收费等),根据相应的收费标准,自己提出可以利用一元一次方程解决的问题,并正确地表述问题及其解决过程.【答案】解:(1)当t(t是正整数)在不同范围内取值时,计费情况如下表所示.(2)设这户居民的年用水量为x m3.因为这户居民一年的水费为930元,所以180<x<240.列得方程810+6(x-180)=930,解得x=200.所以这户居民的年用水量是200m3.【活动2】木杆挂重物问题用一根质地均匀的木杆和一些等重的小物体,做下列实验:(1)在木杆中间处拴绳,将木杆吊起并使其左右平衡,吊绳处为木杆的支点;(2)在木杆两端各悬挂一重物,看看左右是否保持平衡;(3)在木杆左端小物体下加挂一重物,然后把这两个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(4)在木杆左端两小物体下再加挂一重物,然后把这三个重物一起向右移动,直至左右平衡,记录此时支点到木杆左右两边挂重物处的距离;(5)在木杆左边继续加挂重物,并重复以上操作和记录.【问题】根据记录你能发现什么规律?【答案】随着支点左边小物体数目的增多,支点到木杆左边挂重物处距离越来越近;左边小物体数目×支点到木杆左边挂重物处距离=右边小物体数目×支点到木杆右边挂重物处距离.【问题】如图,在木杆右端挂一重物,支点左边挂n个重物,并使左右平衡.设木杆长为l cm,支点在木杆中点处,支点到木杆左边挂重物处的距离为x cm,把n,l作为已知数,列出关于x 的一元一次方程.【答案】解:根据规律,可列得方程nx=2l . 【设计意图】通过解答此题,使学生进一步熟悉解决问题的方法与过程,从而提高分析与解决问题的能力.课堂小结板书设计一、方案选择问题的分类讨论二、列代数式表示不同方案三、列方程寻找不同方案中的转折点课后任务完成教材第139页练习第2题.___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________教学反思。
第5章一元一次方程回顾与思考一、教材和学情分析本节课是北师大版义务教育教科书七年级上册第五章《一元一次方程》回顾与思考.学生在小学也学习过方程,会解较简单的一元一次方程,本章所学习的方程是小学知识的继续和提升.前面用9个课时完成了本章的全部学习内容,学生能够说出一元一次方程的定义,会判断一个数是否为已知一元一次方程的解,会解数字系数的一元一次方程,能列方程解决实际问题.解方程是本章的重点也是难点,能准确快速地解方程需要一个过程,学生在学习过程中会暴露出许多不可预知的问题.二、教学任务分析(一)教学任务方程是刻画现实世界的有效数学模型,准确快速地解方程是对学生最基本的要求.列方程解应用题的关键是找到“等量关系”.在寻找等量关系时有时候需要借助图表等,在得到方程的解后,要检验它是否符合实际意义.“回顾与思考”是进行有效学习的重要方法,它既能使学生有目的地梳理所学知识,形成知识体系,又能促进学生反思知识获得的过程,形成自己对所学知识较为深刻、独特的见解.学生在此过程中还能提高自己的归纳、概括等能力,形成反思的意识.教师要给学生足够的时间进行独立思考,然后同伴交流,在学生充分交流的基础上,引导学生建立本章的知识框架.(二)学习目标1. 通过对本章基本概念的复述,能理解概念,并应用概念解决相关问题;2. 通过观察分析解一元一次方程问题中的常见问题,能熟练求解一元一次方程;3. 通过用方程表述数量关系的过程,能根据具体问题中的数量关系列出方程,体会模型的思想.(三)学习重、难点1.重点:通过观察分析解一元一次方程问题中的常见问题,能熟练求解一元一次方程.2.难点:通过用方程表述数量关系的过程,能根据具体问题中的数量关系列出方程,体会模型的思想.(四)学习评价针对学习目标1,2,设计了交流式评价和表现式评价,引导学生在学过的基础上进一步理解一元一次方程的相关概念.针对目标3:设计了表现式评价,引导学生能根据具体问题中的数量关系列出方程,体会模型的思想.(五)教法与学法分析结合学生自身的和教材内容的特点,本课时秉持“学生为主体,教师为主导”的原则,在探究过程中,设置问题串让学生先自主探究,再去组内讨论,展示交流的学习方法.三、教学过程(一)情境引入教师:《一元一次方程》这一章我们已经学完了,那么本章学了哪些内容?知识要点是什么?学习每一个知识要点时需要注意哪些问题?带着这些疑问我们这节课进行回顾与思考.【设计意图】揭示课题,给学生进行回顾与思考的方法指导.(二)自主探究,展示交流自主探究一:认识一元一次方程问题1:判断下列各式哪些是方程?哪些是一元一次方程?为什么?()()()()()()()2122511533213224205210614375135x x x x x x x x xx y--=+->+-+=+-==-+=+ 【设计意图】通过本题所给七个不同类型的方程,让学生在交流辨析中学会“识”一元一次方程,巩固一元一次方程的概念.应用提升:1.关于x 的方程:1210k x -+=是一元一次方程,则k =___变式1:关于x 的方程()12210k k x --+=是一元一次方程,则k =___变式2:关于x 的方程:(a +2)+5x -2=3 是一元一次方程,则a =___总结:对于“数学概念题”一看指数、二看系数.【设计意图】1.通过教师启发与学生自主交流,根据一元一次方程的概念求解出字母系数或指数的值,进一步巩固一元一次方程的概念.2.通过教师对概念题的方法总结,引导学生归纳此类概念题目的做法,从而达到学生由会做一道题到会做一类题.自主探究二:认识方程的解问题2.请你根据方程解的定义确定x =8是下面哪个方程的解.()()118822271x x x x +=--=+方程的解:使方程左右两边相等的未知数的值叫做方程的解.求方程的解的过程叫解方程.【设计意图】通过两道小题让学生自主归纳方程的解及解方程的概念.应用提升:变式1:你能写出一个解为4并且未知数系数为负数的一元一次方程吗?【设计意图】变式1在问题1的基础上进行题目变形与难度的加深,对学生的能力要求逐步上升,加强学生对一元一次方程解的概念的理解.2.已知关于x 的方程23x m m x -=+的解与方程1322x x +=-的解相等,求m 的值. 变式 2:解互为相反数时,求m 的值.【设计意图】通过两道有难度梯度的题目,让学生通过小组合作交流,认识方程解的概念. 自主探究三:解一元一次方程注意事项解一元一次方程的一般步骤:去分母-去括号-移项-合并同类项-未知数系数化为1“错从你们中来”【设计意图】教师呈现学生在解方程组过程中的易错点,通过学生自主总结其中的问题,从而达到知错改错,做题不错的效果.2.不要漏乘括号里的任何一项移项1.移项要变号2.防止漏项; 合并同类项 系数相加,字母及其指数不变 系数化为1分子分母不要颠倒(三)活学活用,能力提升“请给自己的表现亮分”你得分的二分之一来自于你的实力;你得分的三分之一来自于你的自信;你得分的十二分之一来自于同学的合作;再加8分来自于你我的缘分.你能知道这位同学的表现到底得了几分吗?解析:设这位同学得了x 分,由题意得:11182312x x x x +++= 解 得: x =96答:这位同学得了96分.【设计意图】通过一道实际问题,引导学生建立数学模型解决设计问题.(四)反思升华,妙笔生花本节课你收获了什么?你学会了哪些基本概念和思想方法?我们在解题过程中要注意哪些事项?(五)布置作业A 组:课本复习题第1、2、3题:B 组:课本复习题第4、5、6题;五、板书设计六、教学反思。
5.3 实际问题与一元一次方程第1课时:配套问题与工程问题【素养目标】1.掌握配套问题和工程问题中有关量的基本关系式,并会寻求相等关系列方程求解.2.经历运用方程解决实际问题的过程,体会运用一元一次方程解决实际问题的一般步骤.【教学重点】1.用一元一次方程解决配套问题和工程问题.2.掌握用一元一次方程解决实际问题的基本过程.【教学难点】根据实际问题构建方程模型.【教学过程】活动一:创设情境,引入新知[设计意图]以实际生活中的例子唤起学生的学习兴趣.【情境引入】前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用.生活中,有很多需要进行配套的问题,如课桌和椅子、螺栓和螺母、电扇叶片和电机等.问题1 上面的配套例子中,1张课桌配几把椅子?1个螺栓配几个螺母?1个电机配几个电扇叶片?1张课桌配1把椅子,1个螺栓配2个螺母,1个电机配3个电扇叶片.问题2 大家还能列举生活中其他涉及配套的例子吗?[教学提示]让学生根据生活经验作答.活动二:交流讨论,探究新知[设计意图]探究配套问题中的数量关系,体会用一元一次方程解决实际问题的过程.[设计意图]探究工程问题中的数量关系. 探究点1 配套问题例1(教材P133例1)某车间有22名工人,每人每天可以生产1200个螺栓或2000个螺母.1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?问题1 结合本题题意,你认为题中有怎样的相等关系?关键字眼(配套关系):1个螺栓需要配2个螺母.相等关系:螺母数量=2×螺栓数量.问题2 如果设安排x名工人生产螺栓,请你填一填下面的表格.产品类型生产人数单人产量总产量螺栓x 1 200 1 200x螺母22-x 2 000 2 000(22-x)问题3 请根据前面的分析列出方程,并求出安排生产螺栓和螺母的工人数.解:设应安排x名工人生产螺栓,(22-x)名工人生产螺母.根据螺母数量应是螺栓数量的2倍,列得方程2000(22-x)=2×1200x.解方程,得x=10.进而22-x=12.答:应安排10名工人生产螺栓,12名工人生产螺母.追问如果设x名工人生产螺母,怎样列方程?解:设应安排x名工人生产螺母,(22-x)名工人生产螺栓.根据螺母数量应是螺栓数量的2倍,列得方程2000x=2×1200(22-x).解方程,得x=12.进而22-x=10.答:应安排10名工人生产螺栓,12名工人生产螺母.总结:【对应训练】教材P134练习第2,3题.探究点2 工程问题例2(教材P133例2)整理一批图书,由1人整理需要40h完成.现计划由一部分人先整理4h,然后增加2人与他们一起整理8h,完成这项工作.假设这些人的工作效率相同,应先安排多少人进行整理?分析:在工程问题中:工作量=人均效率×人数×时间;总工作量=各部分工作量之和.问题1如果把总工作量设为1,则人均效率(一个人1h完成的工作量)为"1" /"40" .问题2 如果设先安排x人整理4h,请填写下表.人均效率人数时间工作量前一部分工作1/40 x 4 4x/40后一部分工作"1" /"40" x+2 8 (8(x+2))/40问题3 根据前面的分析,列出方程,并求出应先安排多少人进行整理.解:设先安排x人整理4h.根据先后两个时段的工作量之和等于总工作量,列得方程4x/40+"8(x+2)" /"40" =1.解方程,得x=2.答:应先安排2人进行整理.总结:【对应训练】教材P134练习第1题.[教学提示]给学生说明:(1)“螺母的数量是螺栓数量的2倍”是本题中特有的相等关系;“每人每天的工作效率×人数=每天的工作量(产品数量)”是工作问题中的基本相等关系.上述两者结合起来,就能列出方程.(2)本题中根据倍数关系列方程时,要弄清楚是在等号的哪一边乘2,不要弄反.[教学提示]给学生说明:(1)如果一件工作需要n个小时完成,那么平均每小时完成的工作量就是"1" /"n" ;(2)如果一件工作由m个人用n小时完成,那么人均效率为"1" /"mn" ;(3)“工作量=人均效率×人数×时间”是计算工作量的基本公式;(4)如果一件工作分几个阶段完成,那么“各阶段工作量的和=总工作量”.活动三:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.列方程的基础是什么?2.你能说说用一元一次方程解决实际问题的一般过程吗?【作业布置】1.教材P140习题5.3第2,3,4,5,6,8,11题.【教学后记】第2课时:销售中的盈亏问题【素养目标】1.分析销售中的数量关系,利用进价(成本)、标价、售价、利润、利润率之间的关系,列方程解决实际问题.2.用数学的眼光分析生活中的销售现象,形成理性消费的观念.【教学重点】根据销售问题中的数量关系列出一元一次方程,解决实际问题.【教学难点】厘清销售问题中的各种概念以及它们之间的关系,用一元一次方程解决相关问题活动一:结合生活,引入新知[设计意图]学习销售中的相关概念,为后面的学习作准备.【情境引入】生活中,我们经常可以在各种销售场合看见一些商品优惠信息,你知道它们的意思吗?下面的表格中列举了一些与销售有关的词语,请你将表格填完整.含义计算方法进价(成本) 购进商品时的价格标价商品上标出的价格折扣率实际售价占标价的百分率售价(打折后) 商品实际售出时的价格标价×折扣率利润销售商品过程中的纯收入售价 -进价利润率利润占进价的百分率利润进价×100%[教学提示]结合学生日常的知识储备,梳理与销售活动有关的概念,教师可适当提问,根据学生回答进行补充或纠正.活动二:运用数学,准确判断[设计意图]通过直观判断与准确计算的对比,感知数学的严谨性,培养理性思考的习惯. 探究点销售中的盈亏(教材P135探究1)一商店以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?问题1 你估计盈亏情况是怎样的?(汇总学生的答案)盈利、亏损、不盈不亏.问题2 销售的盈亏取决于什么?取决于总售价与总进价(两件衣服的进价之和)的关系.问题3 这一问题情境中哪些是已知量?哪些是未知量?如何设未知数?相等关系是什么?如何列方程?讨论内容分析问题中的已知量和未知量,应选用销售中的什么数量关系列方程解决问题?讨论结果已知量选用数量关系两件衣服的利润率未知量两件衣服各自的进价选用数量关系利润=进价×利润率进价+利润=售价解决过程:解:设盈利25%的那件衣服的进价是x元.依题意得x+0.25x=60.解得x=48.设亏损25%的那件衣服的进价是y元.依题意得y-0.25y=60.解得y=80.两件衣服的总进价为48+80=128(元).因为60+60-128=-8(元),所以卖这两件衣服共亏损了8元.追问列、解方程后得出的结论与你先前的估计一致吗?通过对本题的探究,你对方程在实际问题中的应用有什么新的认识?【对应训练】教材P136练习.[教学提示]让学生先大体估计盈亏,再通过准确计算检验他们的判断,经历从定性考虑(估计)到定量考虑(计算)的过程,认识数学的应用价值.[教学提示]提醒学生:在销售问题中,常常利用“利润=售价-进价”和“利润=进价×利润率”这两个算式表示同一商品的利润,从而可得到相等关系“售价-进价=进价×利润率”,并由此列方程.活动三:巩固提升,灵活运用[设计意图]学习与打折有关的销售问题. 例商场出售一种电视机,进价是4000元,标价是5000元,节日期间,商场对该种电视机进行打折出售,利润率为10%.这种电视机节日期间打了几折?解:设这种电视机节日期间打了x折.根据题意,得5000×"x" /"10" =4000×(1+10%).解得x=8.8.答:这种电视机节日期间打了八八折.【对应训练】商场出售一件商品,如果按标价的九折出售,那么商场盈利80元;如果按标价的八折出售,那么商场亏损70元.求这件商品的进价.解:设这件商品的标价为x元.根据题意,得0.9x-80=0.8x+70.解得x=1500.所以这件商品的进价为1500×0.9-80=1270(元).[教学提示]提醒学生:(1)关于售价,有两种计算方式:售价=标价×折扣率,售价=进价×(1+利润率).根据售价相等可列方程.(2)利润率是在进价的基础上计算的,折扣率是在标价的基础上计算的,计算时不要混淆.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.已知商品的标价和折扣率,怎样求商品的售价?2.已知商品的售价和进价,怎样求利润和利润率?【作业布置】1.教材P140习题5.3第9,10题.【教学后记】第3课时球赛积分表问题【素养目标】1.通过探索球赛积分与胜、负、平场数之间的数量关系,进一步体会用方程模型解决实际问题.2.检验实际问题中方程的解的合理性.【教学重点】用方程模型解决球赛积分问题;根据方程解的合理性进行推理判断.【教学难点】准确构建方程模型解决球赛积分问题.【教学过程】活动一:创设情境,引入课题[设计意图]通过与球赛相关的话题,激发学生的学习兴趣.【情境引入】某次足球赛,甲、乙、丙、丁4个队分在同一个小组,4轮比赛过后,各个队的积分情况如表所示.球队比赛场次胜场平场负场积分甲 4 3 1 0 10乙 4 2 1 1 7丙 4 1 1 2 4丁 4 0 1 3 1上面各个队的积分是怎样计算的呢?今天我们就来学习与球赛积分相关的问题.[教学提示]可适当准备一些背景素材,与学生一起讨论,激活课堂氛围活动二:读取信息,解决问题[设计意图]培养学生从表格中获取信息的能力,以及运用一元一次方程解决实际问题的能力.设计意图检验方程的解是否符合问题的实际意义,发展推理能力. 探究点球赛积分表问题(教材P136探究2)队名比赛场次胜场负场积分前进14 10 4 24东方14 10 4 24光明14 9 5 23蓝天14 9 5 23雄鹰14 7 7 21远大14 7 7 21卫星14 4 10 18钢铁14 0 14 14问题1 仔细观察上面的积分表.我们通过哪一行,最容易得出负一场积几分?最下面一行.负一场积分为14÷14=1(分).问题2 你能进一步算出胜一场积多少分吗?设胜一场积x分.对于任何一支球队来说,有以下相等关系:由表中第一行数据可列方程10x+4×1=24.解得x=2.用表中其他行可以验证,得出结论:胜一场积2分,负一场积1分.问题3 用代数式表示一支球队的总积分与胜、负场数之间的数量关系.若一支球队胜m场,则总积分为m+14.问题4 某队的胜场总积分能等于它的负场总积分吗?设一支球队胜了y场,则负了(14-y)场.若这支球队的胜场总积分能等于负场总积分,则得方程2y=14-y.解得y="14" /"3" 因为y(所胜的场数)的值必须是整数,所以y="14" /"3" 不符合实际,由此可以判定没有哪支球队的胜场总积分能等于负场总积分.总结:【对应训练】1.阳光体育季,赛场展风采.七年级组织迎新拔河比赛,每班代表队都需比赛10场,下表是此次比赛积分榜的部分信息:班次比赛场次胜场负场积分A班10 10 0 30B班10 8 2 26C班10 0 10 10(1)结合表中信息可知:胜一场积_____分,负一场积_____分.(2)已知D班的积分是24分,求D班的胜场数.(3)某个班的胜场总积分能否是负场总积分的2倍?请说明理由.解:(2)设D班的胜场数为x,则负场数为10-x.由D班的积分是24分,得3x+1×(10-x)=24.解得x=7.因此,D班的胜场数为7.(3)能.理由:设这个班的胜场数为y,则负场数为10-y.若胜场总积分是负场总积分的2倍,则3y=2×1×(10-y).解得y=4.因此,当某个班的胜场数为4时,这个班的胜场总积分是负场总积分的2倍.2.教材P137练习第2题.教学建议[教学提示]通过观察表格,获取信息,是很有实际应用价值的能力,教学中注意对学生这方面能力的培养.[教学提示]问题4的分析过程中渗透了反证法的思想,即先假设某队的胜场总积分等于它的负场总积分,由此列出方程,解得获胜场次不是整数而是分数,这显然不合乎实际情况,由这种矛盾现象可知先前的假设不能成立,从而作出否定的判断.建议教学中不要提及反证法,只要引导学生注意这里方程的解应是整数,由此作出判断就够了活动三:知识升华,巩固提升[设计意图]学会解决不同规则下的比赛积分问题. 例在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场积3分,平一场积1分,负一场积0分,某队在这次循环赛中所胜场数比所负场数多2场,结果共积19分.求该队在这次循环赛中的平场数.解:设该队的负场数为x,则胜场数为x+2,平场数为11-x-(x+2).根据题意,得3(x+2)+1×[11-x-(x+2)]=19.解得x=4.所以11-x-(x+2)=1.答:该队在这次循环赛中的平场数为1.【对应训练】教材P137练习第1题.[教学提示]给学生说明:不同的比赛,规则各不相同.对于比赛结果,除了有胜、负外,可能还有平局.但一般来说,有以下相等关系(以有平局的情况为例):①比赛总场数=胜场数+平场数+负场数;②比赛总积分=胜场总积分+平场总积分+负场总积分.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.我们是怎样根据表格中的信息,得出篮球联赛的胜、负积分规则的?2.在实际问题中,通过一元一次方程求出解后,还要注意什么问题?【作业布置】1.教材P140习题5.3第7,12,13题.【教学后记】第4课时方案选择问题【素养目标】1.能根据文字构建直观的数学模型,利用图表分析实际情境和问题.2.通过分类讨论解决最优方案选择问题,锻炼统筹规划的能力.【教学重点】从实际问题中构建计费问题的数学模型,在不同区间内对各方案进行比较.【教学难点】准确分类讨论,得出最优方案.【教学过程】活动一:结合生活,引入新知[设计意图]通过生活中常见的情境,引发学生的讨论和兴趣.【问题引入】两款空调的部分信息如表.品牌售价/元平均每年耗电量/(kW·h)A 3 200 650B 2 400 900购买哪款空调较划算呢?下面是李明和王芳的对话,他们谁说得有道理?[教学提示]让学生自行讨论,适当发言,留意学生作选择的依据,后面教学时有针对性地展开讲解.活动二:交流讨论,探究新知[设计意图]整合信息,逐步设问,引出解决问题的思路. 探究点方案选择不同能效空调的综合费用比较(教材P138探究3) 购买空调时,需要综合考虑空调的价格和耗电情况.某人打算从当年生产的两款空调中选购一台,表中是这两款空调的部分基本信息.如果电价是0.5元/(kW·h),请你分析他购买、使用哪款空调综合费用较低.两款空调的部分基本信息匹数能效等级售价/元平均每年耗电量/(kW·h)1.5 1级 3 000 6401.5 3级 2 600 800问题1 一台空调的综合费用包括哪些部分?空调的售价、电费.问题2 一台空调使用了若干年,产生的总电费是怎样计算的?电价×每年耗电量×使用年数.问题3 设空调的使用年数是t,请你用代数式表示两款空调的综合费用.1级能效空调的综合费用(单位:元)是3000+0.5×640t,即3000+320t.3级能效空调的综合费用(单位:元)是2600+0.5×800t,即2600+400t.问题4 两款空调的综合费用与使用年数t有关,如何比较它们的大小呢?(1)t取什么值时,两款空调的综合费用相等?列方程3000+320t=2600+400t,解得t=5.即t=5时,两款空调的综合费用相等.(2)t取其他值时,两款空调的综合费用大小如何比较呢?我们把表示3级能效空调的综合费用的式子2600+400t变形为1级能效空调的综合费用与另外一个式子的和,即(3000+320t)+(80t-400),也就是3000+320t+80(t-5).这样,当t<5时,80(t-5)是负数,这表明3级能效空调的综合费用较低;当t>5时,80(t-5)是正数,这表明1级能效空调的综合费用较低.【对应训练】教材P139练习第1题.[教学提示]本课题涉及一定的实际生活经验,学生如有理解困难的地方,教师可适当展开讲解.[教学提示]选择最划算的方案时,需要进行先分类再综合的思考,其中用方程找关键时间(费用相同时的使用年数)是重要的一步.活动三:知识升华,巩固提升[设计意图]对方案选择问题的掌握. .例某学校计划购买若干台电脑,现从两家商场了解到同一型号电脑每台报价均为6000元并且多买都有一定的优惠,甲商场的优惠条件是:第一台按原报价收费,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.(1)设购买x台电脑,则甲商场费用为_______元,乙商场费用为_______元.(均用含x的代数式表示)(2)购买多少台电脑时,两家商场收费一样?(3)学校应该怎样选择?解:(1)(4500x+1500) 4800x(2)当两家商场收费一样时,4500x+1500=4800x,解得x=5.所以当购买5台电脑时,两家商场收费一样.(3)当购买电脑台数小于5时,选择乙商场购买;当购买电脑台数等于5时,选择哪家商场都一样;当购买电脑台数大于5时,选择甲商场购买.【对应训练】教材P139练习第2题.[教学提示]在对不同方案进行比较时,提醒学生注意临界点,以及临界点前后,不同方案在单件上优惠力度的差别.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.计算空调的综合费用时,不确定的因素是什么?2.两款空调的综合费用的大小关系是确定的吗?有什么特点?3.如何选择合适的方案?【作业布置】1.教材P141习题5.3第14题.【教学后记】。
5.1方程(第2课时)教学目标1.了解方程的解、解方程及一元一次方程的概念.2.会检验一个数是否是方程的解.教学重点会检验一个数是否是方程的解.教学难点能正确区分方程的解及解方程.教学过程知识回顾1.含有未知数的等式叫作方程.2.列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x;(2)分析题意,找相等关系;(3)根据相等关系列方程.【师生活动】教师提问,学生回答.【设计意图】带领学生复习已学过的方程知识,为本节课讲解一元一次方程相关知识作铺垫.新知探究一、探究学习【问题】方程1.2x+1=0.8x+3中未知数x的值是多少?【分析】当x=5时,左边=1.2×5+1=7,右边=0.8×5+3=7,方程左、右两边的值相等.结论:x=5就是方程1.2x+1=0.8x+3的解.【新知】一般地,使方程左、右两边的值相等的未知数的值,叫作方程的解.求方程的解的过程,叫作解方程.解方程和方程的解是两个不同的概念.方程的解是求得的结果,它是一个(或几个)数值,解方程是求方程的解的过程.二、典例精讲【例1】(1)x=2,x=32是方程2x=3的解吗?(2)x=10,x=20是方程3x=4(x-5)的解吗?【师生活动】学生独立完成例题,教师提问,学生尝试归纳总结,教师给予帮助.【答案】解:(1)当x=2时,方程2x=3的左边=2×2=4,右边=3,方程左、右两边的值不相等,所以x=2不是方程2x=3的解;当x=32时,方程2x=3的左边=2×32=3,右边=3,方程左、右两边的值相等,所以x=32是方程2x=3的解.(2)当x=10时,方程3x=4(x-5)的左边=3×10=30,右边=4×(10-5)=20,方程左、右两边的值不相等,所以x=10不是方程3x=4(x-5)的解;当x=20时,方程3x=4(x-5)的左边=3×20=60,右边=4×(20-5)=60,方程左、右两边的值相等,所以x=20是方程3x=4(x-5)的解.【思考】x=60是方程58x2=4 000的解吗?x=80呢?【分析】当x=60时,左边=58×602=2 250,右边=4 000,所以左边≠右边,所以x=60不是方程58x2=4 000的解.当x=80时,左边=58×802=4 000,右边=4 000,所以左边=右边,所以x=80是方程58x2=4 000的解.【归纳】如何检验某个值是不是方程的解?(1)将已知数值分别代入方程的左右两边;(2)若左右两边的值相等,则这个值是方程的解,否则不是.【设计意图】教师逐步设疑,学生思考并回答,通过探究,加深对解方程和方程的解的概念的理解,并总结归纳“如何检验某个值是不是方程的解”,提高学生分析问题、解决问题的能力.三、探究学习【思考】观察上节课所列出的3个方程1.2x+1=0.8x+3,3x=4(x-5),0.52x -(1-0.52)x=80,它们有什么共同特征?【师生活动】教师提示:方程的突出特点是含有未知数,我们要注意观察未知数的特征.学生回答:(1)只含有一个未知数.(2)未知数的次数都是1.教师提问:还有其他特征吗?含有未知数的式子都是什么式子?学生回答:整式.教师总结:第(3)条特征是含有未知数的式子都是整式.【新知】一元一次方程的概念.一般地,如果方程中只含有一个未知数(元),且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫作一元一次方程.注意:概念中的“元”是指方程中的未知数,“次”是指方程中含有未知数的项的最高次数.【设计意图】通过实例让学生体会一元一次方程的特点,方便学生理解一元一次方程的概念.四、典例精讲【例2】判断下列方程是否是一元一次方程.若不是,请说明理由.(1)1153x x+=;(2)3x-4y=12;(3)-5x2+x=3;(4)32x=.【师生活动】学生独立完成例题,教师提问,学生尝试归纳总结,教师给予帮助.【答案】解:(1)是.(2)含有两个未知数x和y,不是一元一次方程.(3)未知数x的最高次数是2,不是一元一次方程.(4)等式的左边不是整式,不是一元一次方程.【归纳】判断一个式子是一元一次方程时,必须满足:(1)是方程;(2)只含有一个未知数;(3)未知数的次数都是1;(4)化简后,未知数的系数不为0;(5)方程中分母不含未知数.【设计意图】通过例题2的练习与讲解,巩固学生对一元一次方程概念的理解.课堂小结板书设计一、解方程二、检验某个值是否为方程的解三、一元一次方程课后任务完成教材第115页练习1~2题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
5.2 解一元一次方程(第5课时)1.会利用去分母解一元一次方程.2.归纳解一元一次方程的一般步骤,体会把“复杂”转化为“简单”,把“新”转化为“旧”的化归思想.能根据方程的特征,运用一般步骤解简单的一元一次方程.能根据方程的特征,发现并有针对性地采取“去分母”的做法,可以把不熟悉的方程形式变形为熟悉的方程形式,体会解一元一次方程的步骤是逐渐发展的,并能归纳出解一元一次方程的一般步骤.知识回顾【问题】解方程-4+4(3-x )=-2(11-2x ).【师生活动】教师提问:如何解上面的方程?学生回答:这是一道含有括号的一元一次方程,可以通过去括号、移项、合并同类项、系数化为1等步骤,将它转化为“x =m ”的形式,最终得到这个方程的解.【答案】解:去括号,得-4+12-4x =-22+4x .移项,得-4x -4x =-22+4-12. 合并同类项,得-8x =-30. 系数化为1,得154x. 【设计意图】带领学生复习已学过的解一元一次方程的知识,为引出本节课“利用去分母解一元一次方程”作铺垫.教学目标教学重点教学难点教学过程新知探究一、探究学习【问题】如图,翠湖在青山、绿水两地之间,距青山50 km ,距绿水70 km .某天,一辆汽车匀速行驶,途经王家庄、青山、绿水三地的时间如表所示.王家庄距翠湖的路程有多远?【师生活动】教师提问:问题中涉及了哪些量?学生回答:翠湖距青山50 km ,翠湖距绿水70 km ,汽车匀速行驶,汽车从王家庄到青山的行驶时间为3 h ,从王家庄到绿水的行驶时间为5 h .教师提问:这些量之间有怎样的关系?学生回答:汽车从王家庄到青山的行驶速度=汽车从王家庄到绿水的行驶速度. 学生作答.解:设王家庄距翠湖的路程为x km ,则王家庄距青山的路程为(x -50) km ,王家庄距绿水的路程为(x +70) km .由表可知,汽车从王家庄到青山的行驶时间为3 h ,从王家庄到绿水的行驶时间为5 h .根据汽车在各段的行驶速度相等,列得方程507035x x -+=. 教师提问:如何解这个方程?学生思考,教师提示:这个方程中未知数的系数不是整数,如果能化去分母,把未知数的系数化成整数,就可以使解方程中的计算更简便些.学生回答:可以借助等式的性质,方程两边乘各分母的最小公倍数,化去分母. 【答案】解:方程两边同乘各分母的最小公倍数15,得 5(x -50)=3(x +70).去括号,得5x -250=3x +210. 移项,得5x -3x =210+250. 合并同类项,得2x =460.系数化为1,得230x =.教师总结:当一元一次方程中未知数的系数不是整数时,首先要通过“去分母”将方程转化为只含有整数系数的一元一次方程,再作答.为更全面地讨论问题,我们再以方程31322322105x x x +-+-=-为例,以框图的形式展示解这类一元一次方程的步骤.教师分析:这个方程中各分母的最小公倍数是10,方程两边乘10,得 31322310210102105x x x +-+⎛⎫⨯-=⨯-⨯ ⎪⎝⎭.学生思考:去了分母,方程两边变为什么? 教师分析:解方程31322322105x x x +-+-=-. 解:去分母,得5(3x +1)-10×2=(3x -2)-2(2x +3). 去括号,得15x +5-20=3x -2-4x -6. 移项,得15x -3x +4x =-2-6-5+20. 合并同类项,得16x =7. 系数化为1,得716x =. 【新知】解一元一次方程的一般步骤如下: (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1.通过这些步骤,可以使以x 为未知数的一元一次方程逐步转化为x =m 的形式,这个过程主要依据等式的性质和运算律等.【设计意图】从学生熟悉的列方程知识入手,提出问题“如何解方程”,激发学生的学习兴趣,学生通过观察,发现原方程是未知数的系数不是整数的一元一次方程,可以采取“去分母”的做法,把不熟悉的方程形式变形为熟悉的方程形式,进而利用已学知识解一元一次方程,体会解一元一次方程的步骤是逐渐发展的,并能归纳出解一元一次方程的一般步骤.二、典例精讲【例】解下列方程:(1)121224x x+--=+;(2)121 3323x xx--+=-;(3)1.20.310.30.2x x-=+.【答案】解:(1)去分母(方程两边乘4),得2(x+1)-4=8+(2-x).去括号,得2x+2-4=8+2-x.移项,得2x+x=8+2-2+4.合并同类项,得3x=12.系数化为1,得x=4.教师提示:分子是多项式,要先加上括号,再去分母.(2)去分母(方程两边乘6),得18x+3(x-1)=18-2(2x-1).去括号,得18x+3x-3=18-4x+2.移项,得18x+3x+4x=18+2+3.合并同类项,得25x=23.系数化为1,得2325x=.(3)分母化整数,得10123132x x-=+.去分母,得20x=6+3(12-3x).去括号,得20x=6+36-9x.移项,得20x+9x=6+36.合并同类项,得29x=42.系数化为1,得4229x=.教师提示:分母中含有小数时,一般先利用分数的性质将其转化为整数,再去分母.【归纳】利用去分母解一元一次方程时需要注意的问题:(1)分子如果是多项式,要先加上括号,再去分母;(2)整数项不要漏乘各分母的最小公倍数,特别是整数1;(3)分母中含有小数时,一般先利用分数的性质将其转化为整数,再去分母.【设计意图】通过例题的练习与讲解,巩固学生对已学知识的理解及应用.课堂小结板书设计一、利用去分母解一元一次方程二、解一元一次方程的一般步骤课后任务完成教材第129页练习1~3题.教学反思_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________。
数学初一上册第五章教学方案
一、引言
数学作为一门基础学科,对于学生的思维能力和逻辑思维的培养具
有重要作用。
在初一上册第五章的教学中,我们将重点围绕着代数式、整式的运算以及展开和因式分解进行讲解和练习。
本教学方案旨在帮
助学生掌握这些知识点,提升他们的数学水平和解题能力。
二、教学目标
1. 了解代数式的概念和性质,掌握整式的基本运算规则。
2. 学会如何展开和因式分解代数式,培养学生的代数思维能力。
3. 培养学生解决实际问题的能力,加深他们对数学应用的理解。
三、教学重难点
1. 整式的加减乘除运算规则。
2. 代数式的展开和因式分解方法。
3. 将代数式应用于实际问题的解决。
四、教学内容及方法
1. 整式的运算
a. 讲解整式的定义和性质,引导学生理解整式的基本概念。
b. 通过具体的例子,教授整式的加减乘除运算规则,并对学生进行大量的练习。
c. 分组讨论和小组合作练习,激发学生的思考和合作能力。
2. 代数式的展开和因式分解
a. 讲解如何展开代数式,引导学生掌握公式的运用方法。
b. 通过简单的多项式,教授因式分解的基本原理和方法。
c. 组织学生进行多种类型代数式的展开和因式分解实战练习,提高他们的解题能力。
3. 应用题的解决
a. 选取实际问题作为例子,引导学生应用代数式解决问题。
b. 鼓励学生发挥创造力,设计和解决有关代数式的实际问题。
c. 批判性思维训练,培养学生分析、推理和解决问题的能力。
五、教学手段
1. 板书与多媒体呈现:利用黑板、白板和投影仪等工具,将主要内容以图文并茂的形式进行呈现,提高学生的理解和记忆效果。
2. 小组讨论和合作学习:组织学生进行小组讨论和合作学习,激发他们的思考能力和团队合作精神。
3. 实例分析与解决:引导学生通过实例分析和解决问题,培养他们的实际应用能力和解题技巧。
六、教学评价
1. 通过课堂练习和作业,检查学生对于整式运算、代数式展开和因
式分解的掌握情况。
2. 通过课堂讨论和问答,评估学生的思维能力和解决实际问题的能力。
3. 设计合理的期中和期末考试,综合考查学生的数学水平和能力发展。
七、教学延伸
为了加深学生对于数学的兴趣和理解,教师可以组织一些拓展活动,如参观数学实验室、进行数学游戏竞赛等,让学生在实践和趣味中进
一步巩固和拓展数学知识。
八、教学总结
通过本章的教学,学生将对代数式、整式的运算以及展开和因式分
解有更深入的理解。
同时,他们也能够将所学的数学知识运用到实际
问题中,提高解决问题的能力。
通过合理的教学安排和评估方式,学
生的数学水平和兴趣将得到有效的提升。