几何中的最值
- 格式:doc
- 大小:323.00 KB
- 文档页数:9
几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。
在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。
本文将从不同角度介绍几何中的最值问题及其应用。
一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。
最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。
此外,还有最大和最小的边界问题。
这些问题需要考虑的是给定条件下的最大可行解或最小可行解。
例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。
这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。
二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。
这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。
例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。
为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。
对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。
另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。
三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。
这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。
例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。
如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。
通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。
几何中的最值问题(讲义)一、知识点睛几何中最值问题包括:“面积最值”及“线段(和、差)最值”.求面积的最值,需要将面积表达成函数,借助函数性质结合取值范围求解;求线段及线段和、差的最值,需要借助“垂线段最短”、“两点之间线段最短”及“三角形三边关系”等相关定理转化处理.一般处理方法:常用定理:两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系(已知两边长固定或其和、差固定时)二、精讲精练1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm.线段和(周长)最小转化构造三角形两点之间,线段最短垂线段最短PA +PB 最小,需转化,使点在线异侧|PA -PB |最大,需转化,使点在线同侧线段差最大线段最大(小)值三角形三边关系定理三点共线时取得最值平移对称旋转使点在线异侧(如下图)使点在线同侧(如下图)使目标线段与定长线段构成三角形平移对称旋转第1题图第2题图2.如图,点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP2,则△PMN周长的最小值为.3.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值为.第3题图第4题图4.如图,在菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC、CD、BD上的任意一点,则PK+QK的最小值为.5.如图,当四边形PABN的周长最小时,a=.第5题图第6题图6.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,则点F的坐标为.7.如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,-的最大值等于.P在直线MN上运动,则PA PB第7题图第8题图8.点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图-的值最大的点,Q是y轴上使得QA+QB的值最小的所示.若P是x轴上使得PA PB⋅=.点,则OP OQ9.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_________.第9题图第10题图10.如图,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD,则CD长度的最小值为.11.如图,点P在第一象限,△ABP是边长为2的等边三角形,当点A在x轴的正半轴上运动时,点B随之在y轴的正半轴上运动,运动过程中,点P到原点的最大距离是________.2,另两边长度不变,则点P到原点的最大距离变为若将△ABP中边PA的长度改为2_________.第11题图第12题图12.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.13.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.(1)当P落在线段CD上时,PD的取值范围为;(2)当P落在直角梯形ABCD内部时,PD的最小值等于.14.在△ABC中,∠BAC=120°,AB=AC=4,M、N两点分别是边AB、AC上的动点,将△AMN沿MN翻折,A点的对应点为A′,连接BA′,则BA′的最小值是_________.几何中的最值问题(作业)1.如图,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,对角线AC平分∠BAD,点E在AB上,且AE=2(AE<AD),点P是AC上的动点,则PE+PB的最小值是__________.第1题图第2题图2.在边长为2cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm(结果不取近似值).3.如图,一副三角板拼在一起,O为AD的中点,AB=a.将△ABO沿BO对折于△A′BO,点M为BC上一动点,则A′M的最小值为.第3题图第4题图AB ∠BAC=45°,∠BAC的平分线交BC于点D,点M,4.如图,在锐角△ABC中,42N分别是AD和AB上的动点,则BM+MN的最小值为___________.5.在Rt△ACB中,∠ACB=90°,AC=6,BC=8,P、Q两点分别是边AC、BC上的动点,将△PCQ沿PQ翻折,C点的对应点为C',连接A C',则A C'的最小值是_________.第5题图第6题图6.如图,在△ABC 中,∠ACB=90°,AC=4,BC=2,点A、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是.7.一次函数y 1=kx -2与反比例函数y 2=m x (m <0)的图象交于A ,B 两点,其中点A 的坐标为(-6,2)(1)求m ,k 的值;(2)点P 为y 轴上的一个动点,当点P 在什么位置时|PA -PB |的值最大?并求出最大值.8.已知点A (3,4),点B 为直线x =-1上的动点,设B (-1,y ).(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式;(2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.图1图29.如图,已知平面直角坐标系中A,B两点的坐标分别为A(2,-3),B(4,-1).(1)若P(p,0)是x轴上的一个动点,则当p=________时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=________时,四边形ABDC 的周长最短;(3)设M,N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0),N(0,n),使四边形ABMN的周长最短?若存在,请写出m和n的值;若不存在,请说明理由.中考数学几何中的最值问题综合测试卷一、单选题(共7道,每道10分)1.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底5cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿5cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()cmA. B.15 C. D.122.如图,在矩形ABCD中,AB=2,AD=4,E为CD边的中点,P为BC边上的任一点,那么,AP+EP的最小值为()A.3B.4C.5D.63.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值为()A. B. C.6 D.34.如图,当四边形PABN的周长最小时,a=().A. B. C. D.5.如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A. B.(1,0) C. D.6.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为边AB上一动点,且PE⊥AC于点E,PF⊥BC于点F,则线段EF长度的最小值是()A. B. C. D.7.如图,正方形ABCD边长为2,当点A在x轴上运动时,点D随之在y轴上运动,在运动过程中,点B到原点O的最大距离为()A. B. C. D.。
几何图形中的最值问题引言:最值问题可以分为最大值和最小值。
在初中包含三个方面的问题:1.函数:①二次函数有最大值和最小值;②一次函数中有取值范围时有最大值和最小值。
2.不等式: ①如x ≤7,最大值是7;②如x ≥5,最小值是5.3.几何图形: ①两点之间线段线段最短。
②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之和大于第三边,两边之差小于第三边。
一、最小值问题例1. 如图4,已知正方形的边长是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。
解: 作点D 关于AC 的对称点D /,则点D /与点B 重合,连BM,交AC 于N ,连DN ,则DN+MN 最短,且DN+MN=BM 。
∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM=6822 =10,∴DN+MN 的最小值是10。
例2,已知,MN 是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300,B 是弧AN 的中点,P 是MN 上的一动点,则PA+PB 的最小值是解:作A 点关于MN 的对称点A /,连A /B,交MN 于P ,则PA+PB 最短。
连OB ,OA /,∵∠AMN=300,B 是弧AN 的中点, ∴∠BOA /=300, 根据对称性可知 ∴∠NOA /=600, ∴∠MOA /=900, 在Rt △A /BO 中,OA /=OB=1, ∴A /B=2 即PA+PB=2图4CDMNMMNB例3. 如图6,已知两点D(1,-3),E(-1,-4),试在直线y=x 上确定一点P ,使点P 到D 、E 两点的距离之和最小,并求出最小值。
解:作点E 关于直线y=x 的对称点M , 连MD 交直线y=x 于P ,连PE , 则PE+PD 最短;即PE+PD=MD 。
∵E(-1,-4), ∴M(-4,-1),过M 作MN ∥x 轴的直线交过D 作DN ∥y 轴的直线于N , 则MN ⊥ND, 又∵D(1,-3),则N(1,-1),在Rt △MND 中,MN=5,ND=2, ∴MD=2522+=29。
初中几何最值问题常用解法初中几何最值问题一直是学生们的难点,但通过一些常用的解法,我们可以轻松解决这些问题。
以下将介绍9种常用的解法,帮助您更好地理解和学习。
一、轴对称法轴对称法是一种常用的解决最值问题的方法。
通过将图形进行轴对称变换,可以将问题转化为相对简单的问题,从而找到最值。
二、垂线段法垂线段法是指在几何图形中,利用垂线段的性质来求取最值。
例如,在矩形中,要使矩形的周长最小,可以将矩形的一条边固定,然后通过调整其他边的长度,使得矩形的周长最小。
三、两点之间线段最短两点之间线段最短是几何学中的基本原理。
在解决最值问题时,我们可以利用这个原理,找到两个点之间的最短距离。
四、利用三角形三边关系三角形三边关系是指在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
利用这个关系,可以解决一些与三角形相关的最值问题。
五、利用余弦定理求最值余弦定理是三角学中的基本定理,它可以用来解决一些与角度和边长相关的问题。
通过余弦定理,我们可以找到一个角的最大或最小余弦值,从而求得最值。
六、利用基本不等式求最值基本不等式是指在一个数列中,平均值总是小于等于几何平均值。
利用这个不等式,可以解决一些与数列相关的最值问题。
七、代数运算求最值代数运算是一种基本的数学运算方法,它可以用来解决一些与代数式相关的最值问题。
例如,通过求导数或微分的方法,可以找到一个函数的最大或最小值。
八、代数方程求最值代数方程是一种基本的数学方程形式,它可以用来解决一些与代数方程相关的最值问题。
例如,通过解二次方程或不等式的方法,可以找到一个表达式的最大或最小值。
九、几何变换求最值几何变换是指在几何图形中,通过平移、旋转、对称等方式改变图形的形状和大小。
利用几何变换的方法,可以解决一些与图形变换相关的最值问题。
例如,在矩形中,要使矩形的面积最大。
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
几何最值问题常用解法初二几何最值问题是指在给定的几何条件下,求解出某个量的最大值或最小值。
这类问题在数学竞赛和应用问题中经常出现,对学生的综合能力和解题能力提出了要求。
下面将介绍几何最值问题常用的解法。
一、勾股定理求解最大值勾股定理是几何最值问题中应用最广泛的方法之一。
根据勾股定理,对于任意一个直角三角形,斜边的平方等于两直角边的平方和。
因此,当已知两条边的长度时,可以通过勾股定理求解另一条边的最大值或最小值。
例题1:在直角三角形ABC中,已知AB=3,BC=4,求AC的最大值。
解法:根据勾股定理,AC的平方等于AB的平方加BC的平方,即AC^2=3^2+4^2=9+16=25。
所以AC的最大值为5。
例题2:在直角三角形ABC中,已知AB=5,AC=13,求BC的最小值。
解法:根据勾股定理,BC的平方等于AC的平方减去AB的平方,即BC^2=13^2-5^2=169-25=144。
所以BC的最小值为12。
二、三角形面积法求解最大值三角形面积公式是几何最值问题中常用的方法之一。
根据三角形面积公式,三角形的面积等于底边乘以高的一半。
因此,当已知底边和高的一半时,可以通过三角形面积公式求解三角形面积的最大值或最小值。
例题3:已知一个三角形的底边长是6,高的一半是5,求这个三角形的最大面积。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即面积=6*5=30。
所以这个三角形的最大面积是30。
例题4:已知一个三角形的底边长是10,面积是24,求这个三角形的最小高。
解法:根据三角形面积公式,三角形的面积等于底边乘以高的一半,即24=10*高/2,解得高=4.8。
所以这个三角形的最小高是4.8。
三、相似三角形属性求解最大值相似三角形属性是几何最值问题中常用的方法之一。
相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的边长之比等于对应边的比值,面积之比等于对应边长的平方的比值。
例题5:已知两个相似三角形的面积分别是16和25,求这两个相似三角形的边长之比。
完整)初中数学《几何最值问题》典型例题初中数学《最值问题》典型例题一、解决几何最值问题的通常思路解决几何最值问题的理论依据是:两点之间线段最短;直线外一点与直线上所有点的连线段中,垂线段最短;三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
根据不同特征转化是解决最值问题的关键。
通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段。
几何最值问题中的基本模型举例:1.三角形三边关系在三角形ABC中,M,N分别是边AB,BC上的动点,求AM+BN的最小值。
解析:先平移AM或BN使M,N重合,然后作其中一个定点关于定直线l的对称点。
2.图形对称在△ABC中,M,N两点分别是边AB,BC上的动点,将△XXX沿MN翻折,B点的对应点为B',连接AB',求AB'的最小值。
解析:转化成求AB'+B'N+NC的最小值。
二、典型题型1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△XXX的周长的最小值为.解析:作P关于OA,OB的对称点C,D,连接OC,OD。
则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长。
根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解。
解答:作P关于OA,OB的对称点C,D,连接OC,OD。
则当M,N是CD与OA,OB的交点时,△XXX的周长最短,最短的值是CD的长。
PC关于OA对称,∴∠COP=2∠AOP,OC=OP。
同理,∠DOP=2∠BOP,OP=OD。
COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD。
COD是等腰直角三角形。
则CD=2OC=2×32=64.分析】首先,把题目中的图形画出来,理清楚纸片折叠后的几何关系。
然后,可以利用勾股定理求出三角形的边长,再根据两点之间线段最短的原理,确定点A′在BC边上可移动的最大距离。
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P32),O 为坐标原点,若直线l 与椭圆C交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14. (1)求椭圆C 的标准方程;(2)若OM =AOB 面积的最大值.【答案】(1)221123x y +=(2)3 【解析】 【分析】(1)根据椭圆经过点P32),得到223914a b+=,再利用点差法,根据直线l 与直线OM 的斜率乘积为-14,得到 2214b a -=-求解;(2)当AB x ⊥轴时,易得12AOBSOM AB =⋅AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,联立221123x y y kx t ⎧+=⎪⎨⎪=+⎩,根据OM =k ,t 的关系,再求得AB 和点O 到直线AB 的距离为d ,由12AOB S AB d =⋅⋅求解.(1)解:因为椭圆经过点P32), 所以223914a b +=, 设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以 2214b a -=-,解得223,12b a ==,所以椭圆方程为:221123x y +=;(2)当AB x ⊥轴时,点M 在x 轴上,且OM AB ⊥,由OM =3AB =,所以12AOBSOM AB =⋅ 当直线AB 与x 轴不垂直时,设直线AB 的方程为y kx t =+,由221123x y y kx t ⎧+=⎪⎨⎪=+⎩,消去y 得()2221484120k x ktx t +++-=, 则21212228412,1414kt t x x x x k k -+=-⋅=++,224,1414kt t M k k ⎛⎫- ⎪++⎝⎭,由OM =()2222314116k t k +=+,因为AB =点O 到直线AB 的距离为d =所以12AOBSAB d =⋅⋅=3≤=,当且仅当221214k k =+,即218k =时,等号成立,综上 AOB 面积的最大值是3.变式1-1.已知椭圆221221x y C a b+=:的焦距为2,且过点(P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.【答案】(1)2212x y +=;(2)2. 【解析】 【分析】(1)根据给定条件,列出关于22,a b 的方程,求解作答.(2)设出直线AB 的方程,分别与抛物线2C ,椭圆1C 的方程联立,求出切点纵坐标,再求出面积的函数关系,借助均值不等式计算作答. (1)椭圆半焦距c ,依题意,1c =,221112a b+=,又2221a b c -==,解得22a =,21b =, 所以椭圆1C 的标准方程为:2212x y +=. (2)显然直线AB 不垂直于坐标轴,设直线AB 的方程为(0)x my t m =+≠,()11,A x y ,()22,B x y ,由22y px x my t⎧=⎨=+⎩消去x 并整理得:2220y pmy pt --=, 则22480p m pt ∆=+=,即22t p m =-,22ty pm m==-, 由2222x y x my t⎧+=⎨=+⎩ 消去x 并整理得:()2222220m y mty t +++-=, 则()()222244220m t m t '∆=-+-=,即222t m =+,1222mt mt my m t t --===-+,点O 到直线AB 的距离为d =∴1211222OABm tS AB d y y t t m =⋅=-=⋅-+221212414(||)2222||t m m m m m m m +=-+=-+=+≥=, 当且仅当4||||m m =,即2m =±时取“=”, 所以OAB 面积的最小值为2.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点. (1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值. 【答案】(1)212y x = (2)36 【解析】 【分析】(1)分析可知曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,由此可求得曲线C 的方程;(2)先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+,设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,求出AB ,写出抛物线C 在A 、B 两点处的切线方程,求出点P 的坐标,进而求出点P 到直线l 的距离,利用三角形的面积公式结合二次函数的性质可求得PAB △面积的最小值. (1)解:由题意可知,曲线C 是以点()3,0F 为焦点,以直线3x =-为准线的抛物线,设抛物线C 的标准方程为()220y px p =>,则32p ,可得6p ,因此,曲线C 的方程为212y x =. (2)解:先证明结论:抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+, 由题意可得20012y x =,联立()002612y y x x y x⎧=+⎨=⎩,可得()200x x -=,解得0x x =,因此,抛物线212y x =在其上一点()00,Q x y 上一点的切线方程为()006y y x x =+. 若直线l 与x 轴重合,则直线l 与抛物线C 只有一个交点,不合乎题意. 设直线l 的方程为3x ty =+,设点()11,A x y 、()22,B x y ,联立2312x ty y x=+⎧⎨=⎩,可得212360y ty --=,21441440t ∆=+>,由韦达定理可得1212y y t +=,1236y y =-,()2121AB t ==+,抛物线212y x =在点A 处的切线方程为()2111662y y y x x x =+=+,同理可知抛物线212y x =在点A 处的切线方程为22262y y y x =+,联立2112226262y y y x y y y x ⎧=+⎪⎪⎨⎪=+⎪⎩,解得121231262y y x y y y t ⎧==-⎪⎪⎨+⎪==⎪⎩,即点()3,6P t -, 点P 到直线l 的距离为261t d +==所以,()3221361362PABS AB d t =⋅=+≥△,当且仅当0=t 时,等号成立. 因此,PAB △面积的最小值为36. 【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>,且过点⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.【答案】(1)22162x y +=(2)【解析】 【分析】(1)根据椭圆的离心率以及椭圆上的点,列出方程组,解得a.b ,可得答案.(2)设P 点坐标,表示出直线PM 的斜率,进而可得其中垂线方程,求得N 点坐标,从而表示出四边形OPMN 的面积,结合基本不等式,即可求得答案. (1)设E 的焦距为2c,则()222222211c a a b a b c ⎧=⎪⎪⎪⎪-⎪⎝⎭+=⎨⎪-=⎪⎪⎪⎪⎩,解得2a b c ⎧=⎪⎪=⎨⎪=⎪⎩所以E 的方程是22162x y +=.(2)由题意,设()(000,0P x y y <,线段MP 的中点为A ,则点A 的坐标为003,22x y+⎛⎫⎪⎝⎭,且直线MP 的斜率003PM y k x =-,故直线AN 的斜率为0031AN PM x k k y -=-=, 从而直线AN 的方程为00003322y x x y x y -+⎛⎫-=- ⎪⎝⎭, 又2200162x y +=,则220063x y =-, 令0x =,得2200092x y y y +-=,化简得200230,2y N y ⎛⎫-- ⎪⎝⎭,所以四边形OPMN 的面积2000231133222OPMN OMNOPMy S SSy y --=+=⨯⨯+⨯⨯200023322y y y ⎛⎫+=+ ⎪⎝⎭003332222y y ⎛⎫=+≥⨯= ⎪⎝⎭当且仅当0y =所以四边形OPMN面积的最小值为考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.【答案】(1)22142x y +=(2)y =(3)【解析】 【分析】(1)根据离心率可求a ,从而可得椭圆方程.(2)设()00,M x y ,则可以用M 的坐标表示,A B ,再根据3OA OB =可求0x ,从而可求M 的坐标,故可求直线MA 的方程.(3)结合(2)可得12k k +,利用M 在椭圆上可化简前者,利用其纵坐标的范围可求最大值. (1)因为椭圆的离心率为e =c a =即22212a a -=,故24a =,所以椭圆的方程为:22142x y +=.设()00,M x y ,因为直线1A M 交y 轴正半轴于点A ,则02x ≠±,00y >,又()00:22y AM y x x =++,故0020,2y A x ⎛⎫⎪+⎝⎭,()00:22y MM y x x =--,故0020,2y B x ⎛⎫- ⎪-⎝⎭, 因为3OA OB =,故000022322yyx x =-⨯+-,所以01x =-,所以0y =故()2:212AM y x x =+=-+y =. (3)由(2)可得0102y k x =-,而0020202022y x y k x -+==--+, 故00002200000124422242y y y y k y k x x x y =-==-=--+-+,因为00y <2y -≤12k k +的最大值为 变式2-1.已知曲线C 上任意一点(),P x y2=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.【答案】(1)2212y x -=(2)8 【解析】 【分析】(1)根据双曲线的定义即可得出答案;(2)可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx⎧-=⎪⎨⎪=⎩,求得2OP ,同理求得2OQ ,从而可求得2211||||OP OQ +的值,再结合基本不等式即可得出答案. (1)解:设())12,F F ,2=,等价于12122PF PF F F -=<,∴曲线C 为以12,F F 为焦点的双曲线,且实轴长为2,焦距为故曲线C 的方程为:2212y x -=;(2)解:由题意可得直线OP 的斜率存在且不为0,可设直线OP 的方程为()0y kx k =≠,则直线OQ 的方程为1=-y x k ,由2212y x y kx ⎧-=⎪⎨⎪=⎩,得222222222x k k y k ⎧=⎪⎪-⎨⎪=⎪-⎩, 所以()2222221||2k OP x y k+=+=-,同理可得,()2222212121||1212k k OQ k k⎛⎫+ ⎪+⎝⎭==--, 所以()()()22222222211111||||22121k k k OP OQ k k -+-++===++,()()22222222112222228||||OQ OP OP OQ OP OQOP OQ OP OQ ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+=++=++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 当且仅当2OP OQ ==时取等号,所以当2OP OQ ==时,22||OP OQ +取得最小值8.变式2-2.已知椭圆2222:1(0)x y C a b a b +=>>过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.【答案】(1)2214x y +=(2)【解析】【分析】(1)根据题意可得21b =且2a c -=a ,b ,c 之间的关系,解得a ,c ,b ,即可得出答案. (2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意,设直线l 的方程为x my n =+,则111PA y k x -=,221PB y k x -=,联立直线l 与椭圆C 的方程,可得244181()10n m y y m n x m n x---+⋅+=++,PA k ,PB k 是该二次方程的两根,利用韦达定理结合条件可得到21PA PB k k n m+=-=--,即可得出答案. (1)因为椭圆过点(0,1)P,椭圆上的任意一点到焦点距离的最小值为2, 所以21b =且2a c -= 又22221a b c c =+=+, 解得2a =,c =所以椭圆的方程为2214x y +=.(2)当直线l 垂直于y 轴时,直线PA 与直线PB 的斜率和为0,不符合题意, 故设直线l 的方程为x my n =+, 由于直线l 不过点(0,1)P ,故0m n +≠, 设1(A x ,1)y ,2(B x ,2)y ,10x ≠,20x ≠, 则111PA y k x -=,221PB y k x -=, 直线l 的方程可改写为(1)1x m y m n m n--=++, 椭圆C 的方程可改写为224(1)8(1)0x y y +-+-=, 两者联立,可得22(1)4(1)8(1)[]0x m y x y y m n m n-+-+-⋅-=++, 0x ≠时,整理可得244181()10n m y y m n x m n x---+⋅+=++①, 若n m =,则直线l 与椭圆C 的一个交点为(0,1)-, 此时直线PA 的斜率不存在,不符合题意, 故n m ≠,且PA k ,PB k 是以上二次方程①的两根, 由韦达定理有21PA PB k k n m+=-=--,于是2n m =+,直线l 的方程为2x my m =++,所以直线l 经过定点(2,1)-,则当点P 与该定点的连线与l 垂直时,点P 到直线l 距离的最大,最大值.. 【点睛】本题考查椭圆的方程,直线与椭圆的相交问题,解答时要注意便是德技巧,解题中需要一定的计算能力,属于较难题.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4. (1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.【答案】(1)2214y x -=(2)1 【解析】 【分析】 (1)由题意得224+-⋅=y y x x,化简可得答案, (2)求出渐近线方程,设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <,由2AP PB =可得12023x x x +=,120243-=x x y 代入双曲线方程化简可得1298⋅=-x x ,然后表示AP PB ,的坐标,再进行数量积运算,化简后利用基本不等式可得答案 (1)由题意得224+-⋅=y y x x ,即2244-=y x, 整理得2214y x -=,因为双曲线的顶点坐标满足上式,所以C 的方程为2214y x -=.(2)由(1)可知,曲线C 的渐近线方程为2y x =±, 设点()00,P x y ,()11,2A x x ,()22,2B x x -,1>0x ,20x <, 由2AP PB =,得()()01012020,22,2--=---x x y x x x x y , 整理得12023x x x +=,120243-=x x y ①,把①代入220014y x -=,整理得1298⋅=-x x ②, 因为()121201012244,2,33-+--⎛⎫=--=⎪⎝⎭x x x x AP x x y x , ()2121202022,2,33---⎛⎫=---= ⎪⎝⎭x x x x PB x x x y , 所以()22121211010129⋅=++⋅AP PB x x x x .由1298=-x x ,得1298=-x x , 则()22221212221199192710101210101210219988982⎡⎤⎛⎫⎛⎫⎢⎥⋅=++⋅=-+-⨯≥⨯⨯-= ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦AP PB x x x x x x ,当且仅当24x =-时等号成立,所以AP PB ⋅的最小值是1.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2. (1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)【答案】(1)22143x y +=(2)6 【解析】 【分析】(1)设出点(),P x y ,直接法求出轨迹方程;(2)求出4OM =,设出直线方程,表达出四边形OPMQ 面积,使用换元及基本不等式求出面积最大值. (1)设点(),P x y ,则PF =P 到直线:4l x =的距离为4x -,12=,解得:22143x y +=.(2)由题意得:()4,0M ,则4OM =,设当直线l 斜率为0时,即0y =,此时四边形OPMQ 不存在,故舍去;设直线l 为1x ky =+,与22143x y +=联立得:()2234690k y ky ++-=,设()()1122,,,P x y Q x y ,则由韦达定理得:122634k y y k -+=+,122934y y k-=+,则12y y -==, 四边形OPMQ面积1211422S OM y y =⋅-=⨯=,t =()1t ≥,则221k t =-,224241313t S t t t==++,其中13y t t =+在[)1,t ∈+∞上单调递增,故当1t =时,13y t t=+取得最小值为4,此时面积S 取得最大值6 【点睛】求解轨迹方程通常方法有:直接法,定义法,相关点法,交轨法,本题中使用的是直接法.2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程; (2)求△ABP 面积的最大值. 【答案】(1)32y x =或32y x =- (2)【解析】 【分析】(1)分斜率存在和不存在讨论,当斜率存在时设直线方程与椭圆方程联立消元,利用弦长公式和点到直线的距离公式表示出面积,根据已知列方程可解;(2)分直线过原点和不过原点,当不过原点时设直线方程与椭圆方程联立消元,利用韦达定理表示出M 坐标,再由中点坐标公式得P 点坐标,代入椭圆方程可得k 和b 的关系,然后利用弦长公式和点到直线的距离公式表示出面积(注意2ABPABFS S=),然后用导数求最值.(1)在椭圆22143x y +=中,2,1a b c ===,此时点P 坐标为(2,0),当直线AB的斜率不存在时,易知AB =122ABPS=⨯=,不满足题意.故设直线方程为y kx =,代入椭圆方程得22234120x k x +-=,即22(43)120k x +-=,由弦长公式得AB =P 到直线AB 的距3=,解得32k =±,所以直线AB 的方程为32y x =或32y x =-.(2)由(1)知,当直线过原点且斜率存在时,ABPS==故此时面积最大值为ABP S =△当直线不过原点时,易知直线斜率一定存在,设方程为y kx m =+,代入椭圆方程整理可得()2224384120k x kmx m +++-=…①,记112200(,),(,),(,)A x y B x y M x y ,则21212228412,4343km m x x x x k k -+=-=++,002243,4343km mx y k k =-=++,00(2,)P x y -- 则22003(2)412x y -+=,将002243,4343km m x y k k =-=++代入上式得222243324124343km m k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭,整理得4m k =-,代入①得2222(43)3264120k x k x k +-+-=,又点F 到直线AB,则ABPSAB k ===+ABPS=2t k =,2(14)()(43)t t g t t -=+,则()()332843t g t t -=+',易知当3028t <<时,()0g t '>,函数单调递增,当328t >时,()0g t '<,函数单调递减,故当328t =时,max 31()()28192g t g ==,所以ABPS≤=又直线与椭圆有两个交点,所以422644(43)(6412)0k k k ∆=-+⨯->,解得214k <,故当2328k =,即k =ABP综上,△ABP 面积的最大值为【点睛】设而不求是圆锥曲线中最常用的方法之一,本题通过各点之间的关系,结合韦达定理表示出M 坐标,进而得到点P 坐标,借助P 点在椭圆上作为突破口进行求解,考察学生的转化能力和运算能力,属难题.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ; ②求MAB △面积的最小值.【答案】(1)22143x y +=;(2)①证明见解析;②92. 【解析】【分析】(1)由题得222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,即得;(2)由题可得在点(),A A A x y ,(),B B B x y 处的切线方程,进而可得直线AB 方程,再利用斜率关系即证,联立直线AB 方程,与椭圆方程,利用韦达定理可得(222291212MAB t S AB MF t +=⋅⋅=+△,再通过换元,利用函数的性质可求. (1)由题可得,222222123121c a a b a b c ⎧=⎪⎪⎪⎛⎫⎪⎪⎪⎝⎭+=⎨⎪=+⎪⎪⎪⎪⎩,解得224,3,a b ⎧=⎨=⎩ ∴椭圆E 的标准方程为22143x y +=.(2)①先求在椭圆上一点的切线方程,设椭圆上一点为()x y x y ≠≠0000,,0,0,切线方程为()00y y k x x -=-,联立方程组()0022143y y k x x x y ⎧-=-⎪⎨+=⎪⎩,可得()()()22200003484120k x k y kx x y kx ++-+--=,∴()()()222000084344120k y kx k y kx ⎡⎤⎡⎤∆=--⨯+--=⎣⎦⎣⎦,∴()()22200004230x k kx y y -++-=,即2220000432034y x k kx y ++=,∴034x k y =-, 故切线方程为()000034x y y x x y -=--,即00143x x y y +=, 设(),A A A x y ,(),B B B x y ,()4,M t . 椭圆E 在点(),A A A x y 的切线AM 的方程为:143A A x x y y+=, 在点(),B B B x y 处的切线BM 方程为:143B B x x y y +=. 又直线AM ,BM 过点()4,M t ,即41434143A A B B x ty x ty ⎧+=⎪⎪⎨⎪+=⎪⎩,即3333A A B B x ty x ty +=⎧⎨+=⎩,故点(),A A A x y ,(),B B B x y ,在直线33x ty +=上,故直线AB 方程为:33x ty +=, 当0=t ,即()4,0M 时,直线AB 方程为:1x =,则2⊥MF AB . 当0t ≠时,直线AB 方程为:33y x t t=-+.右焦点()21,0F ,则23MF t k =,所以2313MF AB t k k t ⎛⎫⋅=⋅-=- ⎪⎝⎭,即2⊥MF AB .②直线AB 方程为:33x ty +=与椭圆E 联立得;()22126270t y ty +--=,2612A B t y y t +=+,22712A By y t -=+,(222291212MABt S AB MF t +=⋅⋅==+△令m =3m ≥,则(23223292213123MABt m S t m m m +===+++△在[)3,m ∈+∞上单调递增,所以当3m =时,MAB S 取最小值92.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点. (1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值. 【答案】(1)证明见解析 (2)【解析】 【分析】(1)利用直线与圆相切等价于圆心到直线的距离等于半径来证明;(2)先设直线AB 的方程为1x my =+,以m 为参数表示出点P 以及点E 的坐标,进而求出E 点到直线的距离,即为ABE △的高,最后把ABE △的面积表示成m 的函数,求其最值. (1)证明:抛物线24y x =的焦点为()1,0F ,准线方程为1x =-. 设()()()()()11221212,,,,112A x y B x y AB AF BF x x x x =+=+++=++, 弦AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭, 则M 到准线1x =-的距离为()121211222AB x x x x++--=+=, 所以以AB 为直径的圆与直线1x =-相切. (2)解:由题可知直线l 的斜率不能为0,设直线l 的方程为1x my =+,由21,4x my y x=+⎧⎨=⎩整理得2440y my --=, 又()()1122,,,A x y B x y , 则12124,4y y m y y +==-,所以2AB =()()21212444x x m y y m ++=++=+.点P 的坐标为()1,2m -,于是直线OP 的方程为2y mx =-, 代入24y x =,整理得0x =或21x m =, 从而212,E mm ⎛⎫-⎪⎝⎭ 则点E 到直线AB211+=故()()32221442ABESm m =+=.[),1,t t ∈+∞,()()()()223222232,11t t t f t f t t t -=--'= 则()f t在⎡⎣上单调递减,在)+∞上单调递增,故min ()f t f ==练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程;(2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.【答案】(1)24x y = (2)32 【解析】 【分析】(1)设()04,Q y ,列方程组000216524py p y y =⎧⎪⎨+=⎪⎩,求出2p =,即可得到抛物线E 的方程;(2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用ABC 是以AC 为斜边的等腰直角三角形,表示出()()32211k x k k --+,用坐标表示出AB AC =()()32221611k k k ++利用基本不等式求出AB AC 的最小值.(1)设点()04,Q y ,由已知000216524py p y y =⎧⎪⎨+=⎪⎩,则8102p p p +=,即24p =. 因为0p >,则2p =,所以抛物线E 的方程是24x y =. (2)设点()222312123123,,,,,444x x x A x B x C x x x x ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,直线AB 的斜率为()0k k >,因为AB BC ⊥,则直线BC 的斜率为1k-. 因为AB BC =,则212232111x x k x x k -+=-+,得()2312x x k x x -=-,① 因为22121212444x x x x k x x -+==-,则124x x k +=,即124x k x =-,②因为223223231444x x x x k x x -+-==-,则234x x k +=-,即324x x k=--③将②③代入①,得()2242420x k k x k +--=,即()()322212120k k x k k k-+---=,则()()32211k x k k -=+, 所以()()()()22222122··cos 451421AB AC AB AC AB x x k k x k ︒===-+=-+ ()()()()()2332222411614111k k k k k k k k ⎡⎤-+⎢⎥=-+=++⎢⎥⎣⎦因为212k k +≥,则()22214k k +≥,又()22112k k ++≥,则()()3222121k k k +≥+,从而()()3222121k k k +≥+,当且仅当1k =时取等号,所以AB AC 的最小值为32.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.【答案】(1)2213y x -=(2)1【解析】【分析】(1)求得双曲线C 的的,a b ,即可求得双曲线C 的标准方程;(2)以设而不求的方法先判定直线MN 过定点,再去求点B 到直线MN 的距离的最大值.(1)由题意得1a =.设双曲线C 的焦距为2c ,则221a c⨯=,所以2c =.所以b所以双曲线C 的标准方程2213y x -=. (2) 设1,2P t ⎛⎫ ⎪⎝⎭,则直线P A 的方程为:()213t y x =+. 由()2213213y x t y x ⎧-=⎪⎪⎨⎪=+⎪⎩,得()222242784270t x t x t -+++=.因为直线P A 与C 交于A ,M ,所以24270t -≠,所以t ≠. 因为22427427A M M t x x x t +=-=-,所以22427427M t x t +=--, ()22222427361133427427M M t t t t y x t t ⎛⎫+-=+=-+= ⎪--⎝⎭, 所以22242736,427427t t M t t ⎛⎫+-- ⎪--⎝⎭. 因为直线PB 的方程为()21y t x =--,由()221321y x y t x ⎧-=⎪⎨⎪=--⎩,得()2222438430t x t x t --++=.因为直线PB 与C 交于B ,N ,所以2430t -≠,所以t ≠ 因为224343B N N t x x x t +==-,所以224343N t x t +=-, ()222431*********N N t t y t x t t t ⎛⎫+-=--=--= ⎪--⎝⎭,所以2224312,4343t t N t t ⎛⎫+- ⎪--⎝⎭. 所以当32t ≠±时,直线MN 的方程为222222222123612434342743427434343427t t t t t t y x t t t t t t -+⎛⎫+--+=- ⎪++--⎝⎭+--. 令0y =,得()()22422222222221243649610821236434274443431327438843427t t t t x t t t t t t t t t t t t ++-=⨯+==--+++--+-+---. 所以直线MN 过定点()2,0D . 当32t =±时,222242743242743t t t t ++-==--,所以直线MN 过定点()2,0D . 所以当BD MN ⊥时,点B 到直线MN 的距离取得最大值为1.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.【答案】(1)22y x =(2)证明见解析,12-【解析】【分析】(1)待定系数法求解抛物线方程;(2)设出直线方程,联立后得到A 点纵坐标,同理得到B 点纵坐标,从而求出直线AB 的斜率;(3)在前两问基础上用斜率k表达出2454516k d d k FA FB k k --=⎛⎫-+ ⎪⎝⎭,换元后使用基本不等式求出最大值.(1)将点()2,2P 代入抛物线方程可得:1p =,抛物线2:2C y x =(2)设()():221-=->PA y k x k ,与抛物线方程联立可得:22440-+-=ky y k ,∴4422--=⇒=A P A k k y y y k k ,用k -代k 可得:22+=-B k y k因此,2221222A B A B AB A B A B A B y y y y k y y x x y y --===--+-=,即12AB k =-. (3) 由(1)可知,12AB k =-,()222122,⎛⎫-- ⎪ ⎪⎝⎭k k A k k ,()222122,⎛⎫+-+ ⎪ ⎪⎝⎭k k B k k 因此()22222122122:202⎛⎫----=--⇒+-= ⎪ ⎪⎝⎭k k k AB y x x y k k k 1,02F ⎛⎫ ⎪⎝⎭到直线AB的距离2==d . 11d d d FA FB FA FB ⎛⎫-=- ⎪ ⎪⎝⎭∵()342113211112524162422B A B A A B A B A B FB FA x x x x k FA FB FA FB k k x x x x x x ----====⋅-+⎛⎫⎛⎫++++⋅+ ⎪ ⎪⎝⎭⎝⎭∴()22342425432252416252416k k d d k FA FB k k k k --==-+-+22244551642524516--==⎛⎫-+-+ ⎪⎝⎭k k k k k k k k ,令45=-t k k,由1k >得1t >∴211616d d tFA FB t tt-=≤=++当且仅当4454=⇒-=⇒=t k kk.d dFA FB-【点睛】求解抛物线取值范围问题,把要求解的问题转化为单元问题,常使用的工具有换元,基本不等式,或导函数.8.已知抛物线()2:20C y px p=>的焦点为F,A,B是该抛物线上不重合的两个动点,O为坐标原点,当A点的横坐标为4时,3cos5OFA∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.【答案】(1)24y x=;(2)11.【解析】【分析】(1)作出辅助线,利用焦半径与余弦值求出p的值,进而求出抛物线方程;(2)设出直线方程,与抛物线方程联立,根据PA PB⊥得到等量关系,求出25n m=+,从而表达出212124112AF BF x x m⎛⎫+=++=++⎪⎝⎭,求出最小值.(1)设()04,A y,因为3cos05OFA∠=-<,所以42p>,42pAF=+,过点A作AD⊥x轴于点D,则42pDF=-,432cos542pDFDFApAF-∠===+,解得:2p=,所以抛物线方程为24y x=.(2)设直线AB 为x my n =+,()()1122,,,A x y B x y ,由方程x my n =+与24y x =联立得:2440y my n --=,所以()24160m n ∆=-+>,即20m n +>,且124y y m +=,124y y n =-,所以()21212242x x m y y n m n +=++=+,222121216y y x x n ⋅==,因为以AB 为直径的圆经过点()1,2P ,所以PA PB ⊥,即()()11221,21,20PA PB x y x y ⋅=--⋅--=,即()()12121212250x x x x y y y y -++-++=,所以()22424850n m n n m -+--+=,所以()()22322n m -=+,所以25n m =+或21n m =-+, 当21n m =-+时,直线AB 为12x my m =+-过点P ,此时与题干条件A ,B 都不与点P 重合矛盾,不合题意,舍去;当25n m =+时,直线AB 为25x my m =++,满足要求,所以2212424410x x m n m m +=+=++,则22121244124112AF BF x x m m m ⎛⎫+=++=++=++ ⎪⎝⎭,所以当12m =-时,AF BF +最小,且最小值为11.。
高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。
分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。
由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。
由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。
二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。
x为实数,方程有解,,解得,故。
即。
2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。
当时,,即;当y=7时,,即。
注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。
几何中的最值几何中的最值问题是指在一定的条件下,求平面几何图形中某个量(如线段长度、角度大小、图形周长或面积)等的最大值或最小值。
求几何最值问题的基本方法有:1、几何定理(公理)法;2、临界状态(特殊位置与极端位置法);解决几何最值问题的通常思路(分析定点、动点,寻找定量)①模型解题:若属于常见模型,调用模型解决问题;②定理解题:若不属于常见模型,寻找定量,借助基本定理解决问题. ③轨迹解题:一般用于压轴题转化原则:尽量减少变量,向定点、定线段、定图形靠拢.一.几何定理:(画出模型)1.线段公理——两点之间,线段最短;2.直线外一点与直线的所有连线中垂线段最短3.三角形三边关系(两边之和大于第三边,两边之差小于第三边)4.两平行线间距离最短;5.过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦二、常见模型㈠.过河问题llB线段求其和, AB 河两侧,线段求其差, AB 河同侧,㈡、角平分线模型P A +PB 最小,需要点在异侧 |P A -PB |最大, 需要点在同侧蜂蜜蚂蚁C㈢梯子靠墙模型O A ⊥OB,AB=a ,⊿ABP 是等腰直角三角形。
求OP 的最大值 解法一:根据直角三角形斜边上的中线等于斜边的一半,可知a AB OE 2121==是定值,与OP 构造三角形OEP.解法二:根据等腰直角三角形ABP 斜边上的中线等于斜边的一半,可知解法三:A,B,O 三点在以AB 为直径的圆上,即二.常见临界状态(有待补充):三、观察动点的运动轨迹在武汉中考题的压轴题中求最值问题时,仅依靠定理或模型解决不了问题时,需要我们尝试去思考动的运动轨迹是什么,从而帮助我们解题。
一、过河模型1、在直线l 上找一点P ,使得其到直线同侧两点A 、B 的距离之和最小。
2、直线12l l 、交于O 、P 是两直线间的一点,在直线12l l 、上分别找一点A 、B ,使得△PAB的周长最短。
3、如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .AB2第2题图4、如图,当四边形P ABN 的周长最小时,a = .5、如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC =8,B 到MN 的距离BD =5,CD =4,P 在直线MN 上运动,则PA PB -的最大值等于 .6、点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA +QB 的值最小的点,则OP OQ ⋅= .(1)如图1,若点C (x ,0)且-1<x <3,BC ⊥AC ,求y 与x 之间的函数关系式; (2)如图2,当点B 的坐标为(-1,1)时,在x 轴上另取两点E ,F ,且EF =1.线段EF 在x 轴上平移,线段EF 平移至何处时,四边形ABEF 的周长最小?求出此时点E 的坐标.B (-图1 图28、在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.(1)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;(2)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.1. (2011湖北荆门3分)分,高为5cm .若一只蚂蚁从P 点开始经过4 】A.13cmB.12cmC.10cmD.8cm2.(2011四川广安3分)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.(2011广西贵港2分)如图所示,在边长为2P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 19、已知:抛物线2(0)y ax bx c a =++≠的对称轴为C ,其中(3,0)A -,(0,2)C -。
(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P ,使得PBCQP ED CBAQPKDC BANMABDC PEDCB AC DQPB A二、角平分线模型1、 如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ 的最小值为 .2、如图,在锐角△ABC中,AB ∠BAC =45°,∠BAC 的平分线交BC 于点D ,点M ,N 分别是AD和AB 上的动点,则BM +MN 的最小值___________.3、如图,在菱形ABCD 中,AB =2,∠A =120°,点P 、Q 、K 分别为线段BC 、CD 、BD 上的任意一点,则PK +QK 的最小值为 .第1题图 第2题图第3题图4、如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是__________. 5、在边长为2cm 的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________cm (结果不取近似值).第4题图 第5题图三、梯子靠墙模型O A B CDMN1. 如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________.2. 如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在OM 、ON 上,当点B 在ON 上运动时,点A 随之在OM 上运动,且矩形ABCD 的形状和大小保持不变,若AB =2,BC =1,则运动过程中点D 到点O 的最大距离为( )3. 如图,在△ABC 中,∠A CB =90°,AC =4,BC =2,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点的最大距离是 .第1题图 第2题图 第3题图 4、 如图,在△ABC 中,∠ACB =90°,AC =6,BC =2,点A ,C 分别在x 轴、y 轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,则在运动过程中,点B 到原点的最大距离为_______.第4题图△ABC 的顶点 A ,B 分别在 x 轴正半轴和 y 轴正半轴上运动,则动点 C 到原点O的距离的最大值是_________.1.2 在直角坐标系中,△ABC 满足,∠C=90°,AC=8,BC=6,点 A ,B 分别在 x 轴、y 轴上,当 A 点从原点 开始在正 x 轴上运动时,点 B 随着在正 y 轴上运动(下图),求原点 O 到点 C 的距离 OC 的最大值,并确定此 时图形应满足什么条件.1.如图,木棒AB的长为2a,斜靠在与地面OM垂直的墙壁ON上,且与地面的倾斜角(∠ABO)为60°.当木棒A端沿NO向下滑动到A',B端沿直线OM向右滑动到B',若AA'=a,则木棒的中点P随之运动的路径长为____________.NA第11题图 1.3如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动.(1)当 A 在原点时,求点B 的坐标;(2)当OA=OC 时,求原点O 到点 B 的距离OB;(3)在运动的过程中,求原点O 到点 B 的距离OB 的最大值,并说明理由.边长为 2 的等边△ABC 的顶点 A 在 x 轴的正半轴上移动,顶点 B 在射线 OD 上移动,∠AOD=45°,则顶 点 C 到原点 O 的最大距离为_________.四、圆中最长的弦是直径26、(2013四调)如图∠BAC =60°,半径长1的⊙O 与∠BAC 的两边相切,P 为⊙O 上一动点,以P 为圆心,PA 长为半径的⊙P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( )A 、3B 、6C 、233 D 、33如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ) A 、4.75 B 、4.8 C 、5 D、23、如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B 。
(1)点P 在运动时,线段AB 的长度在发生变化,请写出线段AB 长度的最小值。
(2)在⊙O 上是否存在一点Q ,使得以Q 、O 、A 、P为顶点的四边形是平行四边形?若存在,请求出Q 点的坐标;若不存在,请说明理由。
4. 如图,在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为_________.ABCE FM第9题图2. 如图,A B 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点.若⊙O 的半径为7,则GE +FH 的最大值为_________________.G第9题图。