初中数学:平面几何的最值问题-例题与求解(培优25)
- 格式:docx
- 大小:15.74 KB
- 文档页数:2
第二十三讲平面几何的定值与最值问题【趣题引路】传说从前有一个虔诚的信徒,他是集市上的一个小贩.••每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,•而周围上的点都是供信徒朝拜的顶礼地点如图1。
这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,•然后再到集市的路程最短呢?(1) (2)解析在圆周上选一点P,过P作⊙O的切线MN,使得∠APK=∠BPK,即α=β。
那么朝圣者沿A→P→B的路线去走,距离最短.证明如图2,在圆周上除P点外再任选一点P′.连结BP•′与切线MN•交于R,AR+BR〉AP+BP.∵RP′+AP′〉AR.∴AP′+BP′=AP′+RP′+RB〉AR+BP〉AP+BP。
不过,用尺规作图法求点P的位置至今没有解决.•“古堡朝圣问题”属于数学上“最短路线问题”,解决它的方法是采用“等角原理"。
【知识延伸】平面几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题.•所谓几何定值问题就是要求出这个定值.在解决这类问题的过程中,可以直接通过计算来求出定值;也可以先考虑某一个特殊情形下的该相关值,然后证明当相应几何元素变化时,此值保持不变.例1如果△ABC的外接圆半径R一定,求证:abcS是定值。
(S表示△ABC的面积)解析由三角形面积S=12absinC和正弦定理sincC=2R,∴c=2RsinC.∴abcS=2sincC=4sinsinR CC=4R是定值。
点评通过正弦定理和三角形面积公式经过变形,计算出结果是4R,即为定值。
平面几何中不仅有等量关系,还有不等关系,例如在变动一些几何元素时,•某一相关的值保持不大于(或不小于)某个定值,如果这个定值在某个情形下可以取得,•这就是一个几何极值.确定几何极值的问题称为几何极值问题,解决这些问题总要证明相关的几何不等式,并指明不等式成为等式的情形(或者至少证明不等式可以成为等式)。
代数题用几何求解的最值问题例子初中数学的最值问题一直都是大家学习当中公认的比较困难的一部分内容。
这部分内容的难度相对于其他知识点来说存在很多的不确定性,特别是其中出现做辅助线等方法来辅助解题时不知道从何入手,今天我们将针对几何代数的最值问题进行分类讲解,希望在这过程当中能帮大家理清楚这类题型的大致解题思路。
首先,几何最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。
收到最大值或最小值,那么很多同学就会联想到线段和线段差或者是周长,面积等的最大值和最小值问题。
在中考中常以填空选择及解答题形式出现,可见其出现的形式还是比较多样化的,难易程度多为难题、压轴题。
同学们务必掌握以下几种求几何最值的基本方法:(1)特殊位置及极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情况下的推理证明。
这种特殊的位置。
一般都会通过题目的条件或者是初级的推论就可以得出。
同学们在读取条件的过程当中,一定要重点关注。
(2)几何定理(公理)法:应用几何中的不等量性质、定理。
常见几何性质有:两点之间线段最短;点到直线垂线段最短;三角形两边之和大于第三边;斜边大于直角边等,这类型的应用就相对来说比较简单。
只要根据已学的内容,那么就可以进行解决,其难度不大。
(3)数形结合法:分析问题变动元素的代数关系,构造二次函数等。
树形结合来解决二次函数的最值问题,那么通过图形和代数求解的方式相结合,可以很快的也就能得到。
最后的结果,这是我们在初中学习二次函数时就重点学习的对象。
其次,代数最值问题一般以应用题形式出现,常见题型为求一个花费最低、消耗最少、产值最高、获利最大的方案。
这类型的最值问题作为各地中考必考题之一,难度以中档为主,是所有学生必拿之分。
他主要考察的是二次函数或一次函数的实际应用,结合真实生活中的应用场景来解决实际问题。
解这类题目的关键点在于合理建立函数模型,理解题意的基础上,合理设出未知量,分析题中等量关系,列出函数解析式或方程,求解、讨论结果意义并以“答:……”做结尾。
专题25 平面几何的最值问题例】等提示:当CM ®吋,CM 值最小,g 営:晋MN 的最小值为点厅到AB 的距离B'F, BE= —— = 4^5 cm, AC阳=8亦cm, AE=-BE 1=(20, -(4⑹'=8辰m.在△ABB'中,由丄 的“/^二丄血叩乍,得B'F=16cm ・故BM+2 2MN 的最小值为16cm. 例3 由厶APDs 厶BPQ,得(例2题咔“ 、A/竺=如,即盹=竺竺二好2 -P+BQ=x+冬"・・・・x+《4 BP BQAP x x x2 lx — = 14ab ,・••当且仅当x=—即x=V^时,上式等号成立.故当4PV XXp= 伤时,AP+BQ 最小,其最小值为2 后 _b.例4 (1”;=25 +亍,仔= 49”,故要选择路线/较短•⑵Z+EM +b ,(例5题图)X —呂=才(沪一4)厂一4八・当r=-^—时,片=1?,当r>-^—时,/,2>^,当r<-^— 1 2 LV ) 」 兀$ _4 1 - 兀—4 1 2亍-4时,/.2< /; • 例 5 设 DN=x, PN=y,则 S=xy,由厶APQs'ABF,得4f 3,.=-即-2 — (4 — x) 2不在自变量y 的取值范围内,所以y=—不是极值点,当y=3时,S {3)=12,当y=4时,S (4)=8,故S m ”=12.此时,钢板的最大利用率 ---------- : ---- =80%. 例6设PD=x(x>l),42 -Zx2xl2 则 PC=厶—,由 RtMCDsZAB,得&B=S"'= "I ,令 y=&3・Sz^B ,则 Y= ~ PC J7~[2(P)x=10 — 2y,代入 S=xy 得 S=xy=y(10—2小 即 S=~225 +因 3WyW4,而 y=2AB X PA X AB = (x + 厅2(x-l)求y 的最小值,有下列不同思路:①配方:y =2,即当x=3时,y 有最小值4.②例2如图,B f M+x-\ 2 ------ 1 ----- 2 x-1+ 4 , A 当2运用基本不等式:y=X_1 232x-l 2 二当——=——,即当尸3吋,尹有最小值4.③借用判别式,去2 x — 1分母,得 “+2 (l-y)x+l+2y=0,由厶=4(1一尹)2—4(1+2尹)=4尹(p-4)N0,得比 4,・\y 的最小值为4.1.17提示:当两张纸条的对角重合时,菱形周长最人.2.83. ^744.D5.D6.B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结 ME,过 N 作 NFA.AB 于 F,可证明 RUEB 4竺Rt^MNF,得 MF=AE=x. VME 2=AE 2+AM 2f故 MB 1=X 1+AM 1,即(2—力M) 2=x 2+.4M 2, AM=\~-x.:・S=4AM十 DN xq= "M + " x2=/M+/M+MF=2/M+Ag=2 (l--x 2) +x=~-x 22 24 2+x+2.(2) S=~- (X 2-2 X +1)(x —l)讣丄.故当亦=x= 1 时,四边形ADNM2 2 2 2的面积最大,此吋最大值为仝.29. (1) 3C 长为竺二(2)提示:连结3D (3)过点3作丄力D 于由(2)知四3AB?边形/BCD 为等腰梯形,从而BC=AD-2 AM=2r-2 /M.由厶BAM^/\DAB,得 -------------------ADX YY EF=2 r- —./=4x+2 (2 厂一一)=-- rr r(0<x< V2 r)..当兀=厂时,/取得最大值6— 2+2=4,2 x-lY・・・BC=2厂一一.(x —r) 2+6 r (第8題图)10. (1) V ZAPE= ZADQ.Z4EP= ZAQD,:. ^APE^/\ADQ. (2)由厶4PEs △力DQ,1J 1333'PDFs£\ADQ,S、PEF = — S DPEQF ,得 S、PEF = — — 7+x= — — (x ——)2+ — •故当 x=—2 3 3 2 42时,即P 是/D 的中点时,取得最大值,(3)作A 关于直线BC 的对称点连结DA 交BC 于0,则这个0点就是使LADO 周长最小的点,此时0是BC 的中点. 11. (1)点P 恰好在3C 上时,由对称性知MN 是LABC 的中位线,.••当BC=3时,2点P 在BC 上.(2)由己知得ZUBC 底边上的高〃=“扌=4.①当0<疋3时,如图1,连结并延长交BC 于点、D, 4D 与MN 交于点O.(第11题图)图22J 2 1 o 1 市△/A/Ns △/3C,得 AO= — X J y=S、PMN =S、AMN =—x — x=—x?即尹=—x?•当=3 时,v3 ■‘233 3'的值最大,最大值是3.②当3<x<6时,如图2,设△PMN 与BC 相交于点E, F, 4P 与 244相交于D.由①屮知AO=-x, :.AP=-x, :.PD=AP~AD=-x-A, T \PEFs 厶ABC.,3 33尹的最大值为4.综上,当兀=4时,夕的值最大,最大值为4.1.8 8^232提示:当ZCAB=ZACD=90°时,四边形ABCD 的面积达到最大值.S MB C(x-3)・••吵=S“wv _c — 1 2b“EF—~ 入3(x —3) 2=-X 2 + 8X -12 = - (X —4) 2 + 4.故当 x=4 时,Q'PE F・• SbPEF=~即2. 0</<1 提示:设BC=a, CA=b, AB=c, b+c=2观(r+1),又—/)csin60°=5A/i5c:=—2 2Ca+b+c) F,即、bc^~ = L [2\/3 +2A/3 G+l)]『,.bc=4r (r+2) . b, c 为方程2 2 2X2-2A/3 (r+1) x+4r (r+2) =0 的两个根,由—0,得(r+1) <22.H r>0, r+l>0,故 r+l<2,即 0</<l.3如7提示:过P 作垂直于"的弦倔此时弓形面积最小•4.丄提示:设 —=x,则 —= 1-^= —,也型=/,3 AB BA CA S’%° ° 2 1S 梯形DEFG = 1 —工厶—2 ( 1 —X ) 2 = — 3 (.X — — ) ' + —・33n:]5. 7 + °提示:当= 时,OC 的长最大.6. C27. (1)由 RtzUBPsRtAPC 。
平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME DAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值. (中学生数学智能通讯赛试题)1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4. 75C .5D .4. 85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NM NMAOPBDCBCA DBA PE第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD 的边长AB =2,BC =3,点P 是AD 边上的一动点(P 异于A 、D ).Q 是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(2) 设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3) 当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)B Q11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)B CAB级1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC= ,BD= 时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)DBAB CAA第2题图第3题图第4题图第5题图3.如图⊙O的半径为2,⊙O内的一点P到圆心的距离为1,过点P的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC的面积为1,点D,G,E和F分别在边AB,AC,BC上,BD<DA,DG∥BC,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MNExCB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt △ABC 中,∠C =90°,BC =2,AC =x ,点F 在边AB 上,点G ,H 在边BC 上,四边形EFGH 是一个边长为y 的正方形,且AE =AC . (1) 求y 关于x 的函数解析式;(2) 当x 为何值时,y 取得最大值?求出y 的最大值.(上海市竞赛试题)平面几何的最值问题例1125提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅= 例2 如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =45AB BCAC⋅=cm ,BB ′=85cm ,AE =()2222204585AB BE --=.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm . 例3 由△APD ∽△BPQ ,得AP AD BP BQ =,即BQ =()b a x AD BP AP x-⋅=,∴AP +BQ =x +ab b x -.∵x +ab x ≥2ab x ab x ⋅=仅当x =abx即x ab ,上式等号成立.故当AP ab ,AP +BQ 最小,其最小值为ab-b .例4 ⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短. ⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244hπ-时,2212l l <. 例5 设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%. 例6 设PD =x (x >1),则PC 21x -,由R t △PCD ∽△P AB ,得AB =21CD PA PC x ⋅=-y =AB •S △P AB ,则y =12AB ×P A ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =21212242121x x x x --++=+--1221x x -=-x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥- 321221x x -⋅-+2=4,∴当12x -=21x -,即当x =3时,y 有最小值4. ③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4. A 级1. 17 提示:当两张纸条的对角重合时,菱形周长最大.2. 83.74 4. D 5. D 6. B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x. ∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF+×2=AM +AM +MF =2 AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2 x +1)+52=-12(x -1)2+52. 故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52. 9. (1)BC 长为23rπ. (2)提示:连结BD . (3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD为等腰梯形,从而BC =AD -2 AM =2r -2 AM . 由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r-2x r . 同理,EF =2 r -2x r . l =4 x +2(2 r -2x r )=-xr(x -r )2+6 r (0<x 2 r ). . 当x =r时,l 取得最大值6 r .10. (1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ . (2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34. 故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11. (1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上. (2)由已知得△ABC 底边上的高h =225-3=4. ①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O .由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2. 当=3时,y 的值最大,最大值是3. ②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D . 由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC . ,∴PEFABC S S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (. ∵S △ABC =12,∴S △PEF =43(x -3)2. ∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4. 故当x =4时,y 的最大值为4. 综上,当x =4时,y 的值最大,最大值为4. B 级1. 8 2 32 提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值.2. 0<r ≤1 提示:设BC =a ,CA =b ,AB =c ,b +c =3(r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc ·32=12[33r +1)]r ,. bc =4r (r +2). b ,c 为方程x 2-3r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22. 因r >0,r +1>0,故r +1≤2,即0<r ≤1. 3.249π3提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小. 4.13 提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADGABCS S ∆∆=x 2,BDE ABC S S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG=1―x 2―2(1-x )2=-3(x -23)2+13.5. 312+a 提示:当OA =OB 时,OC 的长最大.6. C7. (1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x -,y =-14(x -2)2+1(0<x <4). 当x =2时, y 最大值=1cm. (2)由14=-14(x -2)2+1,得x =(2+3)cm 或(2-3)cm. 8. 当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求. 作O′D ⊥A B 于D . ,O′D 2= O′B 2-BD 2=2()2a b +-2()2a b -=ab ,O′D =ab 故点C 坐标为(ab ,0).9. (1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°. ∴△AMN ≌△AML ,故∠MAN =∠MAL=902=45°. (2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2. 整理得2y 2+(2z -4)y +(4-4z )=0. ∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+22)(z +2-22)≥0. 又∵z >0,故z ≥22-2,当且仅当x =y =2-2时等号成立. 由于S △AMN =S △AML =12·ML ·AB =12 MN ×1=2z ,因此,△AMN 的面积的最小值为2-1.10. (1)提示:证明△ADF ∽△BAC . (2)①AB =15,BC =9,∠ACB =90°,∴AC 22AB BC -=2215912-=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>.②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +P A ,故只要求PB +P A 最小.显然当P 、A 、B 三点共线时PB +P A 最小,此时DP =DE ,PB +P A =AB .由(1),角∠ADF =∠F AE ,∠DF A =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴ AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252. ∴当x =252时,△PBC 的周长最小,此时y =1292. 11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2). (2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k-==-<,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小. 12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-22xy y y x y x -+-=,2x -2y -xy =22x xy y -,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去) . (2)由(1)22122222y x x ==+++≤ .当且仅当2x x =,即2x =,上式等号成立.故当2x =,y 去最大21.。
初中数学:平面几何的最值问题-例题与求解(培优25)平面几何的最值问题【阅读与思考】几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值.求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.【例题与求解】【解析】作点B关于直线AC的对称点B',交AC与E,连接B'M,过B'作B'G⊥AB于G,交AC于F,再由对称性可知B'M+MN=BM+MN≥B'G,再由等号成立条件得出AC=10√5,再根据△ABC的面积分别求出BE、BB'的值,由相似三角形的判定定理得出△B'GB~△ABC,再根据相似三角形的性质即可求解.【点评】本题考查的是最短路线问题及相似三角形的判定与性质,根据题意作出辅助线是解答此题的关键.【点评】本题考查了三角形相似的判定与性质.也考查了平行四边形的性质以及一元二次方程根的判别式运用.【解析】(1)根据勾股定理易得路线1:l₁²=AC²=高²+(底面周长一半)²;路线2:l₂²=(高+底面直径)²;让两个平方比较,平方大的,底数就大.(2)根据(1)得到的结论让两个代数式分三种情况进行比较即可.【点评】此题考查了平面展开一最短路径问题,比较两个数的大小,有时比较两个数的平方比较简便,比较两个数的平方,通常让这两个数的平方相减,注意运用类比的方法做类型题.【解析】根据题意画图分析.用含表示某一边的字母的代数式表示面积,关键是表示另一边的长.借助三角形相似建立关系.【点评】根据函数求出的最值与实际问题中的最值不一定相同,需注意自变量的取值范围.【点评】本题主要考查对三角形的面积,相似三角形的性质和判定,勾股定理,面积和等积变形等知识点的理解和掌握,能求出方程x²+2(1-y)x+1+2y=0中y的最小值是解此题的关键.。
几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
平面几何中的最值问题最值问题的解决方法通常有两种:1、 应用几何性质:① 三角形的两边之和大于第三边,两边之差小于第三边;② 两点之间,线段最短;③ 垂线段最短;④ 定圆中,直径最长。
2、运用代数证法:① 运用配方法 ② 运用判别式。
例1、A 、B 两点在直线l 的同侧,在直线L 上取一点P ,使PA+PB 最小。
例2、A 、B 两点在直线l 的同侧,在直线L 上取一点P ,使|PA-PB|最大。
例3、已知AB 是半圆的直径,AB=10,如果这个半圆是一块铁皮,ABDC 是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC 的周长最大?2 .如图是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?【1】如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 ? .【2】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于P ,直线CB 与AM 相交于点Q ,证明:线段AP 和BQ 的乘积与M 点的选择无关.【3】如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.【4】如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.【5】如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则PBPA 的最大值等于。
例析平面几何中的最值问题某平面几何元素在给定条件下变动时求某几何量的最大值或最小值问题称为平面几何中这类试题综合性强,通常根据“两点之间线段最短”、“垂线段最短”、“三角形的三边关系”或者“利用隐形圆”等方法,找出最长(短)位置,求出最大(小)值.1.利用对称求最值例1: 菱形OABC在平面直角坐标系中的位置如图所示,已知A(5,0),E (0,2),OB=4,点P是对角线OB上的一个动点,当△EPC周长最小时,则点P的坐标为.解:如图连接AC,AE,分别交OB于G、P′,作BD⊥OA于D.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴P′C+P′D=P′A+P′E=EA,∴P点在P′时PC+PE+CE最短,在RT△AOG中,AG===,∵OA•BD=•AC•OB,∴BD=4,AD==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+2,由解得,∴点P坐标(,).2:利用两点之间距离最短求最值例2:如图,菱形ABCD的边长为2,∠ABC=60°,点E、F在对角线BD 上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4 B.4+ C.2+2 D.6解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,即△AEF的周长最小.∵AH=EF,AH∥EF,∴四边形EFHA是平行四边形,∵FA=FC,∴AE+AF=FH+CF=CH,∵菱形ABCD的边长为2,∠ABC=60°,∴AC=AB=2,∵四边形ABCD是菱形,∴AC⊥BD,∵AH∥DB,∴AC⊥AH,∴∠CAH=90°,在Rt△CAH中,CH=,∴AE+AF的最小值4,∴△AEF的周长的最小值=4+2=6,3:利用垂线段最短求最值例3:如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C. D.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是24:利用三边关系求最值例4::如图,D是等边三角形ABC外一点.若BD=8,CD=6,连接AD,则AD的最大值与最小值的差为.解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴在△BDE中,BD﹣DE<BE<BD+DE,即8﹣6<BE<8+6,∴2<BE<14,∴2<AD<14.则当B、D、E三点共线时,可得BE的最大值与最小值分别为14和2.∴AD的最大值与最小值的差为14﹣2=12.5:利用隐圆求最值例5:如图,菱形ABCD边长为4,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值是()A.2 B. +1 C.2﹣2 D.3解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MH⊥DC于点H,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=4,∠HDM=60°,∴∠HMD=30°,∴HD=MD=1,∴HM=DM×cos30°=,∴MC==2,∴A′C=MC﹣MA′=2﹣2;第6页(共6页)。
初中数学平面几何最值问题培优专题训练1. 引言平面几何最值问题是初中数学中的一个重要概念,它涉及了数学中的最大值和最小值的求解。
本文旨在为初中生提供一些培优专题训练,帮助他们更好地理解和掌握平面几何最值问题的解题方法。
2. 训练题目下面是一些平面几何最值问题的训练题目,供初中生进行练和思考:1. 计算等边三角形的最大面积。
2. 求一个正方形的最小周长。
3. 在一个给定的圆内,找出一个长方形的最大面积。
4. 在一个长方形的周长固定的情况下,如何确定它的最大面积?5. 如何证明:对于一个给定的周长,圆是能够围成最大面积的图形。
3. 解题思路在解决平面几何最值问题时,可以采用以下简单的策略:- 利用几何图形的对称性。
常常可以通过找到几何图形的对称性来简化问题,并找到最值点。
- 利用几何图形的性质和公式。
根据几何图形的性质和公式,可以建立方程或关系,从而求解最值问题。
- 利用数学推理和证明。
通过数学推理和证明,找到最值问题的解题方法和结论。
4. 例题解析下面是几个例题的解析,以帮助初中生更好地理解解题思路和方法:例题1:等边三角形的最大面积解析:等边三角形的面积由边长决定,所以要找最大面积,就需找到最长的边长。
根据等边三角形的性质,可以知道三个边长相等,因此最长的边长是三边中的任意一条边长。
所以等边三角形的最大面积是以任意边长为边长的正三角形。
例题2:正方形的最小周长解析:正方形的周长由边长决定,所以要找最小周长,就需找到最短的边长。
正方形的四条边相等,因此最短的边长是四条边中的任意一条边长。
所以正方形的最小周长是以任意边长为边长的正方形。
例题3:长方形的最大面积(固定周长)解析:长方形的周长固定,设为2L+2W。
要求最大面积,可以使用数学推理。
根据不等式性质,当L=W时,面积最大。
因此,最大面积的长方形是正方形。
例题4:圆的最大面积(固定周长)解析:圆的周长固定,设为2πr。
要求最大面积,可以使用数学证明。
平面几何最值问题的解法平面几何的最值问题多为在存在动点或者不确定的位置关系的情况下求最值,有两种解题思路,一个是通过几何图形的性质实现对位置的确定,另一个是通过数量关系实现最值问题的解答. 一、利用对称性质,实现问题简单化图形经过某一点或者轴对称之后,就会有很多固有的由对称产生的等量关系,不同的对称性(如中心对称、轴对称等)也有独特的对称性质.合理地利用相应的性质会使问题得到简化,这会给解题带来很大的帮助.例1 在如图所示的平面直角坐标系中,在:轴的正半轴上有一点A ,B 的坐标为,点C 的坐标为1(,0)2,三点构成直角三角形OAB ,斜边OB 上有一个动点P ,求PA PC +的最小值.解析 我们利用对称的性质,会使解题息路得到转化.如右图所示,以OB 为轴,作点A 的对称点D ,连接AD 交OB 于点M .有AP DP =恒成立.利用三角形关系中两边之和大于第三边可得出当P 在DC连线上时取得最小值,即为图中所示的情形,只要求出CD 的长即可.根据B 点坐标可求出AB =,OB =由三角形面积不同求法间的等量关系可得出32AM =.故1322AN AD ==,由C 点坐标可求出1CN =.由勾股定理可求出2DC =,此值即为所求PA PC +的最小值. 点拨 本题中是作直线的对称点,实现直线同侧点到异侧点的转化,这是我们在解题中常遇到的情况以及常见的解题方法.对称性的应用注重于问题的解题技巧,目的是通过对称性使复杂的问题简单化. 二、构造不等关系,巧用基本不等式对于平面几何问题,不等关系的构造是离不开几何图形本身的数量关系的.想要利用基本不等式求解,学生需要在图形中找出满足不等式的条件,这不光对于学生的平面几何知识有考查,还要学生深入理解不等式的相关知识.例 2 已知四边形ABCD ,O 点为对角线AC 与BD 的交点,4AOB S =V ,9COD S =V ,求四边形ABCD 的面积S 的最小值解析 题中的四边形为不规则图形,没有直接求此类图形的公式,我们需要将其拆分成几个三角形进行分别求解.题中给出了两个三角形的面积,我们再表示出另两个三角形的面积就可以了.四边形按照此种分解后求面积,我们发现有很多等高的三角形,出现此类三角形,其面积比就只与底的长度有关,这时就可利用此关系计算.即有AOD CODAOB BOCS S S S =V V V V ,设AOD S a =V ,BOC S b =V ,整理得36ab =.又有131325S a b =++≥=,故最小值为25.点拨 本题中对于三角形知识的考察非常深入,将三角形面积间的关系转化为长度关系进行解答是最为关键的步骤,学生要有思维模式的转化才会想出这一解决方法,而后结合不等式知识解题,否则盲目地求面积是不能实现的.三、化为二次函数,列出方程再求解二次函数是初中数学中最重要的一类函数,此处并不是像压轴题那样对二次函数进行全面的考察,而是将所求的量转化为二次函数的形式,利用二次函数的相关性质解题,更加注重于对问题的分析转化能力.例3 有一三角形ABC ,底边120BC =,高80AD =,如图所示。
中考数学中的几何最值问题在近几年各地中考中,几何最值问题屡屡受到命题者关注,此类问题不仅涉及平面几何的基础知识,还涉及几何图形的性质、平面直角坐标系、方程与不等式、函数知识等。
因此一批立意新颖、构造精巧、考点突出的新题、活题脱颖而出。
这类试题较好地考查了同学们的几何探究、推理能力的要求及数学思想方法的运用。
本节课以近几年的全国各地的中考题为例加以讲解,希对同学们的备考有所帮助。
1.(2009年潍坊市)已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的长的最大值是____________ .解:取AB 的中点D ,连结OD 、CD 、OC ,则OD=a 21,且CD ⊥AB ,,∴CD=a 23,当C ,D ,O 三点共线时,OC=OD+CD ,否则OC <OD+CD ,∴OC 长的最大值是a 21+a 23。
点评 本题求一条线段的最大值,关键是抓住斜边长度确定,斜边上的中线长也确定,利用三角形两边之和大于第O y x A CB三边,寻找突破口从而求解。
2.(2008年兰州)如图,在ABC △中,1086AB AC BC ===,,,经过点C 且与边AB 相切的动圆与CB CA ,分别相交于点E F ,,则线段EF 长度的最小值是( )A. B .4.75 C .5 D .4.8解:易知⊿ABC 是直角三角形,所以EF 是圆的直径,设切点是D ,因为直径是圆中最长的弦,所以E F ≥CD ,作CH ⊥AB 于点H ,则CD ≥CH ,所以有E F ≥CH ,即EF 长度的最小值是CH ,利用面积方法易得CH=4.8。
所以线段EF 长度的最小值是4.8,故选D 。
点评 本题求一条线段的最小值,通过转化后利用垂线段最短求解。
3.(2009年四川达州)在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值)。
几何最值问题解法在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
应用两点间线段最短的公理(含应用三角形的三边关系)求最值典型例题:例1.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】A1B C D.5 2例2.在锐角三角形ABC中,BC=24,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是。
例3.如图,圆柱底面半径为2cm,高为9cmπ,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为cm。
例4. 在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .练习题:1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】A.13cmB.12cmC.10cmD.8cm2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】A 、6(4)π+㎝ B 、5cm C 、㎝ D 、7cm3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .二、应用垂线段最短的性质求最值: 典型例题:例1. 在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 .例2.如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1 BC . 2D +1例3. 如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短 时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-)例4.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形; ②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化; ④点C 到线段EF 的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个例5.如图,△ABC中,∠BAC=60°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.例6.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.练习题:1. 如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为【】A、1B、2C、3D、43.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点, PQ 切⊙O 于点Q ,则PQ 的最小值为【 】A. B .C.3 D.24.如图,在四边形ABCD 中,∠A=90°,AD=4,连接BD ,BD⊥CD,∠ADB=∠C.若P 是BC 边上一动点,则DP 长的最小值为 .三、应用轴对称的性质求最值: 典型例题:例1. 如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最 短距离为 ▲ cm .例2. 如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为【 】135A.130° B.120° C.110° D.100°例3. 点A、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角-的值最大的点,Q是y轴上使得QA十QB的坐标系如图所示.若P是x轴上使得PA PB值最小的点,⋅=.则OP OQ例4. 如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB 的最小值为.例5. 如图,MN为⊙O的直径,A、B是O上的两点,过A作AC⊥MN于点C,过B作BD⊥MN 于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是练习题:1. 如图,已知点A(1,1)、B(3,2),且P为x轴上一动点,则△ABP的周长的最小值为.2. 如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a=时,AC+BC的值最小.3.去冬今春,济宁市遭遇了200年不遇的大旱,某乡镇为了解决抗旱问题,要在某河道建一座水泵站,分别向河的同一侧张村A和李村B送水。
2022-2023学年初二数学第二学期培优专题06 平行四边形中的最值问题【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-2.如图,在△ABC 中,∠ACB =60°,∠CAB =45°,BC =4,点D 为AB 边上一个动点,连接CD ,以DA 、DC 为一组邻边作平行四边形ADCE ,则对角线DE 的最小值是( )A .2+6B .1+3C .4D .2+23第II 卷(非选择题)二、填空题(共0分)3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.5.如图,平行四边形ABCD 中,AB =2,AD =1,∠ADC =60°,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D 处,折痕交CD 边于点E .若点P 是直线l 上的一个动点,则PD '+PB 的最小值_______.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAB=,6AD=,60=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.9.如图,四边形ABCD中,∠B=∠D=90°,∠C=50°,在BC、CD边上分别找到点M、N,当△AMN 周长最小时,∠AMN+∠ANM的度数为______.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65三、解答题(共0分)13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.15.如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.答案与解析【例题讲解】如图,在平行四边形ABCD 中,30BCD ∠=︒,6BC =,33CD =,(1)平行四边形ABCD 的面积为________.(2)若M 是AD 边的中点,N 是AB 边上的一个动点,将AMN 沿MN 所在直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是________.解:(1)过点C 作CF ⊥AB ,交AB 延长线于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC =6,AB =CD =33,∵∠BCD =30°=∠CBF ,∴CF =12BC =3, ∴四边形ABCD 的面积=AB CF ⨯=333⨯=93;(2)连接MC ,过点M 作ME ⊥CD 于E ,交CD 的延长线于点E ;∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC =6,∵点M 为AD 的中点,∠BCD =30°,∴DM =MA =3,∠MDE =∠BCD =30°,∴ME =12DM =32,DE =332,∴CE =CD +DE =33332+=932,由勾股定理得:CM 2=ME 2+CE 2, ∴CM=2239322⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭=37,由翻折变换的性质得:MA ′=MA =3,∵MA ′+A ′C ≥MC , ∴A ′C ≥MC- MA ′= MC -3,显然,当折线MA ′C 与线段MC 重合时,线段A ′C 的长度最短,此时A ′C =373-,故答案为:(1)93;(2)373-.【综合演练】1.如图 ,在平行四边形ABCD 中 ,120C ∠=︒ ,AB =4 ,AD =8 , 点H 、G 分别是边CD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点 ,点F 为GH 的中点 ,连接EF .则EF 的最大值与最小值的差为( ) A .2 B .232- C .3 D .43- 【答案】C【分析】如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .首先证明∠ACD =90°,求出AC ,AN ,利用三角形中位线定理,可知EF =12AG ,求出AG 的最大值以及最小值即可解决问题. 【解答】解:如图,取AD 的中点M ,连接CM 、AG 、AC ,作AN ⊥BC 于N .∵四边形ABCD 是平行四边形,∠BCD =120°,28AD AB ==∴∠D =180°−∠BCD =60°,AB =CD =4,∵AM =DM =DC =4,∴△CDM 是等边三角形,∴∠DMC =∠MCD =60°,AM =MC ,∴∠MAC =∠MCA =30°,∴∠ACD =90°,∴AC =43在Rt △ACN 中,∵AC =43,∠ACN =∠DAC =30°,∴AN =12AC =23∵AE =EH ,GF =FH ,∴EF =12AG ,∵点G 在BC 上,∴AG 的最大值为AC 的长,最小值为AN 的长,∴AG 的最大值为43,最小值为23,∴EF 的最大值为23,最小值为3,∴EF的最大值与最小值的差为:3故选C.【点评】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明∠ACD=90°,属于中考选择题中的压轴题.2.如图,在△ABC中,∠ACB=60°,∠CAB=45°,BC=4,点D为AB边上一个动点,连接CD,以DA、DC为一组邻边作平行四边形ADCE,则对角线DE的最小值是()A.2+6B.1+3C.4 D.2+23【答案】ABC=2,AF=BF=3CF 【分析】设DE交AC于O,作BF⊥AC于F,由直角三角形的性质得出CF=12AC=1+3,DO=EO,当OD⊥AB =23,求出AC=CF+AF=2+23,由平行四边形性质得出AO=CO=12时,DO的值最小,即DE的值最小,则△AOD是等腰直角三角形,即可得出结果.【解答】解:设DE交AC于O,作BF⊥AC于F,如图所示:则∠BFC=∠BF A=90°,∵∠ACB=60°,∠CAB=45°,∴∠CBF=30°,∠ABF=45°=∠CAB,BC=2,AF=BF=3CF=23,∴CF=12∴AC=CF+AF=2+23,∵四边形ADCE是平行四边形,AC=1+3,DO=EO,∴AO=CO=12∴当OD ⊥AB 时,DO 的值最小,即DE 的值最小,则△AOD 是等腰直角三角形,∴OD =22AO =622+, ∴DE =2OD =26+.故选:A .【点评】本题主要考查解直角三角形,平行四边形的性质,掌握平行四边形的性质和特殊角的三角函数值是解题的关键.3.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==,点D 为BC 上一动点(不与点C 重合),以AD ,CD 为一组邻边作平行四边形ADCE ,当DE 的值最小时,平行四边形ADCE 的周长..为_____. 【答案】4+213【分析】根据题意,可知当DE ⊥AE 时,DE 取得最小值,然后根据题目中的数据,即可得到A D 、CD 的长,从而可以得到当DE 的值最小时,平行四边形ADCE 周长.【解答】解:当DE ⊥AE 时,DE 取得最小值,设此时CD =x ,∵四边形ADCE 是平行四边形,∴CD =AE ,AD =CE ,BC ∥AE ,∵∠B =90°,DE ⊥AE ,∴四边形BAED 是矩形,∴BD =AE ,∴BD =CD =x ,∵BC =BD +CD ,BC =4,∴BD =CD =2,∵AB =3,∠B =90°,∴AD =22222313BD AB +=+=,∴当DE 的值最小时,平行四边形ADCE 周长为:2+13+2+13=4+213,故答案为:4+213.【点评】本题考查平行四边形的性质、矩形的判定与性质、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答. 4.如图,在ABCD 中,=60B ∠︒,10AB =,8BC =,点E 为边AB 上的一个动点,连接ED ,EC , 以ED 、CE 为邻边构造EDGC ,连接EG ,则EG 的最小值为__________.【答案】83【分析】根据平行四边形的性质得到EG ,FG ,根据垂线段最短得到EG ⊥CD 时取最小值,过点C 作CH ⊥AB 于点H ,求出CH 的长度,从而得到结果.【解答】解:∵四边形EDGC 是平行四边形,∴EF =FG ,∴当EF ⊥CD 时,EF 最小,此时EG 最小,过点C 作CH ⊥AB 于点H ,则CH =EF ,∵∠B =60°,∴∠BCH =30°,∵BC =8,∴BH =4,∴CH =2284-=43,∴EF 的最小值为43,∴EG 的最小值为83,故答案为:83.【点评】本题考查了平行四边形的性质,垂线段最短,直角三角形的性质,勾股定理,解题的关键是理解题意,找到EG最短时满足的条件.5.如图,平行四边形ABCD中,AB=2,AD=1,∠ADC=60°,将平行四边形ABCD沿过点A的直线l 折叠,使点D落到AB边上的点D处,折痕交CD边于点E.若点P是直线l上的一个动点,则PD +PB 的最小值_______.【答案】7【分析】不管P点在l上哪个位置,PD始终等于PD',故求PD'+PB可以转化成求PD+PB,显然当D、P、D'共线时PD+ PB最短.【解答】过点D作DM⊥AB交BA的延长线于点M,∵四边形ABCD是平行四边形,AD=1,AB=2,∠ADC=60°,∴∠DAM=60°,由翻折变换可得,AD=AD′=1,DE=D′E,∠ADC=∠AD′E=60°,∴∠DAM=∠AD′E=60°,∴AD∥D′E,又∵DE∥AB,∴四边形ADED′是菱形,∴点D与点D′关于直线l对称,连接BD交直线l于点P,此时PD′+PB最小,PD′+PB=BD,在Rt△DAM中,AD=1,∠DAM=60°,∴AM=12AD=12,DM=32AD=32,在Rt△DBM中,DM=32,MB=AB+AM=52,∴BD=DM2+MB2=322+522=7,即PD′+PB最小值为7,故答案为:7.【点评】本题考查平行四边形性质和菱形性质,掌握这些是本题解题关键.6.如图,平行四边形ABCD中,8∠=︒,E是边AD上且2AAD=,60AB=,6=,F是边AB上AE DE+的最小值__________.的一个动点,将线段EF绕点E逆时针旋转60︒,得到EG,连接BG、CG,则BG CG【答案】221【分析】如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H.利用全等三角形的性质证明∠GNB=60°,点G的运动轨迹是射线NG,由“SAS”可证△EGN≌△BGN,可得GB=GE,推出GB+GC=GE+GC≥EC,求出EC即可解决问题.【解答】解:如图,取AB的中点N.连接EN,EC,GN,作EH⊥CD交CD的延长线于H,∵AE=2DE,∴AE=4,DE=2,∵点N是AB的中点,∴AN=NB=4,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°-60°-60°=60°,∴点G的运动轨迹是射线NG,∵BN=EN,∠BNG=∠ENG=60°,NG=NG∴△EGN≌△BGN(SAS),∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,DE=1,EH=3,∴DH=12在Rt△ECH中,EC=22221+=,EH CH∴GB+GC≥221,∴GB+GC的最小值为221,故答案为:221.【点评】本题考查旋转变换,轨迹,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,CD是直线x=1上长度固定为1的一条动线段.已知A(﹣1,0),B(0,4),则四边形ABCD 周长的最小值为_________________.【答案】17132++【分析】在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,根据勾股定理得到AB,作点A关于直线x=1的对称点A',得到A'、E、D三点共线时,AD+DE最小值为A'E的长,根据勾股定理求出A'E,即可得解;【解答】解:如图,在y轴上取点E,使BE=CD=1,则四边形BCDE为平行四边形,∵B(0,4),A(﹣1,0),∴OB=4,OA=1,∴OE=3,AB=22+=,1417作点A关于直线x=1的对称点A',∴A'(3,0),AD=A'D,∴AD+DE=A'D+DE,即A'、E、D三点共线时,AD+DE最小值为A'E的长,在Rt△A'OE中,由勾股定理得A'E=22+=,3332∴C四边形ABCD最小值=AB+CD+BC+AD=AB+CD+A'E=17+1+32.故答案为:17132++.【点评】本题主要考查了轴对称最短路线问题、勾股定理、位置与坐标,准确分析作图计算是解题的关键.8.如图四边形ABCD,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3,P为AB边上的一动点,以PD,PC 为边作平行四边形PCQD,则对角线PQ的长的最小值是_____.【答案】4【分析】根据题意在平行四边形PCQD中,设对角线PQ与DC相交于点O,可得O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,易证得Rt△ADP≌Rt△HCQ,即可求得BH=4,则可得当PQ⊥AB 时,PQ的长最小,即为4.【解答】解:在平行四边形PCQD中,设对角线PQ与DC相交于点O,则O是DC的中点,过点Q作QH⊥BC,交BC的延长线于H,∵AD ∥BC ,∴∠ADC=∠DCH ,即∠ADP+∠PDC=∠DCQ+∠QCH ,∵PD ∥CQ ,∴∠PDC=∠DCQ ,∴∠ADP=∠QCH ,又∵PD=CQ ,在Rt △ADP 与Rt △HCQ 中,ADP QCH A QHCPD CQ ⎧⎪⎨⎪∠∠⎩∠∠=== ∴Rt △ADP ≌Rt △HCQ (AAS ),∴AD=HC ,∵AD=1,BC=3,∴BH=4,∴当PQ ⊥AB 时,PQ 的长最小,即为4.故答案为:4.【点评】本题考查梯形的中位线的性质,注意掌握梯形的中位线等于两底和的一半且平行于两底.9.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.【答案】100°【分析】根据要使△AMN 的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A 关于BC和CD 的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【解答】解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN 的周长最小值.∵∠B =∠D =90°,∠C =50°,∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°,由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,故答案为:100°.【点评】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M ,N 的位置是解题关键.10.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是边AD 、AB 上的点,连结OE 、OF 、EF .若7AB =,52BC =,45DAB ∠=︒,则OEF 周长的最小值是_______.【答案】1322【分析】作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,由作图得AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,于是得到∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,根据等腰直角三角形的性质得到AP =DP =22AD ,求得AP =DP =5,根据三角形的中位线的性质得到OQ =12DP =52,BQ =12BP=12(AB−AP )=1,根据勾股定理求出AO =132,然后根据等腰直角三角形的性质即可得到结论. 【解答】解:作点O 关于AB 的对称点M ,点O 关于AD 的对称点N ,连接MN 交AB 于F ,交AD 于E ,此时△OEF 的周长最小,周长的最小值=MN ,∴AN =AO =AM ,∠NAD =∠DAO ,∠MAB =∠BAO ,∵∠DAB =45°,∴∠MAN =90°,过D 作DP ⊥AB 于P ,则△ADP 是等腰直角三角形,∴AP =DP =22AD , ∵AD =BC =52,∴AP =DP =5,设OM ⊥AB 于Q ,则OQ ∥DP ,∵OD =OB ,∴OQ =12DP =52,BQ =12BP =12(AB−AP )=1, ∴AQ =6,∴AO =2222513622AQ OQ , ∴AM =AN =AO =132, ∴MN =2AM =1322, ∴△OEF 周长的最小值是1322. 故答案为:1322. 【点评】此题主要考查轴对称−−最短路线问题,平行四边形的性质,等腰直角三角形的性质,勾股定理以及三角形中位线定理等,正确的作出辅助线是解题的关键.11.如图,点(1,3),(6,1),(,0),(2,0)A B P a N a --+为四边形的四个顶点,当四边形PABN 的周长最小时,=a ________.【答案】13 4【分析】作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,可判断出AP+BN=A″N+BN≥A″B,即此时四边形ABNP的周长最小,求出A″B的表达式,得到与x轴的交点,即为点N,从而可得a值.【解答】解:如图,作点A关于x轴的对称点A′,则A′(1,3),将A′向右平移2个单位,即A″(3,3),连接A″B,与x轴交于点N,则此时AP=A′P=A″N,则AP+BN=A″N+BN≥A″B,在四边形ABNP中,PN和AB均为定值,∴此时四边形ABNP的周长最小,设A″B的表达式为y=kx+b,则3361k bk b+=⎧⎨+=-⎩,解得:437kb⎧=-⎪⎨⎪=⎩,∴直线A″B的表达式为473y x=-+,令y=0,则214x=,即此时N(214,0),2124a+=,解得:a=134,故答案为:134. 【点评】本题考查了轴对称-最短路线问题:通过对称,把两条线段的和转化为一条线段,利用两点之间线段最短解决问题.12.如图,在四边形ABCD 中,90,5,4,A D AB AD ∠=∠=︒==3,CD =点P 是边AD 上的动点,则PBC 周长的最小值为( )A .8B .45C .12D .65【答案】D【分析】根据勾股定理可求BC 的长,所以要使△PBC 的周长最小,即BP+PC 最短,利用对称性,作点C 关于AD 的对称点E ,即可得出最短路线,从而求解可.【解答】解:过点C 作CG ⊥AB ,由题意可知四边形DAGC 是矩形∴CG=AD=4,BG=AB-AG=AB-CD=2∴在Rt △BCG 中,222425BC =+=作点C 关于AD 的对称点E ,连接BE ,交AD 于点P',连接'CP此时'P BC 的周长为最小值,即''''BP CP BC BP EP BC BE BC ++=++=+过点E 作EF ⊥BA ,交BA 的延长线于点F由题意可知四边形EFAD 为矩形∴EF=AD=4,DE=CD=AF=3∴在Rt △EBF 中,224(35)45BE =++=∴此时'P BC 的周长为:65BE BC +=故选:D .【点评】本题考查勾股定理解直角三角形及应用对称的性质求最短路线,掌握相关性质定理正确添加辅助线进行推理计算是解题关键.13.如图,四边形ABCD 为平行四边形,延长AD 到点E ,使DE AD =,且BE DC ⊥.(1)求证:四边形DBCE 为菱形;(2)若DBC △是边长为2的等边三角形,点P 、M 、N 分别在线段BE 、BC 、CE 上运动,求PM PN +的最小值. 【答案】(1)证明见解析(2)3【分析】(1)先根据四边形ABCD 为平行四边形的性质和DE AD =证明四边形DBCE 为平行四边形,再根据BE DC ⊥,即可得证;(2)先根据菱形对称性得,得到'PM PN PM PN +=+,进一步说明PM PN +的最小值即为菱形的高,再利用三角函数即可求解.(1)证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,AD BC =,∵DE AD =,∴DE BC =,又∵点E 在AD 的延长线上,∴DE BC ∥,∴四边形DBCE 为平行四边形,又∵BE DC ⊥,∴四边形DBCE 为菱形.(2)解:如图,由菱形对称性得,点N 关于BE 的对称点'N 在DE 上,∴'PM PN PM PN +=+,当P 、M 、'N 共线时,''PM PN PM PN MN +=+=,过点D 作DH BC ⊥,垂足为H ,∵DE BC ∥,∴'MN 的最小值即为平行线间的距离DH 的长,∵DBC △是边长为2的等边三角形,∴在Rt DBH 中,60DBC ∠=︒,2DB =,sin DH DBC DB ∠=, ∴3sin 232DH DB DBC =∠=⨯=, ∴PM PN +的最小值为3.【点评】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.14.如图,在平行四边形ABCD 中,2,1,60AB AD B ==∠=︒,将平行四边形ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点'D 处,折痕交CD 边于点E .(1)求证:四边形'BCED 是菱形;(2)若点P 是直线l 上的一个动点,请作出使'PD PB +为最小值的点P ,并计算'PD PB +.【答案】(1)见解析;(2)作图见解析,7得到DAD E'是菱形,作DG BA⊥)将ABCD沿过点A的直线∠=EA,D//DE AD∴∠=DEA∴∠=,DAE EA∴∠'DAD∴四边形=AD ADAB=,2∴=AD AD∴'是菱形;BCED(2)四边形∴与D'D连接BD交CD AB//∴∠=DAGAD=,112AG ∴=,32DG =, 52BG ∴=, 227BD DG BG ∴=+=,PD PB ∴'+的最小值为7.【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键.。
八年级平面几何最值问题解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。
1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是。
2、如图,圆柱底面半径为2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为cm 。
3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是.4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是_.5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【】A . 1B.3C . 2D .3+16、如图,点A 的坐标为(-1,0),点B 在直线yx 上运动,当线段AB 最短时,点B 的坐标为【】A.(0,0)B.(21,21) C.(22,22) D.(22,22)7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【】A 、1B 、2C 、3D 、4 8、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC ′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角坐标系如图所示.若P 是x 轴上使得PA PB 的值最大的点,Q 是y 轴上使得QA十QB 的值最小的点,则OP OQ =.答案:1.4 2.15 3.1<AD<4 4.3 5.B 6.B 7.B 8.2+9.5。
初中数学:平面几何的最值问题-例题与求解(培优25)
平面几何的最值问题
【阅读与思考】
几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值.
求几何最值问题的基本方法有:
1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.
2.几何定理(公理)法:应用几何中的不等量性质、定理.
3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.
【例题与求解】
【解析】
作点B关于直线AC的对称点B',交AC与E,连接B'M,过B'作B'G⊥AB于G,交AC于F,再由对称性可知B'M+MN=BM+MN≥B'G,再由等号成立条件得出AC=10√5,再根据△ABC的面积分别求出BE、BB'的值,由相似三角形的判定定理得出△B'GB~△ABC,再根据相似三角形的性质即可求解.
【点评】
本题考查的是最短路线问题及相似三角形的判定与性质,根据题意作出辅助线是解答此题的关键.
【点评】
本题考查了三角形相似的判定与性质.也考查了平行四边形的性质以及一元二次方程根的判别式运用.
【解析】
(1)根据勾股定理易得路线1:l₁²=AC²=高²+(底面周长一半)²;路线2:l₂²=(高+底面直径)²;让两个平方比较,平方大的,底数就大.
(2)根据(1)得到的结论让两个代数式分三种情况进行比较即可.
【点评】
此题考查了平面展开一最短路径问题,比较两个数的大小,有时比较两个数的平方比较简便,比较两个数的平方,通常让这两个数的平方相减,注意运用类比的方法做类型题.
【解析】
根据题意画图分析.用含表示某一边的字母的代数式表示面积,关键是表示另一边的长.借助三角形相似建立关系.
【点评】
根据函数求出的最值与实际问题中的最值不一定相同,需注意自变量的取值范围.
【点评】
本题主要考查对三角形的面积,相似三角形的性质和判定,勾股定理,面积和等积变形等知识点的理解和掌握,能求出方程x²+2(1-y)x+1+2y=0中y的最小值是解此题的关键.。