专题25平面几何的最值问题
- 格式:doc
- 大小:451.50 KB
- 文档页数:8
ʏ刘长柏平面向量融合了代数㊁几何及三角函数等知识,在求其最值时,解题方法呈现出多样性㊂下面对平面向量的最值问题的几种解法进行归纳,意在抛砖引玉㊂一㊁基底法例1 已知点A ,B ,C 在圆x 2+y 2=1上运动,且A B ʅB C ,若点P 的坐标为(2,0),则|P A ң+P B ң+P C ң|的最大值为㊂解:设原点为O ㊂因为A B ʅB C ,所以A C 是圆O 的直径,所以|P A ң+P B ң+P C ң|=|2P O ң+P B ң|=|3P O ң+O B ң|ɤ3|P O ң|+|O B ң|=7,当且仅当P O ң,O B ң同向时等号成立㊂故所求的最大值为7㊂本题通过选择合适的基底向量,把三个动向量转化为只有一个动向量(O B ң),从而使问题得到解决㊂利用基底法解决问题时,首先需要考虑的是如何选择基底㊂二㊁坐标系法例2 已知矩形A B C D 的边长A B =2,A D =1,点P ,Q 分别在B C ,C D 上,且øP A Q =45ʎ,则A P ң㊃A Q ң的最小值是㊂解:以矩形A B C D 的顶点A 为原点,A B ,A D 所在的直线分别为x 轴,y 轴,建立平面直角坐标系x A y (图略)㊂易得A (0,0),B (2,0),C (2,1),D (0,1)㊂设P (2,y ),Q (x ,1)(0ɤx ɤ2,0ɤy ɤ1)㊂因为øP A Q =45ʎ,所以t a n 45ʎ=1x -y21+1x ㊃y 2,即y =2-2x 1+x ㊂因为A P ң㊃A Q ң=2x +y =2x +2-2x 1+x =2(1+x )+41+x -4ȡ42-4,当且仅当2(1+x )=41+x ,即x =2-1时等号成立㊂故A P ң㊃A Q ң的最小值为42-4㊂ 合理建立坐标系,由点的坐标转化为向量坐标的代数运算是坐标法解决向量问题的关键㊂三㊁构造函数法例3 等边三角形A B C 的边长为2,点P 为线段A B 上一点,且A P ң=λA B ң(0ɤλɤ1),则A P ң㊃C P 的最小值是,最大值是㊂解:A P ң㊃C P ң=A P ң㊃(A P ң-A C ң)=λA B ң㊃(λA B ң-A C ң)=4λ2-2λ=4λ-14()2-14㊂因为0ɤλɤ1,所以A P ң㊃C P ң的最小值为-14,最大值为2㊂本题主要是借助边长,将数量积转化为二次函数,利用二次函数的最值求解的㊂四㊁利用平面几何知识例4 已知向量a ,b ,c 满足|a |=4,|b |=22,a 与b 的夹角为π4,(c -a )㊃(c -b )=-1,则|c -a |的最大值为㊂解:设O A ң=a ,O B ң=b ,O C ң=c ㊂以O A所在的直线为x 轴,O 为坐标原点,建立平面直角坐标系x O y (图略)㊂由|a |=4,|b |=22,a 与b 的夹角为π4,可得A (4,0),B (2,2)㊂设C (x ,y ),由(c -a )㊃(c -b )=-1,可得(x -3)2+(y -1)2=1,此方程表示以(3,1)为圆心,1为半径的圆㊂|c -a |表示点A 与点C 的距离,即圆上的点与点A (4,0)的距离㊂因为圆心(3,1)到点A (4,0)的距离为2,所以|c -a |的最大值为2+1㊂解答这类问题,要熟练掌握与平面向量有关的三角形㊁平行四边形㊁圆㊁直线等平面几何知识㊂作者单位:江苏省盐城市时杨中学(责任编辑 郭正华)3数学部分㊃知识结构与拓展高一使用 2022年2月Copyright ©博看网. All Rights Reserved.。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题25函数与正方形存在性问题【例1】(2022•崂山区一模)如图,正方形ABCD,AB=4cm,点P在线段BC的延长线上.点P从点C出发,沿BC方向运动,速度为2cm/s;点Q从点A同时出发,沿AB方向运动,速度为1cm/s.连接PQ,PQ分别与BD,CD相交于点E,F.设运动时间为t(s)(0<t<4).解答下列问题:(1)线段CF长为多少时,点F为线段PQ中点?(2)当t为何值时,点E在对角线BD中点上?(3)当PQ中点在∠DCP平分线上时,求t的值;(4)设四边形BCFE的面积为S(cm2),求S与t的函数关系式.【分析】(1)可得出C点是BP的中点,从而求得t=2;(2)证明DEF≌△BEQ,从而得出DF=BQ=4﹣t,进而CF=CD﹣DF=t,证明△PCF∽△PBQ,从而得出,进而求得t;(3)作OG⊥BP于G,可根据OG=CG,进一步求得结果;(4)根据△PCF∽△PBQ,△DOF∽△BOG,分别列出比例式表示出CF,DF及EH,进一步求得结果.【解答】解:由题意得,CP=2t,AQ=t,BQ=4﹣t,(1)四边形ABCD是正方形,∴CD∥AB,∴=1,∴PC=BC=4,∴t==2s;(2)∵AB∥CD,∴∠QBE=∠EDF,∠BQE=∠DFE,△PCF∽△PBQ,∴,∵点E是BD的中点,∴BE=DE,∴△DEF≌△BEQ(AAS),∴DF=BQ=4﹣t,∴CF=CD﹣DF=t,∴t1=1,t2=0(舍去),(3)如图1,点O是PQ的中点,CO平分∠DCP,作OG⊥BP于G,同理得:OG=,PG=,∴CG=PC﹣PG=2t﹣(2+t)=t﹣2,∵∠COG=∠OCG==45°,∴OG=CG,∴,∴t=;(4)如图2,过点E作GH∥BC,交AB于G,交CD于H,∵CF∥EG∥AB,∴△PCF∽△PBQ,△DEF∽△BEG,∴,=,∴,=,∴DF=CD﹣CF=4﹣=,∴=,∴EH=,∴S=S△BCD﹣S△DEF=﹣=8﹣.【例2】(2022春•孟村县期末)如图,在平面直角坐标系中.直线l:y=﹣2x+10(k≠0)经过点C(3,4),与x轴,y轴分别交于点A,B,点D的坐标为(8,4),连接OD,交直线l于点M,连接OC,CD,AD.(1)填空:点A的坐标为(5,0),点M的坐标为(4,2);(2)求证:四边形OADC是菱形;(3)直线AP:y=﹣x+5与y轴交于点P.①连接MP,则MP的长为5;②已知点E在直线AP上,在平面直角坐标系中是否存在一点F,使以O,A,E,F为顶点的四边形是正方形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【分析】(1)利用一次函数图象上点的坐标特征,可得出点A的坐标,又点D的坐标,利用待定系数法可求出直线OD的解析式,再联立两函数解析式,可求出交点M的坐标;(2)过点C作CQ⊥x轴于点Q,利用勾股定理可得出OC=5,又点C,D的坐标可得出CD=5,CD ∥x轴,结合点A的坐标,可得出CD=OA,进而可得出四边形OADC为平行四边形,再结合OC=OA,即可证出四边形OADC是菱形;(3)①过点M作MN⊥y轴于点N,利用一次函数图象上点的坐标特征,可求出点P的坐标,结合点M。
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
几何最值问题大一统追本溯源化繁为简目有千万而纲为一,枝叶繁多而本为一。
纲举则目张,执本而末从。
如果只在细枝末节上下功夫,费了力气却讨不了好。
学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。
关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。
一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形。
AD一定,所以D是定点,C是直线的最短路径,求得当CD⊥AC时最短为是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。
高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。
分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。
由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。
由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。
二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。
x为实数,方程有解,,解得,故。
即。
2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。
当时,,即;当y=7时,,即。
注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。
专题25 平面几何的最值问题例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a >),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBAC路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME DAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm .3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 .DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( )A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) A .15B .20C .15+52D .15+55NNMOBCBA BA E第6题图 第7题图 第8题图 8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式.(2) 当AE为何值时,四边形ADNM的面积最大?最大值是多少?9.如图,六边形ABCDEF内接于半径为r的⊙O,其中AD为直径,且AB=CD=DE=F A.BC的长;(1) 当∠BAD=75°时,求⌒(2) 求证:BC∥AD∥FE;(3) 设AB=x,求六边形ABCDEF的周长l关于x的函数关系式,并指出x为何值时,l取得最大值.10.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D).Q是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(2) 设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3) 当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)FEB Q11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?NMB CB 级1.已知凸四边形ABCD 中,AB +AC +CD = 16,且S 四边彤ABCD =32,那么当AC = ,BD = 时,四边形ABCD 面积最大,最大值是 .2.如图,已知△ABC 的内切圆半径为r ,∠A =60°,BC =23,则r 的取值范围是 .(江苏省竞赛试题)yxr COFE EDF O BC A OBCAABP D GAB第2题图 第3题图 第4题图 第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧⌒AB 组成一个弓形,则此弓形面积的最小值为 .4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( )A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值.8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标.9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值.10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB 相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.MNExCB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)。
高中专题-解析几何中的最值与范围问题解析几何中的定点、定值问题例1设圆C 与两圆2222(4,(4x y x y ++=-+=中的一个内切,另一个外切.(1)求C 的圆心轨迹L 的方程;(2)已知点)3545,,55M F ⎛⎫ ⎪ ⎪⎝⎭,且P 为L 上动点,求MP FP -的最大值及此时点P 的坐标.【解】(1)2214x y -=;(2)最大值为2,6525,55P ⎛⎫- ⎪ ⎪⎝⎭例2设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->.(1)设E 是直线2y x =+与椭圆的一个公共点,求使得12EF EF +取最小值时椭圆的方程;(2)已知(0,1)N -,设斜率为(0)k k ≠的直线l 与条件(1)下的椭圆交于不同的两点,A B ,点Q 满足AQ QB = ,且0NQ AB ⋅= ,求直线l 在y 轴上截距的取值范围.【解】(1)最小值2213x y +=;(2)1,22⎛⎫ ⎪⎝⎭例3(1)椭圆224()4x y a +-=与抛物线22x y =有公共点,则a 的取值范围是.(2)椭圆2212516x y +=上的点到圆22(6)1x y +-=上的点的距离的最大值是().A.11B.C.D.9【解】(1)171,8⎡⎤-⎢⎥⎣⎦;(2)A例4在直角坐标系中,O 是原点,,A B 是第一象限内的点,并且A 在直线(tan )y x θ=上,其中42OA ππθ⎛⎫∈= ⎪⎝⎭,,,B 是双曲线22=1x y -上使OAB 面积最小的点,求:当θ在42ππ⎛⎫ ⎪⎝⎭,中取什么值时,OAB 的面积最大,最大值是多少?【解】2arccos 4θ=,最大值为66专题-解析几何中的定点、定值问题例1已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)求直线:l y kx m =+与椭圆C 相交于,A B 两点(,A B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【解】(1)22143x y +=;(2)2,07⎛⎫ ⎪⎝⎭例2已知点(1,1)A 是椭圆22221(0)x y a b a b+=>>上一点,12,F F 是椭圆的两焦点,且满足124AF AF +=.(1)求椭圆的两焦点坐标;(2)设点B 是椭圆上任意一点,如果AB 最大时,求证:,A B 两点关于原点O 不对称;(3)设点,C D 是椭圆上两点,直线,AC AD 的倾斜角互补,试判断直线CD 的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.【解】(1)2626,0,,033⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;(2)证明略;(3)13例3如图1所示,在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于,A B 两点.(1)若点N 是点C 关于坐标原点O 的对称点,求ANB 面积的最小值;(2)是否垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.【解】(1)2;(2)2py =例4已知椭圆方程为221169x y +=,过长轴顶点(40)A -,的两条斜率乘积为916-的直线交椭圆于另两点,B C ,问直线BC 是否过定点D ,若存在,求出D 的坐标,若不存在,说明理由.【解】直线12:98()0BC x k k y ++=过原点(0,0)例5如图3所示,设椭圆2221(2)4x y a a +=>的离心率为33,斜率为k 的直线l 过点(01)E ,,且与椭圆相交于,C D 两点.(1)求椭圆方程;(2)若直线l 与x 轴相交于点G ,且GC DE = ,求k 得值;(3)设A 为椭圆的下顶点,,AC AD k k 分别为直线,AC AD 的斜率,证明:对任意k ,恒有=-2AC AD k k ⋅【解】(1)22164x y+=;(2)63k=±;(3)证明略。
平面几何最值问题的解法平面几何的最值问题多为在存在动点或者不确定的位置关系的情况下求最值,有两种解题思路,一个是通过几何图形的性质实现对位置的确定,另一个是通过数量关系实现最值问题的解答. 一、利用对称性质,实现问题简单化图形经过某一点或者轴对称之后,就会有很多固有的由对称产生的等量关系,不同的对称性(如中心对称、轴对称等)也有独特的对称性质.合理地利用相应的性质会使问题得到简化,这会给解题带来很大的帮助.例1 在如图所示的平面直角坐标系中,在:轴的正半轴上有一点A ,B 的坐标为,点C 的坐标为1(,0)2,三点构成直角三角形OAB ,斜边OB 上有一个动点P ,求PA PC +的最小值.解析 我们利用对称的性质,会使解题息路得到转化.如右图所示,以OB 为轴,作点A 的对称点D ,连接AD 交OB 于点M .有AP DP =恒成立.利用三角形关系中两边之和大于第三边可得出当P 在DC连线上时取得最小值,即为图中所示的情形,只要求出CD 的长即可.根据B 点坐标可求出AB =,OB =由三角形面积不同求法间的等量关系可得出32AM =.故1322AN AD ==,由C 点坐标可求出1CN =.由勾股定理可求出2DC =,此值即为所求PA PC +的最小值. 点拨 本题中是作直线的对称点,实现直线同侧点到异侧点的转化,这是我们在解题中常遇到的情况以及常见的解题方法.对称性的应用注重于问题的解题技巧,目的是通过对称性使复杂的问题简单化. 二、构造不等关系,巧用基本不等式对于平面几何问题,不等关系的构造是离不开几何图形本身的数量关系的.想要利用基本不等式求解,学生需要在图形中找出满足不等式的条件,这不光对于学生的平面几何知识有考查,还要学生深入理解不等式的相关知识.例 2 已知四边形ABCD ,O 点为对角线AC 与BD 的交点,4AOB S =V ,9COD S =V ,求四边形ABCD 的面积S 的最小值解析 题中的四边形为不规则图形,没有直接求此类图形的公式,我们需要将其拆分成几个三角形进行分别求解.题中给出了两个三角形的面积,我们再表示出另两个三角形的面积就可以了.四边形按照此种分解后求面积,我们发现有很多等高的三角形,出现此类三角形,其面积比就只与底的长度有关,这时就可利用此关系计算.即有AOD CODAOB BOCS S S S =V V V V ,设AOD S a =V ,BOC S b =V ,整理得36ab =.又有131325S a b =++≥=,故最小值为25.点拨 本题中对于三角形知识的考察非常深入,将三角形面积间的关系转化为长度关系进行解答是最为关键的步骤,学生要有思维模式的转化才会想出这一解决方法,而后结合不等式知识解题,否则盲目地求面积是不能实现的.三、化为二次函数,列出方程再求解二次函数是初中数学中最重要的一类函数,此处并不是像压轴题那样对二次函数进行全面的考察,而是将所求的量转化为二次函数的形式,利用二次函数的相关性质解题,更加注重于对问题的分析转化能力.例3 有一三角形ABC ,底边120BC =,高80AD =,如图所示。
专题25 费马点、布洛卡点、拿破仑三角形问题一.选择题(共4小题)1.(2021春•顺德区期末)点P 为ABC ∆所在平面内一点,当PA PB PC ++取到最小值时,则称该点为ABC ∆的“费马点”.当ABC ∆的三个内角均小于120︒时,费马点满足如下特征:120APB BPC CPA ∠=∠=∠=︒.如图,在ABC ∆中,AB AC ==BC 点到A ,B ,C 三点的距离之和为( )A .4B .2C .2-D .2+2.(2020秋•新华区校级期末)“费马点”是指位于三角形内且到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,“费马点”与三个顶点的连线正好三等分“费马点”所在的周角,即该点所对的三角形三边的张角相等均为120︒,根据以上性质,函数()f x =的最小值为( )A .2BC .2-D .2+3.(2020秋•安徽月考)17世纪法国数学家费马曾提出这样一个问题:怎样在一个三角形中求一点,使它到每个顶点的距离之和最小?现已证明:在ABC ∆中,若三个内角均小于120︒,当点P 满足120APB APC BPC ∠=∠=∠=︒时,则点P 到三角形三个顶点的距离之和最小,点P 被人们称为费马点.根据以上性质,已知a 为平面内任意一个向量,b 和c 是平面内两个互相垂直的单位向量,则||||||a b a b a c -+++-的最小值是( )A .2B .2C 1-D 1+4.(2014春•鹿城区校级期末)设点F 为锐角ABC ∆的“费马点”,即F 是在ABC ∆内满足120AFB BFC CFA ∠=∠=∠=︒的点.若||3FA =,|4FB =,||5FC =,且实数x ,y 满足AF xAB y AC =+,则(x y= ) A .54 B .2516 C .32 D .94二.填空题(共15小题)5.(2021•泰安模拟)在一个三角形ABC 中到三个顶点距离之和最小的点叫做这个三角形的费马点,经证明它也满足120APB BPC CPA ∠=∠=∠=︒,因此费马点也称为三角形的等角中心如图,在ABC ∆外作等边ACD ∆,再作ACD ∆的外接圆,则外接圆与线段BD 的交点P 即为费马点.若1AB =,2BC =,90CAB ∠=︒,则PA PB PC ++= .6.(2021•深圳模拟)著名的费马问题是法国数学家皮埃尔⋅德费马(16011665)-于1643年提出的平面几何极值问题:“已知一个三角形,求作一点,使其与此三角形的三个顶点的距离之和最小.”费马问题中的所求点称为费马点,已知对于每个给定的三角形,都存在唯一的费马点,当ABC ∆的三个内角均小于120︒时,则使得120APB BPC CPA ∠=∠=∠=︒的点P 即为费马点.已知点P 为ABC ∆的费马点,且AC BC ⊥,若||||||PA PB PC λ+=,则实数λ的最小值为 .7.(2021•江西模拟)费马点是指位于三角形内且到三角形三个顶点距离之和最小的点.当三角形三个内角都小于23π时,费马点与三角形三个顶点的连线构成的三个角都为23π.已知点P 为ABC ∆的费马点,角A ,B ,C 的对边分别为a ,b ,c ,若cos 2sin()cos 6A C B π=-,且22()6b a c =-+,则PA PB PB PC PA PC ⋅+⋅+⋅的值为 .8.(2020秋•全国月考)费马点是指到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,费马点在三角形内,且费马点与三个顶点连线正好三等分费马点所在的周角,即该点对三角形三边的张角相等,均为120︒.已知ABC ∆的三个内角均小于120︒,P 为ABC ∆的费马点,且3PA PB PC ++=,则ABC ∆面积的最大值为 .9.(2020•江西模拟)我们把三角形三个顶点距离之和最小的点称为费马点,若三角形内角均小于120︒,则该三角形的费马点与三角形三边的张角均为120︒.已知三角形ABC 中内角A ,B ,C 所对的边分别是a ,b ,c .若||a b -=,60C =︒,若三角形ABC 的费马点为O ,则OA OB OB OC OC OA ++= .10.(2018秋•上虞区期末)费马点是指三角形内到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为120︒.根据以上性质,已知(1,0)A -,(1,0)B ,(0,2)C ,P 为ABC ∆内一点,记()||||||f P PA PB PC =++,则()f P 的最小值为 ,此时sin PBC ∠= .11.(2019•凉山州模拟)点M 是ABC ∆内部或边界上的点,若M 到ABC ∆三个顶点距离之和最小,则称点M 是ABC ∆的费马点(该问题是十七世纪法国数学家费马提出).若(0,2)A ,(1,0)B -,(1,0)C 时,点0M 是ABC ∆的费马点,且已知0M 在y 轴上,则000||||||AM BM CM ++的大小等于 .12.(2018秋•荆州区校级期中)以三角形边BC ,CA ,AB 为边向形外作正三角形BCA ',CAB ',ABC ',则AA ',BB ',CC '三线共点,该点称为ABC ∆的正等角中心.当ABC ∆的每个内角都小于120︒时,正等角中心点P 满足以下性质:(1)120APB APC BPC ∠=∠=∠=︒;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).由以上性质得的最小值为 .13.(2019春•石家庄期末)费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为120︒.根据以上性质,函数()f x =的最小值为 .14.(2021春•湖北期末)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若30ACB ∠=︒,则△A B C '''的面积最大值为 .15.(2021春•润州区校级期中)拿破仑定理是法国著名军事家拿破仑⋅波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰为另一个等边三角形(此等边三角形称为拿破仑三角形)的顶点.”已知ABC ∆内接于单位圆,以BC ,AC ,AB 为边向外作三个等边三角形,其外接圆圆心依次记为A ',B ',C '.若90ACB ∠=︒,则△A B C '''的面积最大值为 .16.(2021•泉州二模)拿破仑定理:“以任意三角形的三条边为边,向外构造三个正三角形,则这三个正三角形的中心恰为另一个正三角形的顶点.”利用该定理可为任意形状的市区科学地确定新的发展中心区位置,合理组织人流、物流,使城市土地的利用率,建筑的使用效率达到最佳,因而在城市建设规划中具有很好的应用价值.如图,设ABC ∆代表旧城区,新的城市发展中心1O ,2O ,3O 分别为正ACD ∆,正ABE ∆,正BCF ∆的中心.现已知2AB =,30ACB ∠=︒,△123O O O ABC 的面积为 .17.(2021•浔阳区校级模拟)法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =︒,以AB 、BC 、AC 为边向外作三个等边三角形,其外接圆圆心依次为1O 、2O 、3O ,若三角形123O O O 角形ABC 的周长最小值为 .18.(2021•淮安模拟)拿破仑定理是法国著名的军事家拿破仑⋅波拿马最早提出的一个几何定理:“以任意三角形的三条边为边,向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三个角形的顶点”.在ABC ∆中,120A ∠=︒,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为1O ,2O ,3O ,若△123O O O ABC ∆的周长的取值范围为 .19.(2021•江苏模拟)法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =︒,以AB 、BC 、AC 为边向外作三个等边三角形,其外接圆圆心依次为1O 、2O 、3O ,若三角形123O O O ,则三角形ABC 的周长最小值为 .三.解答题(共3小题)20.(2021春•台江区校级期中)法国数学家费马被称为业余数学之王,很多数学定理以他的名字命名.对ABC ∆而言,若其内部的点P 满足120APB BPC CPA ∠=∠=∠=︒,则称P 为ABC ∆的费马点.如图所示,在ABC ∆中,已知45BAC ∠=︒,设P 为ABC ∆的费马点,且满足45PBA ∠=︒,2PA =.(1)求PAC ∆的面积;(2)求PB 的长度.21.如图,在ABC∆中,90ABC∠=︒,AB,1BC=,P为ABC∆内一点,90BPC∠=︒.(1)若12PB=,求PA;(2)若150APB∠=︒,求tan PBA∠.22.在ABC∆内存在一点O,满足BAO CAO CBO ACO∠=∠=∠=∠,求证:ABC∆的三边构成等比数列.。
专题25 平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值. 求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt △ABC 中,CB =3,CA =4,M 为斜边AB 上一动点.过点M 作MD ⊥AC 于点D ,过M 作ME ⊥CB 于点E ,则线段DE 的最小值为 .(四川省竞赛试题)解题思路:四边形CDME 为矩形,连结CM ,则DE = CM ,将问题转化为求CM 的最小值.【例2】如图,在矩形ABCD 中,AB =20cm ,BC =10cm .若在AC ,AB 上各取一点M ,N ,使BM +MN 的值最小,求这个最小值.(北京市竞赛试题)ADMN解题思路:作点B 关于AC 的对称点B ′,连结B ′M ,B ′A ,则BM = B ′M ,从而BM +MN = B ′M +MN .要使BM +MN 的值最小,只需使B ′M 十MN 的值最小,当B ′,M ,N 三点共线且B ′N ⊥AB 时,B ′M +MN 的值最小.【例3】如图,已知□ABCD ,AB =a ,BC =b (b a ),P 为AB 边上的一动点,直线DP 交CB 的延长线于Q .求AP +BQ 的最小值. (永州市竞赛试题)PDA BQ解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值. 【例4】阅读下列材料:问题 如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线. 小明设计了两条路线:图2图1摊平沿AB 剪开ACBBA路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12 =AC 2=AB 2 +BC 2 =25+(5π) 2=25+25π2. 路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22 = (BC +AB )2=(5+10)2 =225.∵l 12 – l 22 = 25+25π2-225=25π2-200=25(π2-8),∴l 12 >l 22 ,∴ l 1>l 2 . 所以,应选择路线2.条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短. (衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率. (中学生数学智能通讯赛试题)NME DAB解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值. (中学生数学智能通讯赛试题)1ABD解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △P AB ,得到PCPACD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是 . (烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB = cm . (广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是 . (“希望杯”邀请赛试题)DD 1第1题图 第3题图 第4题图 第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是( ) (兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA =6,底面圆的半径为2.一小虫在圆锥底面的点A 处绕圆锥侧面一周又回到点A ,则小虫所走的最短距离为( ) (河北省竞赛试题) A .12B .4πC .62D .636.如图,已知∠MON = 40°,P 是∠MON 内的一定点,点A ,B 分别在射线OM ,ON 上移动,当△P AB 周长最小时,∠APB 的值为( ) (武汉市竞赛试题) A .80° B .100° C .120° D .140° 7.如图, ⌒AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为AD 上任意一点.若AC =5,则四边形ACBP 周长的最大值是( ) (福州市中考试题) A .15B .20C .15+52D .15+55NNMOBBA BA E第6题图 第7题图 第8题图8.如图,在正方形ABCD 中,AB =2,E 是AD 边上一点(点E 与点A ,D 不重合),BE 的垂直平分线交AB 于M ,交DC 与N .(1) 设AE =x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式.(2) 当AE 为何值时,四边形ADNM 的面积最大?最大值是多少? (山东省中考试题)9.如图,六边形ABCDEF 内接于半径为r 的⊙O ,其中AD 为直径,且AB =CD =DE =F A . (1) 当∠BAD =75°时,求⌒BC 的长; (2) 求证:BC ∥AD ∥FE ;(3) 设AB =x ,求六边形ABCDEF 的周长l 关于x 的函数关系式,并指出x 为何值时,l 取得最大值.10.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D).Q是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1) 求证:△APE∽△ADQ;(2) 设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3) 当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)FEB Q11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)MNB CB级1.已知凸四边形ABCD中,AB+AC+CD= 16,且S四边彤ABCD=32,那么当AC= ,BD= 时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)yxr COFE EDF O BC A OBCAABP D GAB第2题图 第3题图 第4题图 第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧⌒AB 组成一个弓形,则此弓形面积的最小值为 .4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为 .(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是 .(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A + PD 取最小值时,△APD 中边AP 上的高为( ) (鄂州市中考试题)A .17172B .17174C .17178D .3QADBCA BDCPP第6题图 第7题图 第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm . (1) 求点P 在BC 上运动的过程中y 的最大值;(2) 当y =41cm 时,求x 的值. (河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标. (河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求: (1) ∠MAN 的大小;(2) △MAN 的面积的最小值. (“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD = CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB 相交于点E .(1) 求证:AB ·AF =CB ·CD ; (2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)MNExCB第6题图 第7题图 第8题图 第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1) 求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2) 若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt△ABC中,∠C=90°,BC=2,AC=x,点F在边AB上,点G,H在边BC上,四边形EFGH是一个边长为y的正方形,且AE=AC.(1) 求y关于x的函数解析式;(2) 当x为何值时,y取得最大值?求出y的最大值.(上海市竞赛试题)。