初中数学竞赛:平面几何中的最值问题
- 格式:doc
- 大小:173.50 KB
- 文档页数:7
几何中的最值问题作为一门重要的数学学科,几何中有许多重要的概念和方法,其中最值问题是一个广泛研究的内容。
在几何中,最值问题是指在某些条件下,某个几何量(如长度、面积、体积等)的最大值或最小值问题。
本文将从不同角度介绍几何中的最值问题及其应用。
一、最值问题的基础概念在几何问题中,最值问题最常见的便是一些面积、长度和体积的最值问题。
最常见的方法是使用微积分的极值定理,通过计算导数为0的点来找到函数的最大值和最小值。
此外,还有最大和最小的边界问题。
这些问题需要考虑的是给定条件下的最大可行解或最小可行解。
例如,给定一个面积固定的矩形,我们需要求出其长度和宽度的最大或最小值。
这些问题与微积分密切相关,但在解决这些问题时需要更多的几何知识和直觉。
二、平面几何中的最值问题在平面几何中,最值问题通常涉及三角形、四边形和圆形等形状。
这些形状的特性可以用来求解最值问题,通常需要使用各种几何知识和技巧。
例如,对于一个给定面积的三角形,在其周长恒定的情况下,需要求出该三角形的最大或最小长度。
为解决这类问题,我们可以利用三角形的海涅定理或余弦定理,通过微积分的极值定理得到最优解。
对于圆形,最值问题可能涉及到面积和周长问题,这些需要用到圆相关的特点和公式,如半径、直径、周长和面积等,通常需要通过微积分的方法求解。
另一方面,对于四边形最值问题,我们需要利用它们的对角线和相邻边的关系来解决,这通常需要将四边形划分为三角形或矩形来计算。
三、空间几何中的最值问题在空间几何中,最值问题通常涉及立体体积,包括长方体、正方体、棱锥和棱柱等。
这些问题需要利用空间几何的特点和公式来求解,常用的方法包括微积分的极值定理和立体几何的体积计算公式。
例如,对于一个矩形长方体,在其表面积固定的情况下,需要求出其有最大或最小的体积。
如果我们设该矩形长方体的长、宽和高分别为x、y和z,那么该矩形长方体的体积可以表示为V(x,y,z)=xyz。
通过微积分的方法,可以证明只有当x=y=z时,该方体的体积最大。
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
八年级平面几何最值问题解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用其它知识求最值。
1、如图,在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 。
2、如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm 。
3、在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .4、如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ .5、如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为【 】A . 1B .3C . 2D .3+1 6、如图,点A 的坐标为(-1,0),点B 在直线y x =上运动,当线段AB 最短时,点B 的坐标为【 】A.(0,0)B.(21-,21-) C.(22,22-) D.(22-,22-)7、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为【 】 A 、1 B 、2 C 、3 D 、48、如图,等腰梯形ABCD 中,AD ∥BC ,AD=AB=CD=2,∠C=60°,M 是BC 的中点.(1)求证:△MDC 是等边三角形;(2)将△MDC 绕点M 旋转,当MD (即MD ′)与AB 交于一点E ,MC (即MC′)同时与AD 交于一点F 时,点E ,F 和点A 构成△AEF .试探究△AEF 的周长是否存在最小值.如果不存在,请说明理由;如果存在,请计算出△AEF 周长的最小值.9、点A 、B均在由面积为1的相同小矩形组成的网格的格点上,建立平面直角 坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA十QB 的值最小的点,则OP OQ ⋅= .答案:1.4 2.15 3.1<AD<4 4.3 5.B 6.B 7.B 8.2+9.5。
专题25 平面几何的最值问题例1125 提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅= 例2 如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =AB BCAC⋅=,BB ′=,AE =.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm . 例3 由△APD ∽△BPQ ,得AP AD BP BQ =,即BQ =()b a x AD BP AP x -⋅=,∴AP +BQ =x +ab b x -.∵x +abx ≥=x =abx即x APAP +BQ 最小,其最小值为b .例4 ⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短. ⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244h π-时,2212l l <. 例5 设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%. 例6 设PD =x (x >1),则PC 由R t △PCD ∽△PAB ,得AB =CD PA PC ⋅=,令y =AB •S △PAB ,则y =12AB ×PA ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =2122421x x -++=+-,=即当x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥- 322=4,∴当12x -=21x -,即当x =3时,y 有最小值4. ③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4. A 级1. 17 提示:当两张纸条的对角重合时,菱形周长最大.2. 83.4.D5. D6. B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x.∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF +×2=AM +AM +MF =2 AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2 x +1)+52=-12(x -1)2+52.故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52.9. (1)BC 长为23rπ.(2)提示:连结BD . (3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC =AD -2 AM =2r -2 AM .由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r -2x r .同理,EF =2 r -2x r .l =4 x +2(2 r -2x r)=-x r (x -r )2+6 r(0<x r )..当x =r 时,l 取得最大值6 r .10. (1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ .(2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34.故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点. 11. (1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上.(2)由已知得△ABC 底边上的高h=4. ①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O .由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2.当=3时,y 的值最大,最大值是3.②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D .由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC .,∴PEFABCS S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (.∵S △ABC =12,∴S △PEF =43(x -3)2.∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4.故当x =4时,y 的最大值为4.综上,当x =4时,y 的值最大,最大值为4. B 级1.832 提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值. 2. 0<r ≤1 提示:设BC =a ,CA =b ,AB =c ,b +c =r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc ·2=12[r +1)]r ,. bc =4r (r +2). b ,c 为方程x 2-r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22.因r >0,r +1>0,故r +1≤2,即0<r ≤1. 3.249π提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小. 4.13 提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADG ABC S S ∆∆=x 2,BDE ABC S S ∆∆=(1-x )2=CFG ABCS S ∆∆,S 梯形DEFG =1―x 2―2(1-x )2=-3(x -23)2+13.5.12a 提示:当OA =OB 时,OC 的长最大. 6. C 7. (1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x-,y =-14(x -2)2+1(0<x <4).当x =2时, y 最大值=1cm.(2)由14=-14(x -2)2+1,得x =(2cm 或(2cm.8. 当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求.作O′D ⊥A B 于D .,O′D 2= O′B2-B D 2=2()2a b +-2()2a b -=ab ,O′DC0).9. (1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°.∴△AMN ≌△AML ,故∠MAN =∠MAL =902=45°. (2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2.整理得2y 2+(2z -4)y +(4-4z )=0.∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+(z +2-≥0.又∵z >0,故z2,当且仅当x =y =2.由于S △AMN =S △AML=12·ML ·AB =12 MN ×1=2z ,因此,△AMN 1.10. (1)提示:证明△ADF ∽△BAC .(2)①AB =15,BC =9,∠ACB =90°,∴AC12=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>. ②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +PA ,故只要求PB +PA 最小.显然当P 、A 、B 三点共线时PB +PA 最小,此时DP =DE ,PB +PA =AB . 由(1),角∠ADF =∠FAE ,∠DFA =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴ AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252.∴当x =252时,△PBC 的周长最小,此时y =1292.11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2). (2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k-==-<,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小.12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,DE ==,x y x -=,2x -2y -xy =,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222xy x x =++(y =x 舍去) .(2)由(1)212yxx==++.当且仅当2xx=,即x=等号成立.故当x=y1.。
几何最值的解题方法1. 引言几何最值问题是数学中常见的一类问题,它涉及到在给定的几何形状或空间中寻找某个特定量的最大值或最小值。
在解决这类问题时,我们需要运用几何知识和数学分析方法,结合具体情境进行推理和计算。
本文将介绍几何最值问题的解题方法,并通过实例进行说明。
2. 几何最值问题的分类几何最值问题可以分为两类:平面几何中的最值问题和立体几何中的最值问题。
2.1 平面几何中的最值问题在平面几何中,我们常常需要求解线段、角度、面积等量的最大值或最小值。
例如,求一个给定周长的矩形的面积最大,或者求一个给定半径的圆形内接三角形的面积最大。
为了解决这类问题,我们可以使用以下方法:2.1.1 导数法当需要求解平面图形上某个量(如面积)取得极大或极小值时,我们可以通过对该量进行微分,并令导数等于零来求得临界点。
通过判断临界点处导数符号变化来确定极大或极小值。
例如,对于矩形的面积最大问题,我们可以设矩形的长为x,宽为y,则矩形的面积为S=xy。
根据周长固定的条件,可以得到2x+2y=常数。
将这个条件代入面积公式S=xy中,可以得到只含有一个变量x的函数表达式S(x),然后对S(x)求导,并令导数等于零,即可求得临界点。
2.1.2 直观法直观法是一种通过观察和推理来解决几何最值问题的方法。
在解决一些简单的几何最值问题时,我们可以通过直观地找出一些特殊情况或者利用几何图形的性质来确定最值。
例如,在求解一个给定周长的矩形面积最大问题时,我们可以发现正方形是具有相同周长下面积最大的矩形,因而答案是正方形。
2.2 立体几何中的最值问题在立体几何中,我们常常需要求解体积、表面积等量的最大值或最小值。
例如,求一个给定表面积的圆柱体体积最大,或者求一个给定体积的圆柱体表面积最小。
为了解决这类问题,我们可以使用以下方法:2.2.1 导数法与平面几何中的导数法类似,我们可以通过对体积或表面积进行微分,并令导数等于零来求得临界点。
竞赛辅导:平面几何的定值与最值问题一、选择题(共2小题,每小题3分,满分6分)1.(3分)(2009秋•安化县校级期末)如图,正方形ABCD的边长为3,E在BC上,且BE=2,P在BD上,则PE+PC的最小值为()A.B. C. D.2.(3分)已知,如图,线段AB上有任一点M,分别以AM,BM为边长作正方形AMFE、MBCD.正方形AMFE、MBCD的外接圆⊙O、⊙O′交于M、N两点,则直线MN的情况是()A.定直线B.经过定点 C.一定不过定点 D.以上都有可能二、填空题(共2小题,每小题4分,满分8分)3.(4分)用四条线段a=14,b=13,c=9,d=7.作为四条边构成一个梯形,则在所构成的梯形中,中位线长的最大值是.4.(4分)如图,⊙O的半径为,A、B两点在⊙O上,切线AQ和BQ相交于Q,P是AB延长线上任一点,QS⊥OP于S,则OP•OS=.三、解答题(共15小题,满分136分)5.(9分)传说从前有一个虔诚的信徒,他是集市上的一个小贩.每天他都要从家所在的点A出发,到集市点B,但是,到集市之前他必须先拐弯到圆形古堡朝拜阿波罗神像.古堡是座圣城,阿波罗像供奉在古堡的圆心点O,而周围上的点都是供信徒朝拜的顶礼地点如图.这个信徒想,我怎样选择朝拜点,才能使从家到朝拜点,然后再到集市的路程最短呢?6.(9分)如果△ABC的外接圆半径R一定,求证:是定值.(S表示△ABC的面积)7.(9分)如图,已知⊙O的半径R=3,A为⊙O上一点,过A作一半径为r=3的⊙O′,问OO′何时最长?最长值是多少?OO′何时最短?最短值是多少?8.(9分)如图,已知P为定角O的角平分线上的定点,过O、P两点任作一圆与角的两边分别交于A、B两点.求证:OA+OB是定值.9.(9分)如图,在矩形ABCD中,AB=8,BC=9,⊙O与外切,且⊙O与AB、BC相切.⊙O′与AD、CD相切,设⊙O的半径为x,⊙O与⊙O′的面积的和为S,求S的最大值和最小值.10.(9分)如图,⊙O1与⊙O2内切于点P,又⊙O1切⊙O2的直径BE于点C,连接PC并延长交⊙O2于点A,设⊙O1,⊙O2的半径分别为r、R,且R≥2r.求证:PC•AC是定值.11.(9分)如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与点B或点C 重合),分别过点B、C、D作射线AP的垂线,垂足分别为点B′、C′、D′.求BB′+CC′+DD′的最大值和最小值.12.(9分)已知△ABC内接于⊙O,D是BC或其延长线上一点,AE是△ABC外接圆的一条弦,若∠BAE=∠CAD.求证:AD•AE为定值.13.(9分)已知MN是⊙O的切线,AB是⊙O的直径.求证:点A、B与MN的距离的和为定值.14.(9分)已知:⊙O与⊙O1外切于C,P是⊙O上任一点,PT与⊙O1相切于点T.求证:PC:PT是定值.15.(9分)如图,AB为相交两圆⊙O1与⊙O的公切线,且O1在⊙O上,大圆⊙O的半径为4,则公切线AB的长的取值范围为.16.(9分)以O为圆心,1为半径的圆内有一定点A,过A引互相垂直的弦PQ,RS.求PQ+RS的最大值和最小值.17.(9分)如图,已知△ABC的周长为2p,在AB、AC上分别取点M和N,使MN∥BC,且MN与△ABC的内切圆相切.求:MN的最值.18.(9分)如图,已知⊙O的半径为R,以⊙O上一点A为圆心,以r为半径作⊙A,又直径PQ与⊙A相切,切点为D,且交⊙O于P、Q.求证:AP•AQ为定值.19.(10分)如图,⊙O1与⊙O2相交于A、B两点,经过点B的一直线和两圆分别相交于点C和D,设此两圆的半径为R1,R2.求证:AC:AD=R1:R2.竞赛辅导:平面几何的定值与最值问题参考答案一、选择题(共2小题,每小题3分,满分6分)1.B 2.B二、填空题(共2小题,每小题4分,满分8分)3.10.5 4.2三、解答题(共15小题,满分136分)5.6.7.8.9.10.11.12.13.14.15.0<AB≤4 16.17.18.19.。
初中数学平面几何最值问题培优专题训练1. 引言平面几何最值问题是初中数学中的一个重要概念,它涉及了数学中的最大值和最小值的求解。
本文旨在为初中生提供一些培优专题训练,帮助他们更好地理解和掌握平面几何最值问题的解题方法。
2. 训练题目下面是一些平面几何最值问题的训练题目,供初中生进行练和思考:1. 计算等边三角形的最大面积。
2. 求一个正方形的最小周长。
3. 在一个给定的圆内,找出一个长方形的最大面积。
4. 在一个长方形的周长固定的情况下,如何确定它的最大面积?5. 如何证明:对于一个给定的周长,圆是能够围成最大面积的图形。
3. 解题思路在解决平面几何最值问题时,可以采用以下简单的策略:- 利用几何图形的对称性。
常常可以通过找到几何图形的对称性来简化问题,并找到最值点。
- 利用几何图形的性质和公式。
根据几何图形的性质和公式,可以建立方程或关系,从而求解最值问题。
- 利用数学推理和证明。
通过数学推理和证明,找到最值问题的解题方法和结论。
4. 例题解析下面是几个例题的解析,以帮助初中生更好地理解解题思路和方法:例题1:等边三角形的最大面积解析:等边三角形的面积由边长决定,所以要找最大面积,就需找到最长的边长。
根据等边三角形的性质,可以知道三个边长相等,因此最长的边长是三边中的任意一条边长。
所以等边三角形的最大面积是以任意边长为边长的正三角形。
例题2:正方形的最小周长解析:正方形的周长由边长决定,所以要找最小周长,就需找到最短的边长。
正方形的四条边相等,因此最短的边长是四条边中的任意一条边长。
所以正方形的最小周长是以任意边长为边长的正方形。
例题3:长方形的最大面积(固定周长)解析:长方形的周长固定,设为2L+2W。
要求最大面积,可以使用数学推理。
根据不等式性质,当L=W时,面积最大。
因此,最大面积的长方形是正方形。
例题4:圆的最大面积(固定周长)解析:圆的周长固定,设为2πr。
要求最大面积,可以使用数学证明。
初中数学竞赛:几何的定值与最值几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等;(2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变⌒思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关. 思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们的证明目标更加明确.⌒注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.专题训练1.如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最大值为,最小值为.2.如图,∠AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则△PQR的周长的最小值为.3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 . 4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN 上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )A .1B .22 C .2 D .13-5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿看圆柱的侧面移动到BC 的中点S 的最短距离是( )A .212π+B .2412π+C .214π+D .242π+6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减小C .线段EF 的长不改变D .线段EF 的长不能确定7.如图,点C 是线段AB 上的任意一点(C 点不与A 、B 点重合),分别以AC 、BC 为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证:MN ∥AB ;(2)若AB 的长为l0cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由.(2002年云南省中考题)8.如图,定长的弦ST 在一个以AB 为直径的半圆上滑动,M 是ST 的中点,P 是S 对AB 作垂线的垂足,求证:不管ST 滑到什么位置,∠SPM 是一定角.9.已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过点P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)当点P 在线段AB 上时(如图),求证:PA ·PB=PE ·PF ;(2)当点P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE ,其中AF=2,BF=l ,在AB 上的一点P ,使矩形PNDM 有最大面积,则矩形PNDM 的面积最大值是( )A .8B .12C .225D .1411.如图,AB 是半圆的直径,线段CA 上AB 于点A ,线段DB 上AB 于点B ,AB=2;AC=1,BD=3,P 是半圆上的一个动点,则封闭图形ACPDB 的最大面积是( )A .22+B .21+C .23+D .23+12.如图,在△ABC 中,BC=5,AC=12,AB=13,在边AB 、AC 上分别取点D 、E ,使线段DE 将△ABC 分成面积相等的两部分,试求这样线段的最小长度.13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米.(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.①设该工程的总造价为S(元),求S关于工的函数关系式.②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).参考答案。
初中几何最值问题的常用解法
初中几何最值问题的常用解法有以下几种:
1. 利用图形的性质和特点:根据所给的几何图形,利用其性质和特点推导出最值问题的解答。
例如,利用等腰三角形的性质,可以求解最短路径问题;利用圆的性质,可以求出最大面积问题等。
2. 利用相似三角形:当给定的几何图形不易直接求解时,可以通过构建相似三角形来求解最值问题。
通过建立相似三角形的比较关系,可以求得所需的未知数,并得到最值问题的解答。
3. 利用变量法:将所给的几何图形进行变量代换,将问题转化为代数问题。
通过对新的代数表达式进行求导或求极值的方法,可以求解最值问题。
4. 利用平面几何基本定理:平面几何基本定理是初中几何学中的核心理论,其中包括了如角等分线定理、平行线性质定理、正弦定理、余弦定理等。
利用这些定理,可以有效地解决几何最值问题。
总之,初中几何最值问题的解决方法需要深入理解几何图形的性质和运用几何定理,同时也需要灵活运用代数方法和应用数学思维来解决问题。
初中数学几何最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]初中数学几何最值问题在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题.近年来,各地中考题常通过几何最值问题考查学生的实践操作能力、空间想象能力、分析问题和解决问题的能力.本文针对不同类型的几何最值问题作一总结与分析,希望对大家有所帮助.最值问题的解决方法通常有如下6大类:1.三角形的三边关系例1.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.2.两点间线段最短例2 如图2,圆柱底面半径为2cm,高为9 cm,点,A B分别是回柱两底面圆周上的点,且,A B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线长度最短为 .` 3.垂线段最短例3 如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,点D在BC 上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是____________•4.利用轴对称例4.如上右图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2)D.(0,)例5 如图5,正方形ABCD,4AB=,E是BC的中点,点P是对角线AC上一动点,则PE PB+的最小值为 .5.利用二次函数例6在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.6利用圆中直径是最长的弦例7.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.同步练习1.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD 边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为___________.2.李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长。
平面几何最值问题的几种求解方法曹永启 (深圳清华实验学校 518126)平面几何最值问题在近几年数学竞赛中频频出现。
第十六届希望杯数学全国邀请赛初二2试最后一题就是一例。
此类问题求解方法多,涉及知识面广,这对于初涉平面几何的初中学生来说,处处受限,难度较大。
本文旨在通过实例介绍几种初中生能接受的求解方法。
一,平移法平移法一般是寻求特殊位置的几何图形,结合图形的平移来解决问题。
其基本依据有:两点之间线段最短,(三角形两边之和大于第三边,两边之差小于第三边)。
直角三角形中斜边大于直角边,(从直线外一点到直线的所有线段中垂线段最短等)。
例1,(一个古老的问题)假设河岸为两条平行线,在河岸两侧有A 村和B 村,要在河上架一座垂直河岸的桥,使A 村到B 村路程最短,如何确定架桥的位置? 解:设河岸为L 1、 L 2,则L 1∥L 2,两岸距离为d ,过A 点作AA ′⊥L 1,且AA ′=d,连结BA ′交L 2于D ,过D 作CD ⊥L 2交L 1于C ,则CD 即为架桥的位置。
(如图1)由作法可知,四边形AA ′DC 是平行四边形,(AA ′∥DC 且AA ′=DC )所以AC= A ′D.即AC+BD= A ′B ,而A ′、B 两点以A ′B 最短,故AC+CD+BD 为最短。
例2,在XOY 的边OX 、OY 上分别取一点A 、B ,使OA+OB 为定长L ,试证:当OA=OB 时AB 的长最短。
(如图2)分析:设OA=OB ,OA+OB=L (定长)为了证明AB 的长最短,可在OX 和OY 上分别另取一点A ′、B ′,使O A ′+OB ′=L ,连A ′B ′,则问题变为证明AB <A ′B ′。
证明:把A ′B ′平移到AC ,则A ′B ′CA 为平行四边形 ∵OA+OB=O A ′+OB ′ ∴A A ′=BB ′而A A ′=CB ′∴BB ′=CB ′ ∠B ′BC=∠B ′CB ∴∠ B ′BC=XOY Y CB ∠=∠2121' ∴∠B ′BC+∠OBA=90˙∴∠ABC=90˙ ∴AB <AC=A ′B ′(直角三角形斜边大于直角边) 二,反射法反射法主要可解决以下两个类型问题。
几何图形中常见最值问题的解法平面几何图形中的最值问题是近几年中考常见的题型,此类问题常让学生无从下手,特别是新市民子女,由于他们数学知识的短缺、题目信息采集不够、综合应用能力弱、数学思维紊乱,课本知识理解不到位等原因造成错误为此我在平时教学中注重对这类问题的归类整理,在教学中对他们进行必要的专题拓展训练,引导他们归纳、总结、获得解决这类问题的基本技能,培养他们的思维习惯.一、轴对称变换—最短路径问题1.书本原型:(1)点A 、点B 在直线l 两侧,在直线l 找一点P ,使PA PB +值最小.分析根据两点之间线段最短.点P 既在直线l 上,又在线段AB 上,PA PB +值最小.解连接AB ,交直线l 于点P ,点P 就是所要求作的点.(2)点A 、点B 在直线l 同侧,在直线l 找一点P ,使PA PB +最小.分析利用轴对称的性质找一个点1B ,使得1PB PB =,因而1PA PB PA PB +=+,要使PA PB +最小,只要1PA PB +最小,只要A 、P 、1B 三点共线.解作点B 关于l 的对称点1B ,连接1AB 交l 于点,点P 就是所要求作的点.(也可以作点A 关于l 的对称点1A ,连接1A B 交l 于点P ,点P 就是所要求作的点).2.应用例1在右图中,以直线l 为x 轴,以O 为坐标原点建立平面直角坐标系,点(1,2)A 、(4,1)B .(1)在x 轴上找一点P ,使PA PB +最小,请在图中画出点P ,并求出点PA PB +的最小值.分析作A 、B 两点中的一点关于x 轴的对称点,连接这个对称点与另一点的线段交x 轴于点P .PA PB +的最小值实际上就是线段1AB 的长3.∴PA PB +的最小值是3.(2)在y 轴上找一点C ,在x 轴上找一点D ,使四边形ACDB 的周长最小,则点C 的坐标为,点D 的坐标为.分析本题两个动点C 、D ,要使四边形ACDB 的周长最小,只要AC CD BD AB +++的值最小,而AB 是一个定值,只要AC CD BD ++最小.作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,则1AC A C =,1BD B D =,AC CD +11BD A C B D CD +=++,只要1A 、C 、D 、1B 共线,则11A C B D CD ++最小,从而AC CD BD ++最小.解作点A 关于y 轴的对称点1A ,作点B 关于x 轴的对称点1B ,连接11A B .交y 轴于点C ,交x 轴于点D .设直线11A B ,的解析式为y kx b =+, 点A (1,2)关于y 的对称点1(1,2)A -, 点B (4,1)关于x 轴的对称点1(4,1)B -,241k b k b -+=⎧∴⎨+=-⎩,解得3/57/5k b =-⎧⎨=⎩,∴直线11A B 的解析式为37.55y x =-+∴点C 的坐标为7(0,5,点D 的坐标为7(,0)3.二、垂线段最短—最短路径问题1.书本原型在灌溉时,要把河中的水引到农田P 处,如何挖渠使渠道最短.分析根据垂线段最短,P 到直线l 最短的距离是点P 到直线l 的垂线段的长.解过点P 作直线河岸l 的垂线段,垂足为点A ,线段PA 就是最短的渠道.2.应用例3如图,在平面直角坐标系xOy 中,直线AB 经过点(4,0)A -、(0,4)B ,⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线,PQ Q 为切点,则切线长PQ 的最小值为.分析因为PQ 是⊙O 的切线,连接OQ ,则90PQO ∠=︒.由勾股定理得222PQ PO OQ =-.因为⊙O 的半径1OQ =,要使PQ 最小,只要PO 最小,从而转化为求PO 的最小值,当PO AB ⊥时,PO 最小值为2.PQ ∴.四、平面展开图—最短路径问题我们常常遇到蚂蚁从一个几何体的一个侧面上一个点,绕过侧面走到另一个点,怎样走最近的问题.通常将曲面展平,转化为两点之间线段最短、垂线段最短问题,从而将曲面的最短路径问题转化为平面最短路径问题例5如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是.分析这是一个蚂蚁爬行的最短路径问题,将圆柱的侧面展平,得到一个矩形.蚂蚁从容器外壁爬到容器内壁最短,就是蚂蚁沿圆柱侧面爬到容器顶经过某一点P ,再爬到点A 的最短路径,实际上就是在一边DE 上找一点P ,使1PA PB +最小.根据轴对称—最短路径问题的作图步骤得蚂蚁沿线段2BA 最短,根据勾股定理可得2BA 的长.解在21Rt A B B ∆中,2112A B = cm ,15BB =cm由勾股定理得,222221114425169A B A B BB =+=+= ,213A B ∴=cm.所以蚂蚁爬行的最短路线长是13cm.学生觉得难以解决的几何最值问题,我在平时的教学中注重把书本原型跟学生讲透;让学生理解书本上的原理:两点之间线段最短、垂线段最短、三角形两边之和大于第三边,两边之差小于第三边,让学生感受到数学中的化归思想、数形结合思想,让学生有章可循,有法可用.授人以鱼不如授人以渔,对于新市民子女的数学学习,主要是提高他们数学学习兴趣,学会解题技能,让他们感受到学习数学乐趣,让他们想学数学、能学数学、学好数学,从而爱上数学,真正实现《新课程标准》所倡导的理念:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展.”。
专题25平面几何的最值问题阅读与思考几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值.求几何最值问题的基本方法有:1.特殊位置与极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情形下的推证.2.几何定理(公理)法:应用几何中的不等量性质、定理.3.数形结合法等:揭示问题中变动元素的代数关系,构造一元二次方程、二次函数等.例题与求解【例1】在Rt△ABC中,CB=3,CA=4,M为斜边AB上一动点.过点M作MD⊥AC于点D,过M 作ME⊥CB于点E,则线段DE的最小值为.(四川省竞赛试题)解题思路:四边形CDME为矩形,连结CM,则DE=CM,将问题转化为求CM的最小值.【例2】如图,在矩形ABCD中,AB=20cm,BC=10cm.若在AC,AB上各取一点M,N,使BM+MN 的值最小,求这个最小值.(北京市竞赛试题)解题思路:作点B关于AC的对称点B′,连结B′M,B′A,则BM=B′M,从而BM+MN=B′M+MN.要使BM+MN的值最小,只需使B′M十MN的值最小,当B′,M,N三点共线且B′N⊥AB时,B′M+MN的值最小.a ),P为AB边上的一动点,直线DP交CB的延【例3】如图,已知□ABCD,AB=a,BC=b(b长线于Q.求AP+BQ的最小值.(永州市竞赛试题)解题思路:设AP =x ,把AP ,BQ 分别用x 的代数式表示,运用不等式以ab b a 222≥+或a +b ≥2ab(当且仅当a =b 时取等号)来求最小值.【例4】阅读下列材料:问题如图1,一圆柱的底面半径为5dm ,高AB 为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到C 点的最短路线.小明设计了两条路线:路线1:侧面展开图中的线段AC .如图2所示.设路线l 的长度为l 1,则l 12=AC 2=AB 2+BC 2=25+(5π)2=25+25π2.路线2:高线AB 十底面直径BC .如图1所示.设路线l 的长度为l 2,则l 22=(BC +AB )2=(5+10)2=225.∵l 12–l 22=25+25π2-225=25π2-200=25(π2-8),∴l 12>l 22,∴l 1>l 2.所以,应选择路线2.线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.(衢州市中考试题)解题思路:本题考查平面展开一最短路径问题.比较两个数的大小,有时比较两个数的平方比较简便.比较两个数的平方,通常让这两个数的平方相减.【例5】如图,已知边长为4的正方形钢板,有一个角锈蚀,其中AF =2,BF =1.为了合理利用这块钢板,将在五边形EABCD 内截取一个矩形块MDNP ,使点P 在AB 上,且要求面积最大,求钢板的最大利用率.(中学生数学智能通讯赛试题)解题思路:设DN =x ,PN =y ,则S =xy .建立矩形MDNP 的面积S 与x 的函数关系式,利用二次函数性质求 S 的最大值,进而求钢板的最大利用率.【例6】如图,在四边形ABCD 中,AD =DC =1,∠DAB =∠DCB =90°,BC ,AD 的延长线交于P ,求AB ·S △P AB 的最小值.(中学生数学智能通讯赛试题)解题思路:设PD =x (x >1),根据勾股定理求出PC ,证Rt △PCD ∽Rt △PAB ,得到PCP A CD AB ,求出AB ,根据三角形的面积公式求出y =AB ·S △P AB ,整理后得到y ≥4,即可求出答案.能力训练A 级1.如图,将两张长为8、宽为2的矩形纸条交叉,使重叠部分是一个菱形.容易知道当两张纸条垂直时,菱形的周长有最小值,那么菱形周长的最大值是.(烟台市中考试题)2.D 是半径为5cm 的⊙O 内一点,且OD =3cm ,则过点O 的所有弦中,最短的弦AB =cm .(广州市中考试题)3.如图,有一个长方体,它的长BC =4,宽AB =3,高BB 1=5.一只小虫由A 处出发,沿长方体表面爬行到C 1,这时小虫爬行的最短路径的长度是.(“希望杯”邀请赛试题)第1题图第3题图第4题图第5题图4.如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是()(兰州市中考试题)A .42B .4.75C .5D .4.85.如图,圆锥的母线长OA=6,底面圆的半径为2.一小虫在圆锥底面的点A处绕圆锥侧面一周又回到点A,则小虫所走的最短距离为()(河北省竞赛试题)A.12B.4πC.62D.636.如图,已知∠MON=40°,P是∠MON内的一定点,点A,B分别在射线OM,ON上移动,当△PAB周长最小时,∠APB的值为()(武汉市竞赛试题)A.80°B.100°C.120°D.140°7.如图,⌒AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为AD上任意一点.若AC=5,则四边形ACBP周长的最大值是()(福州市中考试题)A.15B.20C.15+52D.15+55第6题图第7题图第8题图8.如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合),BE的垂直平分线交AB于M,交DC与N.(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式.(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?(山东省中考试题)9.如图,六边形ABCDEF内接于半径为r的⊙O,其中AD为直径,且AB=CD=DE=FA.(1)当∠BAD=75°时,求⌒BC的长;(2)求证:BC∥AD∥FE;(3)设AB=x,求六边形ABCDEF的周长l关于x的函数关系式,并指出x为何值时,l取得最大值.10.如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D).Q是BC边上任意一点.连结AQ,DQ,过P作PE∥DQ交于AQ于E,作PF//AQ交DQ于F.(1)求证:△APE∽△ADQ;(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必证明)(无锡市中考试题)11.在等腰△ABC中,AB=AC=5,BC=6.动点M,N分别在两腰AB,AC上(M不与A,B重合,N不与A,C重合),且MN∥BC.将△AMN沿MN所在的直线折叠,使点A的对应点为P.(1)当MN为何值时,点P恰好落在BC上?(2)设MN=x,△MNP与等腰△ABC重叠部分的面积为y,试写出y与x的函数关系式,当x为何值时,y的值最大,最大值是多少?(宁夏省中考试题)B级1.已知凸四边形ABCD中,AB+AC+CD=16,且S四边彤ABCD=32,那么当AC=,BD=时,四边形ABCD面积最大,最大值是.(“华杯赛”试题)2.如图,已知△ABC的内切圆半径为r,∠A=60°,BC=23,则r的取值范围是.(江苏省竞赛试题)第2题图第3题图第4题图第5题图3.如图⊙O 的半径为2,⊙O 内的一点P 到圆心的距离为1,过点P 的弦与劣弧⌒AB组成一个弓形,则此弓形面积的最小值为.4.如图,△ABC 的面积为1,点D ,G ,E 和F 分别在边AB ,AC ,BC 上,BD <DA ,DG ∥BC ,DE ∥AC ,GF ∥AB ,则梯形DEFG 面积的最大可能值为.(上海市竞赛试题)5.已知边长为a 的正三角形ABC ,两顶点A ,B 分别在平面直角坐标系的x 轴,y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则OC 的最大值是.(潍坊市中考试题)6.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为()(鄂州市中考试题)A .17172B .17174C .17178D .3第6题图第7题图第8题图7.如图,正方形ABCD 的边长为4cm ,点P 是BC 边上不与点B ,C 重合的任意一点,连结AP ,过点P 作PQ ⊥AP 交DC 于点Q .设BP 的长为x cm ,CQ 的长为y cm .(1)求点P 在BC 上运动的过程中y 的最大值;(2)当y =41cm 时,求x 的值.(河南省中考试题)8.如图,y 轴正半轴上有两点A (0,a ),B (0,b ),其中a >b >0.在x 轴上取一点C ,使∠ACB 最大,求C 点坐标.(河北省竞赛试题)9.如图,正方形ABCD 的边长为1,点M ,N 分别在BC ,CD 上,使得△CM N 的周长为2.求:(1)∠MAN 的大小;(2)△MAN 的面积的最小值.(“宇振杯”上海市竞赛试题)10,如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC 于F ,DE 与AB 相交于点E .(1)求证:AB ·AF =CB ·CD ;(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点,设DP =x cm(x >0),四边形BCDP 的面积为y cm 2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小?求出此时y 的值.(南通市中考试题)第6题图第7题图第8题图第9题图11.如图,已知直线l :k kx y 42-+=(k 为实数).(1)求证:不论k 为任何实数,直线l 都过定点M ,并求点M 的坐标;(2)若直线l 与x 轴、y 轴的正半轴交于A ,B 两点,求△AOB 面积的最小值.(太原市竞赛试题)12.如图,在Rt△ABC中,∠C=90°,BC=2,AC=x,点F在边AB上,点G,H在边BC上,四边形EFGH是一个边长为y的正方形,且AE=AC.(1)求y关于x的函数解析式;(2)当x为何值时,y取得最大值?求出y的最大值.(上海市竞赛试题)专题25平面几何的最值问题例1125提示:当CM ⊥AB 时,CM 值最小,CM =125AC BC AB ⋅=例2如图,B ′M +MN 的最小值为点B ′到AB 的距离B ′F ,BE =45AB BC AC⋅=cm ,BB ′=85,AE ()222220455AB BE -=-.在△ABB ′中,由12BB ′•AE =12AB •B ′F ,得B ′F =16cm .故BM +MN 的最小值为16cm .例3由△APD ∽△BPQ ,得AP AD BP BQ=,即BQ =()b a x AD BP AP x -⋅=,∴AP +BQ =x +ab b x -.∵x +ab x ≥22ab x ab x ⋅=x =ab x即x ab 时,上式等号成立.故当AP ab AP +BQ 最小,其最小值为ab b .例4⑴22125l π=+,22l =49,l 1<l 2,故要选择路线l 较短.⑵()2221l h r π=+,()2222l h r =+,()2221244l l r r h π⎡⎤-=--⎣⎦.当r =244h π-时,2212l l =,当r >244h π-时,2212l l >,当r <244h π-时,2212l l <.例5设DN =x ,PN =y ,则S =xy ,由△APQ ∽△ABF ,得()41242y x -=--即x =10-2y ,代入S =xy 得S =xy =y (10-2y ),即S =-2252522y ⎛⎫-+ ⎪⎝⎭,因3≤y ≤4,而y =52不在自变量y 的取值范围内,所以y =52不是极值点,当y =3时,S (3)=12,当y =4时,S (4)=8,故S max =12.此时,钢板的最大利用率21214212-⨯⨯=80%.例6设PD =x (x >1),则PC 21x -,由R t △PCD ∽△PAB ,得AB =21CD PA PC x ⋅=-,令y =AB •S △PAB ,则y =12AB ×PA ×AB =()()2121x x +-,求y 的最小值,有下列不同思路:①配方:y =21212242121x x x x --++=+--1221x x -=-x =3时,y 有最小值4.②运用基本不等式:y =122221x x -++≥-322=4,∴当12x -=21x -,即当x =3时,y 有最小值4.③借用判别式,去分母,得x 2+2(1-y )x +1+2y =0,由△=4(1-y )2-4(1+2y )=4y (y -4)≥0,得y ≥4,∴y 的最小值为4.A 级1.17提示:当两张纸条的对角重合时,菱形周长最大.2.83.4.D5.D6.B7.C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8.(1)连结ME ,过N 作NF ⊥AB 于F ,可证明Rt △EB A ≌Rt △MNF ,得MF =AE =x.∵ME 2=AE 2+AM 2,故MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,AM =1-14x 2,∴S =2AM DN +×AD =2AM AF +×2=AM +AM +MF =2AM +AE =2(1-14x 2)+x =-12x 2+x +2.(2)S =-12(x 2-2x +1)+52=-12(x -1)2+52.故当AE =x =1时,四边形ADNM 的面积最大,此时最大值为52.9.(1) BC 长为23r π.(2)提示:连结BD .(3)过点B 作BM ⊥AD 于M ,由(2)知四边形ABCD 为等腰梯形,从而BC =AD -2AM =2r -2AM .由△BAM ∽△DAB ,得AM =2AB AD =22x r ,∴BC =2r -2x r .同理,EF =2r -2x r .l =4x +2(2r -2x r )=-x r(x -r )2+6r(0<x <r )..当x =r 时,l 取得最大值6r .10.(1)∵∠APE =∠ADQ ,∠AEP =∠AQD ,∴△APE ∽△ADQ .(2)由△APE ∽△ADQ ,△PDF ∽△ADQ ,S △PEF =12S □PEQF ,得S △PEF =-13x 2+x =-13(x -32)2+34.故当x =32时,即P 是AD 的中点时,S △PEF 取得最大值,(3)作A 关于直线BC 的对称点A′,连结DA′交BC 于Q ,则这个Q 点就是使△ADQ 周长最小的点,此时Q 是BC 的中点.11.(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线,∴当MN =12BC =3时,点P 在BC 上.(2)由已知得△ABC 底边上的高h==4.①当0<x ≤3时,如图1,连结AP 并延长交BC 于点D ,AD 与MN 交于点O.由△AMN ∽△ABC ,得AO =23x ,y =S △PMN =S △AMN =12·x ·23x =13x 2即y =13x 2.当=3时,y 的值最大,最大值是3.②当3<x <6时,如图2,设△PMN 与BC 相交于点E ,F ,AP 与BC 相交于D .由①中知AO =23x ,∴AP =43x ,∴PD =AP -AD =43x -4,∵△PEF ∽△ABC .,∴PEF ABC S S ∆∆=(PD AD )2=(4434x -)2,即PEF ABC S S ∆∆=2-3)9x (.∵S △ABC =12,∴S △PEF =43(x -3)2.∴y =S △AMN -S △PEF =13x 2-43(x -3)2=-x 2+8x -12=-(x -4)2+4.故当x =4时,y 的最大值为4.综上,当x =4时,y 的值最大,最大值为4.B 级1.832提示:当∠CAB =∠ACD =90°时,四边形ABCD 的面积达到最大值.2.0<r ≤1提示:设BC =a ,CA =b ,AB =c ,b +c =r +1),又12bc sin60°=S △ABC =12(a +b +c )r ,即12bc·2=12[+2(r +1)]r ,.bc =4r (r +2).b ,c 为方程x 2-(r +1)x +4r (r +2)=0的两个根,由△≥0,得(r +1)≤22.因r >0,r +1>0,故r +1≤2,即0<r ≤1.3.249π提示:过P 作垂直于OP 的弦AB ,此时弓形面积最小.4.13提示:设AD AB =x ,则BD BA =1-x =CG CA ,ADG ABC S S ∆∆=x 2,BDE ABCS S ∆∆=(1-x )2=CFG ABC S S ∆∆,S 梯形DEFG =1―x 2―2(1-x )2=-3(x -23)2+13.5.12a 提示:当OA =OB 时,OC 的长最大. 6.C 7.(1)由Rt △ABP ∽Rt △PCQ ,得BP CQ =AB CP ,即x y =44x-,y =-14(x -2)2+1(0<x <4).当x =2时,y 最大值=1cm.(2)由14=-14(x -2)2+1,得x =(2)cm 或(2)cm.8.当过A ,B 两点的圆与x 轴正半轴相切时,切点C 为所求.作O′D ⊥A B 于D .,O′D 2=O′B 2-B D 2=2()2a b +-2()2a b -=ab ,O′DC0).9.(1)如图,延长CB 到L ,使BL =DN ,则Rt △ABL ≌Rt △ADN ,得AL =AN ,∠1=∠2,又∵N =2―CN ―CM =DN +BM =BL +BM =ML ,且AM =AM ,∠NAL =∠DAB =90°.∴△AMN ≌△AML ,故∠MAN =∠MAL =902=45°.(2)设CM =x ,CN =y ,MN =z ,则2222222,2,x y z x y z x y z x y z ++==--⎧⎧⇔⎨⎨+=+=⎩⎩,于是,(2―y ―z )2+y 2=z 2.整理得2y 2+(2z -4)y +(4-4z )=0.∵y >0,故△=4(z -2)2-32(1-z )≥0,即(z +2+)(z +2-)≥0.又∵z >0,故z ≥22-2,当且仅当x =y =2-2时等号成立.由于S △AMN =S △AML =12·ML ·AB =12MN ×1=2z ,因此,△AMN 2-1.10.(1)提示:证明△ADF ∽△BAC .(2)①AB =15,BC =9,∠ACB =90°,∴AC 22AB BC -2215912-=,∴CF =AF =6,∴()()19632702y x x x =+⨯=+>.②∵BC =9(定值),∴△PBC 的周长最小,就是PB +PC 最小,由(1)知,点C 关于直线DE 的对称点是点A ,所以PB +PC =PB +PA ,故只要求PB +PA 最小.显然当P 、A 、B 三点共线时PB +PA 最小,此时DP =DE ,PB +PA =AB .由(1),角∠ADF =∠FAE ,∠DFA =∠ACB =90°,得△DAF ∽△ABC .EF ∥BC ,得AE =BE =12AB =152,EF =92.∴AF ∶BC =AD ∶AB ,即6∶9=AD ∶15,∴AD =10.Rt △ADF 中,AD =10,AF =6,∴DF =8.∴DE =DF +FE =8+92=252.∴当x =252时,△PBC 的周长最小,此时y =1292.11.(1)令k =1,得y =x +2;令k =2,得y =2x +6,联立解得x =4,y =2,故定点(4,2).(2)取x =0,得OB =2-4k (k <0),取y =0,得OA =()420k k k-<.于是△ABO 的面积()()114224022k S OA OB k k k -==-< ,化简得()28820k S k +-+=.由()28640S ∆=--≥得2160S S -≥,故S ≥16.将S =16代入上述方程,得k =12-.故当k =12-,S 值最小.12.(1)如图,延长EF 交AC 于点D ,DF ∥BC ,Rt △ADF ∽Rt △ACB ,AE =AC =x ,()2222DE x x y xy y =--=-,22xy y y x y x -+-=,2x -2y -xy=,两边平方整理得(x 2+2x +2)y 2-(x 3+2x 2+4x )y +2x 2=0.解得2222x y x x =++(y =x 舍去).(2)由(1)2122y x x ==++.当且仅当2x x =,即x =时,上式等号成立.故当x =时,y1-.。
专题25 平面几何的最值问题例】等提示:当CM ®吋,CM 值最小,g 営:晋MN 的最小值为点厅到AB 的距离B'F, BE= —— = 4^5 cm, AC阳=8亦cm, AE=-BE 1=(20, -(4⑹'=8辰m.在△ABB'中,由丄 的“/^二丄血叩乍,得B'F=16cm ・故BM+2 2MN 的最小值为16cm. 例3 由厶APDs 厶BPQ,得(例2题咔“ 、A/竺=如,即盹=竺竺二好2 -P+BQ=x+冬"・・・・x+《4 BP BQAP x x x2 lx — = 14ab ,・••当且仅当x=—即x=V^时,上式等号成立.故当4PV XXp= 伤时,AP+BQ 最小,其最小值为2 后 _b.例4 (1”;=25 +亍,仔= 49”,故要选择路线/较短•⑵Z+EM +b ,(例5题图)X —呂=才(沪一4)厂一4八・当r=-^—时,片=1?,当r>-^—时,/,2>^,当r<-^— 1 2 LV ) 」 兀$ _4 1 - 兀—4 1 2亍-4时,/.2< /; • 例 5 设 DN=x, PN=y,则 S=xy,由厶APQs'ABF,得4f 3,.=-即-2 — (4 — x) 2不在自变量y 的取值范围内,所以y=—不是极值点,当y=3时,S {3)=12,当y=4时,S (4)=8,故S m ”=12.此时,钢板的最大利用率 ---------- : ---- =80%. 例6设PD=x(x>l),42 -Zx2xl2 则 PC=厶—,由 RtMCDsZAB,得&B=S"'= "I ,令 y=&3・Sz^B ,则 Y= ~ PC J7~[2(P)x=10 — 2y,代入 S=xy 得 S=xy=y(10—2小 即 S=~225 +因 3WyW4,而 y=2AB X PA X AB = (x + 厅2(x-l)求y 的最小值,有下列不同思路:①配方:y =2,即当x=3时,y 有最小值4.②例2如图,B f M+x-\ 2 ------ 1 ----- 2 x-1+ 4 , A 当2运用基本不等式:y=X_1 232x-l 2 二当——=——,即当尸3吋,尹有最小值4.③借用判别式,去2 x — 1分母,得 “+2 (l-y)x+l+2y=0,由厶=4(1一尹)2—4(1+2尹)=4尹(p-4)N0,得比 4,・\y 的最小值为4.1.17提示:当两张纸条的对角重合时,菱形周长最人.2.83. ^744.D5.D6.B7. C 提示:当点P 与点D 重合时,四边形ACBP 的周长最大.8. (1)连结 ME,过 N 作 NFA.AB 于 F,可证明 RUEB 4竺Rt^MNF,得 MF=AE=x. VME 2=AE 2+AM 2f故 MB 1=X 1+AM 1,即(2—力M) 2=x 2+.4M 2, AM=\~-x.:・S=4AM十 DN xq= "M + " x2=/M+/M+MF=2/M+Ag=2 (l--x 2) +x=~-x 22 24 2+x+2.(2) S=~- (X 2-2 X +1)(x —l)讣丄.故当亦=x= 1 时,四边形ADNM2 2 2 2的面积最大,此吋最大值为仝.29. (1) 3C 长为竺二(2)提示:连结3D (3)过点3作丄力D 于由(2)知四3AB?边形/BCD 为等腰梯形,从而BC=AD-2 AM=2r-2 /M.由厶BAM^/\DAB,得 -------------------ADX YY EF=2 r- —./=4x+2 (2 厂一一)=-- rr r(0<x< V2 r)..当兀=厂时,/取得最大值6— 2+2=4,2 x-lY・・・BC=2厂一一.(x —r) 2+6 r (第8題图)10. (1) V ZAPE= ZADQ.Z4EP= ZAQD,:. ^APE^/\ADQ. (2)由厶4PEs △力DQ,1J 1333'PDFs£\ADQ,S、PEF = — S DPEQF ,得 S、PEF = — — 7+x= — — (x ——)2+ — •故当 x=—2 3 3 2 42时,即P 是/D 的中点时,取得最大值,(3)作A 关于直线BC 的对称点连结DA 交BC 于0,则这个0点就是使LADO 周长最小的点,此时0是BC 的中点. 11. (1)点P 恰好在3C 上时,由对称性知MN 是LABC 的中位线,.••当BC=3时,2点P 在BC 上.(2)由己知得ZUBC 底边上的高〃=“扌=4.①当0<疋3时,如图1,连结并延长交BC 于点、D, 4D 与MN 交于点O.(第11题图)图22J 2 1 o 1 市△/A/Ns △/3C,得 AO= — X J y=S、PMN =S、AMN =—x — x=—x?即尹=—x?•当=3 时,v3 ■‘233 3'的值最大,最大值是3.②当3<x<6时,如图2,设△PMN 与BC 相交于点E, F, 4P 与 244相交于D.由①屮知AO=-x, :.AP=-x, :.PD=AP~AD=-x-A, T \PEFs 厶ABC.,3 33尹的最大值为4.综上,当兀=4时,夕的值最大,最大值为4.1.8 8^232提示:当ZCAB=ZACD=90°时,四边形ABCD 的面积达到最大值.S MB C(x-3)・••吵=S“wv _c — 1 2b“EF—~ 入3(x —3) 2=-X 2 + 8X -12 = - (X —4) 2 + 4.故当 x=4 时,Q'PE F・• SbPEF=~即2. 0</<1 提示:设BC=a, CA=b, AB=c, b+c=2观(r+1),又—/)csin60°=5A/i5c:=—2 2Ca+b+c) F,即、bc^~ = L [2\/3 +2A/3 G+l)]『,.bc=4r (r+2) . b, c 为方程2 2 2X2-2A/3 (r+1) x+4r (r+2) =0 的两个根,由—0,得(r+1) <22.H r>0, r+l>0,故 r+l<2,即 0</<l.3如7提示:过P 作垂直于"的弦倔此时弓形面积最小•4.丄提示:设 —=x,则 —= 1-^= —,也型=/,3 AB BA CA S’%° ° 2 1S 梯形DEFG = 1 —工厶—2 ( 1 —X ) 2 = — 3 (.X — — ) ' + —・33n:]5. 7 + °提示:当= 时,OC 的长最大.6. C27. (1)由 RtzUBPsRtAPC 。
初中数学竞赛:平面几何中的最值问题
在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例.
例1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)?
分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可.
解作DE⊥AB于E,则
x2=BD2=AB·BE
=2R·(R-y)=2R2-2Ry,
所以
所以求u的最大值,只须求-x2+2Rx+2R2最大值即可.
-x2+2Rx+2R2=3R2-(x-R)2≤3R2,
上式只有当x=R时取等号,这时有
所以2y=R=x.
所以把半圆三等分,便可得到梯形两个顶点C,D,这时,梯形的底角恰为60°和120°.
例2 如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?
分析与解设x表示半圆半径,y表示矩形边长AD,则必有
2x+2y+πx=8,
若窗户的最大面积为S,则
把①代入②有
即当窗户周长一定时,窗户下部矩形宽恰为半径时,窗户面积最大.
例3 已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大(图3-93)?
分析与解因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.
设P为半圆弧中点,连PB,PA,延长AP到C,使PC=PA,连CB,则CB是切线.为了证PA+PB最大,我们在半圆弧上另取一点P′,连P′A,P′B,延长AP′到C′,使P′C′=BP′,连C′B,CC′,则
∠P′C′B=∠P′BC=∠PCB=45°,
所以A,B,C′,C四点共圆,所以
∠CC′A=∠CBA=90°,
所以在△ACC′中,AC>AC′,即
PA+PB>P′A+P′B.
例4 如图3-94,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.
证连结AM,BM,DM,AN,DN,CN.因为在△ABC中,∠A=90°,AD⊥BC于D,所以
∠ABD=∠DAC,∠ADB=∠ADC=90°.因为M,N分别是△ABD和△ACD的内心,所以
∠1=∠2=45°,∠3=∠4,
所以△ADN∽△BDM,
又因为∠MDN=90°=∠ADB,所以
△MDN∽△BDA,
所以∠BAD=∠MND.
由于∠BAD=∠LCD,所以
∠MND=∠LCD,
所以D,C,L,N四点共圆,所以
∠ALK=∠NDC=45°.
同理,∠AKL=∠1=45°,所以AK=AL.因为
△AKM≌△ADM,
所以AK=AD=AL.
而
而
从而
所以 S△ABC≥S△AKL.
例5 如图3-95.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.
证设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则
PQ≤P1Q1≤AP1≤AB;
若∠P1Q1C≥90°,则
PQ≤P1Q1≤P1C.
同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则
P1C≤BC=AB.
对于P,Q两点的其他位置也可作类似的讨论,因此,PQ≤AB.
例6 设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l 的距离设为d1,d2,求d1+d2的最大值(1992年上海初中赛题).
解如图3-96,延长BA到B′,使AB′=AB,连B′C,则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.
(1)若l与BC相交于D,则
所以
只有当l⊥BC时,取等号.
(2)若l′与B′C相交于D′,则
所以
上式只有l′⊥B′C时,等号成立.
例7 如图3-97.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.
解设⊙O与AB相切于E,有OE=1,从而
即AB≥2.
当AO=BO时,AB有最小值2.从而
所以,当AO=OB时,四边形ABCD面积的最小值为
练习十八
1.设M为圆O外一定点,P为圆O上一动点.试求MP的最大值和最小值.
2.设AB是圆O的动切线,直线OA,OB保持互相垂直.如果圆O的半径为r,试求OA+OB的最小值.
3.一直角三角形的周长为10厘米(cm),则其面积的最大值是多少厘米?
4.已知l1∥l2,A,B是直线l1上的两个定点,且AB=10,l1,l2的距离为8,P为直线l2上的一个动点,试求△ABP周长的最小值.
5.如果矩形ABCD的周长为40厘米,那么这个矩形面积的最大值是多少平方厘米?。