2019届中考数学二轮专题复习教案:专题一 “最值问题”之专题复习——平面几何中的最值问题
- 格式:doc
- 大小:175.50 KB
- 文档页数:4
中考数学复习-几何专题复习-教案一、教学目标1. 知识与技能:巩固和掌握初中阶段几何的基本知识和技能,提高解题能力。
2. 过程与方法:通过复习,使学生能够灵活运用几何知识解决实际问题,培养学生的逻辑思维能力和空间想象能力。
3. 情感态度与价值观:激发学生学习几何的兴趣,提高学生对数学学科的认同感和自信心。
二、教学内容1. 第一课时:三角形的全等和相似教学重点:全等三角形的判定和性质,相似三角形的判定和性质。
教学难点:全等三角形和相似三角形的应用。
2. 第二课时:四边形的性质和判定教学重点:四边形的性质和判定方法。
教学难点:四边形性质和判定方法的综合运用。
3. 第三课时:圆的性质和判定教学重点:圆的性质和判定方法。
教学难点:圆的性质和判定方法在实际问题中的应用。
4. 第四课时:角的计算和证明教学重点:角的计算方法和证明方法。
教学难点:角的计算和证明在实际问题中的应用。
5. 第五课时:几何图形的面积和体积教学重点:几何图形的面积和体积计算方法。
教学难点:几何图形面积和体积计算在实际问题中的应用。
三、教学过程1. 复习导入:通过复习已学过的几何知识,引导学生回顾和巩固相关概念、定理和公式。
2. 讲解与示范:针对每个课时的教学内容,进行详细的讲解和示范,引导学生理解和掌握相关知识和技能。
3. 练习与讨论:布置适量的练习题,组织学生进行练习和讨论,巩固所学知识,提高解题能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习成果:评估学生在练习中的表现,检查学生对知识的掌握程度。
3. 期中期末考试:通过期中期末考试,全面评估学生的复习效果。
五、教学资源1. 教材:选用合适的中考数学复习教材,为学生提供系统的复习资料。
2. 习题集:挑选适合学生水平的习题集,提高学生的解题能力。
3. 教学课件:制作精美的教学课件,辅助讲解和展示教学内容。
4. 教学视频:收集相关的教学视频,为学生提供更多学习资源。
专题一:“最值问题”专题复习——平面几何中的最值问题在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决方法通常有两种:(1)应用几何性质:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③连结直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长。
(2)运用代数证法:①运用配方法求二次三项式的最值;②运用一元二次方程根的判别式。
例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。
例2、已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大?分析: 本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.例3、如上右图是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?例4、已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大?分析因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A 重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.例5、如图,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.例6、如图.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证明:设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其它位置也可作类似的讨论,因此,PQ≤AB.例7、设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值.解如图,延长BA到B′,使AB′=AB,连B′C则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.(1)若l与BC相交于D,则所以只有当l⊥BC时,取等号.(2)若l′与B′C相交于D′,则所以上式只有l′⊥B′C时,等号成立.例8、如图.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.解设⊙O与AB相切于E,有OE=1,从而即 AB≥2.当AO=BO时,AB有最小值2.从而所以,当AO=OB时,四边形ABCD面积的最小值为专题复习——几何的定值与最值几何中的定值问题,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.【例题就解】【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D′,DQ ⊥CC′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, 为的度数( )A .从30°到60°变动B .从60°到90°变动C .保持30°不变D .保持60°不变思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们⌒的证明目标更加明确.注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;(2)构造二次函数求几何最值.。
2019 年中考数学复习教学设计目录:第一章实数与中考第一讲实数的相关看法第二讲实数的运算第二章代数式与中考第一讲整式第二讲因式分解与分式第三讲数的开方与二次根式第三章方程(组)与中考第一讲一次方程(组)及应用第二讲一元二次方程及应用第三讲分式方程及应用第四讲列出方程解应用题第四章不等式与不等式组与中考第一讲一元一次不等式(组)及应用第二讲不等式(组)与方程的应用第五章函数与中考第一讲变量之间的关系与平面直角坐标系第二讲正比率、反比率、一次函数、二次函数第一节一次函数第二节反比率函数第三节二次函数第四节二次函数的应用第五节用函数的看法看方程或不等式第六节函数的综合应用第六章三角形与中考第一讲几何初步及平行线、订交线第二讲三角形的看法和全等三角形第三讲等腰三角形第四讲直角三角形第七章四边形与中考第一讲多边形与平行四边形第二讲矩形、菱形、正方形第三讲梯形中位线与面积第八章图形的变换与中考第九章视图与投影与中考第一讲圆的相关性质第二讲与圆相关的地址关系第三讲圆的切线的性质和判断第四讲圆与圆的地址关系第五讲圆的相关计算第十一章相似形与中考第一讲图形的相似与位似第二讲相似三角形(1)第三讲相似三角形(2)第十二章解直角三角形与中考第一讲锐角三角函数与解直角三角形第二讲解直角三角形的应用第十三章统计与中考第一讲数据的代表第二讲数据的收集与办理第十四章概率与中考第一讲概率的简单计算第二讲频率与概率第一章实数与中考中考要求及命题趋势1.正确理解实数相关看法;2.借助数轴工具,理解相反数、绝对值、算术平方根等看法和性质;3.掌握科学计数法表示一个数,熟悉按精确度办理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混淆运算5.会用多种方法进行实数大小比较。
2009 年中考将连续观察实数的相关看法,值得一提的是,用本质生活的题材为背景,结合现在的社会热点问题观察近似值、有效数字、科学计数法依旧是中考命题的一个热点。
初三数学复习教案平面解析几何初三数学复习教案——平面解析几何引言:平面解析几何是数学中的重要分支,它通过运用代数和几何的知识,研究平面上的点、直线、曲线等与数学密切相关的性质和关系。
本教案旨在帮助初三学生复习平面解析几何的基础概念和解题方法,以提高他们的数学能力。
一、直角坐标系的建立在平面解析几何中,直角坐标系是我们最常使用的工具。
通过建立直角坐标系,可以将平面上的点与一组有序数对(x,y)相对应。
下面是建立直角坐标系的步骤:1.选择一条水平线作为x轴,选择一条垂直于x轴的线作为y轴;2.选择一个点作为原点O;3.确定单位长度,确定x轴和y轴的正方向;4.设P是平面上的一点,OP的长度表示P与原点O之间的距离;5.假设P的坐标为(x,y),其中x表示P在x轴上的投影的长度,y表示P在y轴上的投影的长度。
二、平面上两点的距离和中点1. 两点之间的距离:设P₁(x₁, y₁)和P₂(x₂, y₂)是平面上的两点,它们之间的距离d 可以通过以下公式来计算:d = √((x₂-x₁)² + (y₂-y₁)²)2. 两点的中点:设P₁(x₁, y₁)和P₂(x₂, y₂)是平面上的两点,它们的中点M的坐标可以通过以下公式来计算:xₘ = (x₁ + x₂)/2yₘ = (y₁ + y₂)/2三、直线的方程1. 点斜式方程:设直线l过点P(x₁, y₁),且斜率为k,那么直线l的方程可以表示为:y - y₁ = k(x - x₁)2. 两点式方程:设直线l过点P₁(x₁, y₁)和点P₂(x₂, y₂),那么直线l的方程可以表示为:(y - y₁)/(y₂ - y₁) = (x - x₁)/(x₂ - x₁)3. 截距式方程:设直线l与x轴和y轴的交点分别为A(a, 0)和B(0, b),那么直线l的方程可以表示为:x/a + y/b = 1四、直线相交问题在平面解析几何中,直线的相交问题常常是我们需要解决的。
最值问题(一)----求线段和的最小值问题复习目标: 1.熟练掌握求线段和的最小值问题的各种基本模型,并灵活运用各种模型解决问题。
2.通过归纳总结各种基本模型,使之系统化、条理化。
并体会各种模型的内在联系与区别,从而提高模型的识别能力。
3.渗透转化、数形结合思想,培养学生良好的思维品质和习惯。
复习重点: 以“两点之间线段最短”与“垂线段最短”为理论依据,利用轴对称与平移变换,化“折”为“直”的方法来解决线段和的最小值问题。
复习难点:提高各种基本模型的识别能力,并能灵活运用。
教学过程:一.牛刀小试1.把一条弯曲的公路改成直道,可以缩短路程,用几何知识解释其道理,正确的是( ) A .两点确定一条直线 B .两点之间线段最短C .垂线段最短D .三角形两边之和大于第三边2.如图,从直线l 外一点A 到这条直线的所有线段中,最短的线段是(A .AB B .AC C .AD D .AE 第2题图 归纳: 理论依据:两点之间,线段最短; 垂线段最短二.模型再现(一)基本模型1如图,点A 、B 在直线l 的异侧,请在直线l 上求作 一点P ,使PA+PB 最小.变式1:如图,点A 、B 在直线l 的异侧,线段PQ 在直线l 运动,且PQ=1, 请在直线l 上作出PQ ,使PA+QB 最小.变式2:(造桥选址问题)如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,桥造在何处可使从A 到B 的路线AMNB 最短?请画出最短路径.(假定河的两岸是平行直线,桥MN 要与河岸垂直.)中考专题复习l m AlAlAlDC EB变式3:(将军马饮问题)如图所示,将军在观望烽火之后从山脚下的A 点出发,走到河边饮马,然后返回B 点宿营.请问怎样走才能使总的路程最短?请画出最短路径.(二)基本模型2 如图,点A 是∠MON 内任意一点,请在射线OM 、ON 上分别作出点P 、Q使得PA+PQ+QA 最小.三.模型归类,触类旁通 基本模型:1.两定点()2.(一点两线型)总结: 理论依据:两点之间线段最短;垂线段最短 基本方法:对称或平移基本思想:化折为直(本质是转化思想)lAB B' 1B四.模型应用1.如图,菱形ABCD 的边长为4,∠BAD=120°,点E 在AB 的中点,点F 是AC 上的一动点,则EF+BF 的最小值为 .2.四边形ABCD 为正方形,点E 为BC 边上一点,1,3==EC BE ,点F 为CD 的中点,若点M 、N 是对角线BD 上的两动点,且2=MN ,则四边形EFMN 的周长的最小值为 .3.如图,∠MON=45°,P 是∠MON 内一点,PO=10, Q 、R 分别是OM 、ON 上的动点,那么△PQR 周长的最小值为 .变式1:如图,∠MON=45°,P 是∠MON 内一点,PO=10,若∠MOP=15°. Q 、R 分别是OM 、ON 上的动点,求PQ+QR 的最小值为 .变式2:如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,试求作△DEF 使得△DEF 的周长最小.五.回顾与反思六.课外习题(另附)第1题图CB第2题图E第3题图B1.已知︒=∠30MON ,点B A 、在OM 上,2,4==AB OA ,点P 在ON 上 (1)求PB PA +的最小值(2)求22PB PA +的最小值(3)求PB PO +21的最小值 (4)变式: 当∠MON=45°时,求PO PB 22+的最小值。
平面几何最值问题的解法平面几何的最值问题多为在存在动点或者不确定的位置关系的情况下求最值,有两种解题思路,一个是通过几何图形的性质实现对位置的确定,另一个是通过数量关系实现最值问题的解答. 一、利用对称性质,实现问题简单化图形经过某一点或者轴对称之后,就会有很多固有的由对称产生的等量关系,不同的对称性(如中心对称、轴对称等)也有独特的对称性质.合理地利用相应的性质会使问题得到简化,这会给解题带来很大的帮助.例1 在如图所示的平面直角坐标系中,在:轴的正半轴上有一点A ,B 的坐标为,点C 的坐标为1(,0)2,三点构成直角三角形OAB ,斜边OB 上有一个动点P ,求PA PC +的最小值.解析 我们利用对称的性质,会使解题息路得到转化.如右图所示,以OB 为轴,作点A 的对称点D ,连接AD 交OB 于点M .有AP DP =恒成立.利用三角形关系中两边之和大于第三边可得出当P 在DC连线上时取得最小值,即为图中所示的情形,只要求出CD 的长即可.根据B 点坐标可求出AB =,OB =由三角形面积不同求法间的等量关系可得出32AM =.故1322AN AD ==,由C 点坐标可求出1CN =.由勾股定理可求出2DC =,此值即为所求PA PC +的最小值. 点拨 本题中是作直线的对称点,实现直线同侧点到异侧点的转化,这是我们在解题中常遇到的情况以及常见的解题方法.对称性的应用注重于问题的解题技巧,目的是通过对称性使复杂的问题简单化. 二、构造不等关系,巧用基本不等式对于平面几何问题,不等关系的构造是离不开几何图形本身的数量关系的.想要利用基本不等式求解,学生需要在图形中找出满足不等式的条件,这不光对于学生的平面几何知识有考查,还要学生深入理解不等式的相关知识.例 2 已知四边形ABCD ,O 点为对角线AC 与BD 的交点,4AOB S =V ,9COD S =V ,求四边形ABCD 的面积S 的最小值解析 题中的四边形为不规则图形,没有直接求此类图形的公式,我们需要将其拆分成几个三角形进行分别求解.题中给出了两个三角形的面积,我们再表示出另两个三角形的面积就可以了.四边形按照此种分解后求面积,我们发现有很多等高的三角形,出现此类三角形,其面积比就只与底的长度有关,这时就可利用此关系计算.即有AOD CODAOB BOCS S S S =V V V V ,设AOD S a =V ,BOC S b =V ,整理得36ab =.又有131325S a b =++≥=,故最小值为25.点拨 本题中对于三角形知识的考察非常深入,将三角形面积间的关系转化为长度关系进行解答是最为关键的步骤,学生要有思维模式的转化才会想出这一解决方法,而后结合不等式知识解题,否则盲目地求面积是不能实现的.三、化为二次函数,列出方程再求解二次函数是初中数学中最重要的一类函数,此处并不是像压轴题那样对二次函数进行全面的考察,而是将所求的量转化为二次函数的形式,利用二次函数的相关性质解题,更加注重于对问题的分析转化能力.例3 有一三角形ABC ,底边120BC =,高80AD =,如图所示。
2019年中考数学二轮复习精品资料方案设计型问题一、中考专题诠释方案设计型问题,是指根据问题所提供的信息,运用学过的技能和方法,进行设计和操作,然后通过分析、计算、证明等,确定出最佳方案的一类数学问题。
随着新课程改革的不断深入,一些新颖、灵活、密切联系实际的方案设计问题正越来越受到中考二、解题策略和解法精讲方案设计型问题涉及生产生活的方方面面,如:测量、购物、生产配料、汽车调配、图形拼接等。
所用到的数学知识有方程、不等式、函数、解直角三角形、概率和统计等知识。
这类问题的应用性非常突出,题目一般较长,做题之前要认真读题,理解题意,选择和构造合适的数学模型,通过数学求解,最终解决问题。
解答此类问题必须具有扎实的基础知识和灵活运用知识的能力,另外,解题时还要注重综合运用转化思想、数形结合的思想、方程函数思想及分类讨论等各种数学思想。
三、中考考点精讲考点一:设计测量方案问题这类问题主要包括物体高度的测量和地面宽度的测量。
所用到的数学知识主要有相似、全等、三角形中位线、投影、解直角三角形等。
对应训练点在同一条直线上.请根据以上条件求出树这类问题不仅在中考中经常出现,大家在平时的练习中也会经常碰到。
它一般给出两种元素,利用这两种元素搭配出不同的新事物,设计出方案,使获利最大或成本最低。
解题时要根据题中蕴含的不等关系,列出不等式(组),通过不等式组的整数解来确定方案。
考点三:设计销售方案问题在商品买卖中,更多蕴含着数学的学问。
在形形色色的让利、打折、买一赠一、摸奖等促销活动中,大家不能被表象所迷惑,需要理智的分析。
通过计算不同的销售方案盈利情况,可以帮助我们明白更多的道理。
近来还出现运用概率统计知识进行设计的问题。
例3 (2018•遂宁)四川省第十二届运动会将于2019年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务.为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.(3)设总利润为W,则W=(140-a)x+80(200-x)=(60-a)x+16000(95≤x≤105),①当50<a<60时,60-a>0,W随x的增大而增大,所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双;②当a=60时,60-a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60-a<0,W随x的增大而减小,所以,当x=95时,W有最大值,即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.考点四:设计图案问题图形的分割、拼接问题是考查动手操作能力与空间想能力的一类重要问题,在各地的中考试题中经常出现。
中考数学总复习几何部分教案一、教学目标1. 知识与技能:使学生掌握初中数学几何部分的基本概念、性质、定理和公式,提高学生的空间想象能力和逻辑思维能力。
2. 过程与方法:通过复习,使学生能够熟练运用几何知识解决实际问题,培养学生的数学应用能力和解决问题的能力。
3. 情感态度与价值观:激发学生学习几何的兴趣,培养学生勇于探索、积极思考的科学精神,提高学生对数学美的鉴赏能力。
二、教学内容1. 第一章:平面几何基本概念1.1 点、线、面的位置关系1.2 平行线、相交线1.3 三角形、四边形、五边形等基本图形的性质2. 第二章:三角形2.1 三角形的性质2.2 三角形的判定2.3 三角形的证明方法3. 第三章:四边形3.1 四边形的性质3.2 特殊四边形的性质及判定3.3 四边形的不等式4. 第四章:圆4.1 圆的定义及性质4.2 圆的方程4.3 圆与直线、圆与圆的位置关系5. 第五章:几何变换5.1 平移、旋转的性质5.2 相似三角形的性质及判定5.3 位似与坐标变换三、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 利用多媒体教学手段,直观展示几何图形的性质和变换过程,提高学生的空间想象能力。
3. 注重个体差异,针对不同学生进行分层教学,使每位学生都能在复习过程中得到提高。
四、教学评价1. 定期进行课堂检测,了解学生掌握几何知识的情况。
2. 组织中考模拟试题训练,检验学生的应用能力和解题水平。
3. 关注学生在复习过程中的学习态度、方法及合作精神,进行全面评价。
五、教学计划1. 课时安排:每个章节安排4课时,共20课时。
2. 教学进度:按照章节顺序进行复习,每个章节安排一周时间。
3. 复习方法:先梳理每个章节的基本概念、性质、定理和公式,进行典型例题分析,进行课堂练习和总结。
4. 课外作业:每章节安排2-3道课后习题,巩固所学知识。
5. 课后辅导:针对学生疑难问题进行解答,提供个性化的学习指导。
中考数学专题复习六几何(一)【教学笔记】题型一:图像的几何变换1、主视图、左视图、府视图2、图形旋转、折叠3、求最短途径问题题型二:平面几何根底1、平行线、相交线题型三:三角形(全等、相像、三角函数)1、勾股定理1、题型一:图像的几何变换【例1】(2016•资阳)如图是一个正方体纸盒的外外表绽开图,则这个正方体是( )A .B .C .D .【解答】解:∵由图可知,实心圆点及空心圆点肯定在紧相邻的三个侧面上,∴C 符合题意. 故选C .【例2】(2015•资阳)如图1是一个圆台,它的主视图是 ( ) A . B . C . D . 解:B .【例3】(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影局部的面积是( ) A .12π B.24π C.6π D.36π【例4】(2014年四川资阳)如图,在Rt△ABC 中,∠BAC=90°.假如将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A .55°B . 60°C . 65°D . 80°解答:∵在Rt△ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,∴BB 1=AB=AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=60°,∴旋转的角度等于60°.故选:B .【例5】(2015自贡)如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B ′D 的最小值是( )A .2102-B .6C .2132-D .4解析:【课后练习】1、(2014年四川资阳)下列立体图形中,俯视图是正方形的是( )A .B .C .D .解答: 解;A 、的俯视图是正方形,故A 正确;2、(2015内江)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( B ) A 3 B .3.6 D 6解:连接BD,及AC交于点F.∵点B及D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23=BE3、(2015甘孜州)下列图形中,是中心对称图形的为()A. B. C. D.解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选B.4、(2015遂宁)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是( C )A.2 B.3 C.4 D.5解:平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形,符合题意;而等腰梯形是轴对称图形,但不是中心对称图形,故中心对称图形的有4种.5、(2015泸州)如图,在△ABC中,AB=AC,BC=24,tanC=2,假如将△ABC沿直线l 翻折后,点B落在边AC的中点E处,直线l及边BC交于点D,那么BD的长为( A )A.13 B.152C.272D.12解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=24,tanC=2,∴A Q/QC=2,QC=BQ=12,∴A Q=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,设BD=x,则DE=x,∴DF=24-x-6=18-x,∴x2=(18-x)2+122,得:x=13,则BD=13.故选A.6、(2015绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C及D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( B )A.34B.45C.56D.677、(2015广元)如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°,BC=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线26y x=-上时,线段BC扫过的面积为( C )A.4 B.8 C.16 D.82解:∵∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),∴AC=4,当点C落在直线y=2x﹣6上时,如图,∴四边形BB'C'C是平行四边形,∴A'C'=AC=4,把y=4代入直线y=2x﹣6,解得x=5,即OA'=5,∴AA'=BB'=4,∴平行四边形BB'C'C的面积=BB' ×A'C'=44=16;故答案为:16.8、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好及点C重合,则折痕AE的长为_______.试题分析:点B恰好及点C重合,且四边形ABCD是平行四边形,依据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,.故答案为:3.由勾股定理得9、(2015达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.10、(2015内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.11、(2015宜宾)如图,一次函数的图象及x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(32,32),则该一次函数的解析式为.12、(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.13、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.14、(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.15、(2015乐山)如图,已知A (23,2)、B (23,1),将△AOB 围着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影局部的面积为 .16、(2015南充)(10分)如图,点P 是正方形ABCD 内一点,点P 到点A 、B 和D 的间隔 分别为1,22,10,△ADP 沿点A 旋转至△ABP ′,连结PP ′,并延长AP 及BC 相交于点Q .(1)求证:△APP ′是等腰直角三角形;(2)求∠BPQ 的大小;(3)求CQ 的长.17、(2015自贡)(14分)在△ABC 中,AB=AC=5,cos∠ABC=53,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值及最小值的差.题型二:平面几何根底【例1】(2015资阳)如图,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( C ) A .30° B.35° C.40° D.45°【例2】(2015广安)如图,半径为r 的⊙O 分别绕面积相等的等边三角形、正方形和圆用一样速度匀速滚动一周,用时分别为1t 、2t 、3t ,则1t 、2t 、3t 的大小关系为 .解:设面积相等的等边三角形、正方形和圆的面积为3.14,等边三角型的边长为a≈2, 等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8; 圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t 2>t 3>t 1.【例3】(2016•资阳)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB= 36° .【解答】解:正多边形内角和;∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【课后练习】1、(2015内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°2、(2015凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()m]A.52° B.38° C.42° D.60°3、(2015泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90° B.100° C.110° D.120°4、(2015成都)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.5、(2015遂宁)下列命题:①对角线相互垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y kx b=+经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=22a b-,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线2243y x x=-++的顶点坐标是(1,1).其中是真命题的有(只填序号)6、(2015宜宾)如图,A B∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .[来7、(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .题型三:三角形(全等、相像、三角函数)【例1】(2016•资阳)如图6,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=2;②当点E及点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为( C )A.①②③B.①③④C.①②④D.①②③④解答:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E及点B重合时,点H及点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB 的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠EBD=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴AE/BC=,∴A E•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG ,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF ,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.【例2】(2016•资阳)如图5,透亮的圆柱形容器(容器厚度忽视不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短途径是()图5 A.13cm B.261cm C.61cm D.234cm考点:平面绽开-最短途径问题..解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm及饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面绽开,作A关于EF的对称点A′,连接A′B,则A′B即为最短间隔,A′B===13(Cm).故选:A.【例3】(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中全部正确结论的序号是①②③④.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△A B C=×1×1=,S四边形D C E O =S△D O C+S△C E O=S△C D O+S△A D O=S△A O C=S△A B C=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【例4】(2016•资阳)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F及点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,推断线段AF及线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.【课后练习】1、(2015成都)如图,在△ABC中,DE//BC,AD=6,BD=3,AE=4,则EC的长为()A.1 B.2 C.3 D.42、(2015达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°3、(2015遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm4、(2015宜宾)如图,△OAB及△OCD是以点O为位似中心的位似图形,相像比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(2,2) D.(2,1)5、(2015泸州)在平面直角坐标系中,点A(2,2),B(32,32),动点C 在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.56、(2015眉山)如图,A.B是双曲线上的两点,过A点作AC⊥x轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .47、(2015眉山)如图,AD ∥BE ∥CF ,直线l 1、l 2这及三条平行线分别交于点A 、B 、C和点D 、E 、F .已知AB =l ,BC =3,DE =2,则EF '的长为( )A .4B .5C .6D .88、(2015绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 及D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .34B .45C .56D .67 9、(2015绵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( )A .6B .12C .20D .2410、(2015绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118° B.119° C.120° D.121°11、(2015广安)一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长A.12 B.9 C.13 D.12或912、(2015甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD 的大小为()A.110° B.80° C.70° D.60°13、(2015乐山)如图,1l∥2l∥3l,两条直线及这三条平行线分别交于点A、B、C和D、E、F.已知,则DEDF的值为()A.32B.23C.25D.3514、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD 沿AE翻折后,点B恰好及点C重合,则折痕AE的长为________.15、(2015南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.16、(2015自贡)将一副三角板按图叠放,则△AOB及△DOC的面积之比等于.17、(2015宜宾)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD及CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③2DP PH PB=⋅;④.其中正确的是.(写出全部正确结论的序号)18、(2015宜宾)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的间隔为.19、(2015宜宾)如图,AB∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .20、(2015凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD :S△COB= .21、(2015泸州)如图,在矩形ABCD中,BC=2AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=22EH;③HO=12AE;④BC﹣BF=2EH.其中正确命题的序号是(填上全部正确命题的序号).22、(2015眉山)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的番号).23、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.24、(2015广元)一个等腰三角形两边的长分别为2m 、5cm .则它的周长为________cm . 25、(2015巴中)如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连结DH ,则线段DH 的长为 . 26、(2015巴中)若a 、b 、c 为三角形的三边,且a 、b 满意229(2)0a b -+-=,则第三边c 的取值范围是 .27、(2015攀枝花)如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .28、(2015乐山)如图,在等腰三角形ABC 中,AB=AC ,DE 垂直平分AB ,已知∠ADE=40°,则∠DBC= °.29、(2015乐山)(10分)如图,将矩形纸片ABCD 沿对角线BD 折叠,使点A 落在平面上的F 点处,DF 交BC 于点E .(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE 的长.30、(2015南充)(8分)如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都及点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)推断△AMP ,△BPQ ,△CQD 和△FDM 中有哪几对相像三角形?(不需说明理由)(2)假如AM =1,sin ∠DMF =53,求AB 的长.31、(2015南充)(8分)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . 求证:(1)△AEF ≌△CEB ;(2)AF =2CD .32、(2015内江)(本小题满分9分)如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.33、(2015广安)(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.解析:∵AD∥BC ∴∠CBD=∠ADB又∵∠EBD=∠CBD∴∠EBD=∠ADB∴OB=OD∵BC=BE AD=BC ∴BE=AD∴AD-OD=BE-OB∴OA=OE34、(2015巴中)(10分)如图,在菱形ABCD中,对角线AC及BD相交于点O,MN过点O且及边AD、BC分别交于点M和点N.(1)请你推断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.。
初三数学平面几何教学案一、教学目标1. 理解平面几何的基本概念,包括点、线、面、角等。
2. 掌握平面图形的基本性质,如直线的平行、垂直关系,三角形的分类等。
3. 能够运用平面几何知识解决实际问题。
4. 培养学生的观察力、逻辑思维和解决问题的能力。
二、教学内容1. 点、线、面的基本概念和性质。
2. 直线的平行、垂直关系。
3. 三角形的分类及性质。
4. 四边形的分类及性质。
三、教学过程1. 导入老师可以先给学生出示一些平面几何的图片,引导学生观察并讨论其中的点、线、面等要素。
通过探究的方式让学生自己总结点、线、面的定义和性质。
2. 点、线、面的基本概念和性质通过教材的讲解和实例分析,让学生掌握点、线、面的定义和性质。
可以辅以幻灯片或者黑板画图,使学生更直观地理解相关概念。
同时,学生也可以通过绘制几何图形来加深印象。
3. 直线的平行、垂直关系以两条直线的平行关系为例,通过教材的讲解和示例演算,让学生理解直线平行的条件和特点。
可以设计一些小组活动,让学生自己发现平行关系的性质,并总结归纳。
然后引入直线的垂直关系,让学生通过自主学习和合作探究的方式,理解直线垂直的条件和特点。
4. 三角形的分类及性质通过教材的讲解和实例分析,让学生掌握三角形的分类,并了解每种类型的性质。
可以给学生提供一些实例,让他们通过观察和推理,找出不同类型的三角形,并验证其性质。
可以设计一些思维导图或者观察记录表,帮助学生整理所学内容。
5. 四边形的分类及性质以矩形和菱形为例,通过教材的讲解和实例分析,让学生掌握四边形的分类,并了解每种类型的性质。
可以通过绘制几何图形,让学生发现四边形的各种特点,进一步理解其分类和性质。
可以给学生一些练习题,巩固所学内容。
6. 提升拓展可以设计一些拓展任务,让学生应用所学的平面几何知识,解决实际问题。
可以设计一些项目学习或者小研究,让学生自主探究平面几何在日常生活中的应用。
四、教学方法1. 探究式教学:通过提问和讨论,引导学生主动参与,自主探索平面几何的概念和性质。
2019年中考数学专题复习(完整版)第一章 数与式第一讲 实数【基础知识回顾】 一、实数的分类: 1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。
如:2π是 数,不是 数, 722是 数,不是 数。
2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。
2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。
a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。
【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。
1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。
其中a 的取值范围是 。
2、近似数和有效数字:一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 零 正整数 整数 有理数 无限不循环小数 (a >0) (a <0) 0 (a=0)⎧⎨⎩⎧⎨⎩正数正无理数零 负有理数负数止,中间所有的数字都叫这个数的有效数字。
【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。
中考数学专题复习—几何最值问题一、知识点睛在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
一般处理方法:常用定理:两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系(已知两边长固定或其和、差固定时)二、考点剖析,分类探究(一)线段之和最小问题P A+PB 最小, 需转化, 使点在线异侧B l1. (2014年贵州南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为_____ 。
(二)线段之差最大问题2.(2013年江苏省宿迁市)在平面直角坐标系xoy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_____ 。
(三)应用垂线段最短求最值问题3.(2014年葫芦岛)如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是_____ 。
(四)图形周长最值问题4. (2015年盘锦)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为_____ 。
(五)表面展开最值问题5. 如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为_____ 。
(六)图形面积的最值问题6.(2014年湖北省十堰市)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,求图中阴影部分的面积。
中考数学总复习几何部分教案一、教学目标1. 知识与技能:巩固初中阶段几何基本概念、性质、定理和公式,提高解题能力。
2. 过程与方法:通过复习,使学生掌握几何知识间的联系,形成知识体系。
3. 情感、态度与价值观:激发学生学习几何的兴趣,培养学生的逻辑思维能力和创新精神。
二、教学内容1. 第一章:平面几何基本概念点、线、面的位置关系平行线、相交线垂直和平行线的性质2. 第二章:三角形三角形的分类三角形的性质三角形的证明3. 第三章:四边形四边形的分类四边形的性质特殊的四边形(矩形、菱形、正方形)4. 第四章:圆圆的基本性质圆的周长和面积弧、弦、圆心角的关系5. 第五章:几何变换平移旋转轴对称三、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与学习过程。
2. 利用几何模型、图示等直观教具,帮助学生理解几何概念和性质。
3. 注重培养学生的逻辑思维能力和解题技巧,引导学生运用几何知识解决实际问题。
四、教学评价1. 定期进行课堂测试,检查学生对几何基本概念、性质、定理和公式的掌握情况。
2. 组织课后作业,督促学生巩固所学知识。
3. 结合期末考试,全面评估学生在本部分的学习成果。
五、教学计划1. 课时安排:每个章节安排4课时,共20课时。
2. 教学进度:按照教材顺序,逐章节进行复习。
3. 复习方法:课堂讲解与练习相结合,课后进行巩固复习。
六、教学内容6. 相似三角形与全等三角形相似三角形的性质全等三角形的判定与性质三角形相似和全等的应用7. 第五章:圆圆的切线圆的割线圆与圆的位置关系8. 立体几何棱柱、棱锥、棱台的性质立体图形的表面面积和体积平面与立体图形的截面9. 几何概率几何概率的定义几何概率的计算几何概率在实际问题中的应用10. 综合复习与应用分析中考数学几何部分的重点、难点、热点问题指导学生进行中考模拟试题训练分析学生答题情况,进行针对性的辅导七、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与学习过程。
几何最值问题专题复习教学设计教材分析:几何中的最值问题变幻无穷,教学中如何引导学生在复杂条件变化中发现解决问题的路径,核心问题是训练学生在题目中寻找不变的已知元素,从这些已知的不变元素,运用“两点间线段最短”、“垂线段最短”、“二次函数最值””运动轨迹”等知识源,实现问题的转化与解决.教学目标:知识溯源,从知识转化角度,借助中考真题的讲解,引导学生掌握处理最值问题的基本知识源(见教学设计中的标题),明确解决最值问题的思考方向。
重点知识与命题特点最值连续多年广泛出现于中考试题中,由冷点变为热点,求相关线段、线段之和差、面积等最大与最小值.此类问题涉及的知识要点有以下方面: ①两点间线段最短;②垂线段最短;③三角形的三边关系;④ 二次函数的最值问题. ⑤ 运动轨迹中的最值问题。
命题特点侧重于在动态环境下对多个知识点的综合考查. 核心思想方法由于这类问题目标不明确,具有很强的探索性,解题时需要运用动态思维、数形结合、模型思想、特殊与一般相结合、转化思想和化归思想、分类讨论思想、函数和方程思想、从变化中寻找不变性的数学思想方法、逻辑推理与合情猜想相结合等思想方法.解这类试题关键是要结合题意,借助相关的概念、图形的性质,将最值问题化归与转化为相应的数学模型进行分析与突破。
教学过程一、问题导入我们所学的知识体系中,有哪些与最大值或最小值有关联的知识?①两点间线段最短;②垂线段最短;③三角形的三边关系;④ 二次函数的最值问题. ⑤ 运动轨迹中的最值问题。
师:我们把这些知识点称为求几何中最值的知识源.二、真题讲解 真题示例11.如图所示,在△ABC 中,AC=BC=2,∠ACB=90°,D 是BC 边的中点,E 是AB 边上一动点,则EC+ED 的最小值是 【题型特征】利用轴对称求最短路线问题【示范解读】此类利用轴对称求最短路线问题一般都以轴对称图形为题设背景,如圆、正方形、菱形、等腰梯形、平面直角坐标系等.首先根据题意画出草图,利用轴对称性找出对应线段之间的相等关系,从而把所求线段进行转化,画出取最小值时特殊位置,两条动线段的和的最小值问题,常见的是典型的是“小河”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“牛喝水”问题关键是指出两条对称轴“反射镜面”(如图2),结合其他相关知识加以解决.·A 草地 河流·A·AMN C B A E D变式:设正三角形ABC的边长为2,M是AB边上的中点,P是BC 边上的任意一点,PA+PM的最小值是________,最大值是_____练习:如图所示,已知AB=10,P是线段AB上任意一点,在AB的同侧分别以AP和PB为边作两个等边三角形APC和BPD,则线段CD的长度的最小值是。
2019届中考数学二轮复习课时方案 数形结合 苏科版 专题内容:第 五 课时(总第 5 课时)复习目标:掌握用数形结合的解决相关问题。
导学活动(以达成复习目标作为贯穿全课活动的一根“红线”,从助你补缺、给你定标、请你点击、引你运用、为你指点、推你提升等6个环节去设计整个教学过程):【基本概念】 在数学问题中,数量关系与图形位置关系这两者之间有着紧密却又较隐含的相互关系。
解题时,往往需要揭示它们之间的内在联系,通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。
【范例讲析】:例1:二次函数y=ax 2+bx+c 的图象如图所示,根据图象, 化简||)23(||2b a c b c a b -+----例2:(嘉峪关)某公司推销一种产品,设x (件)是推销产品的数量,y (元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?【闯关夺冠】一、选择题1.-(-2)的相反数是 ( )A .2B .12 C .-12 D .-22.计算32a a ⋅的结果是( )A .a 6B .a 5C .2a 3D .a3.2010年5月27日,上海世博会参观人数达到37.7万人,37.7万用科学记数法表示应为()A . 0.377×l06B .3.77×l 05C .3.77×l04D .377×1034.若一个多边形的内角和小于其外角和,则这个多边形的边数是( )A .3B .4C .5D .65.如图,圆柱的主视图是( )6最接近的数是( )A .2B .3C .4D .57.观察下列各式:( )()1121230123⨯=⨯⨯-⨯⨯, ()1232341233⨯=⨯⨯-⨯⨯ ()1343452343⨯=⨯⨯-⨯⨯, …… 计算:3×(1×2+2×3+3×4+…+99×100)= A .97×98×99 B.98×99×100 C.99×100×101 D.100×101×102二、填空题8.当x= 时,分式13x -无意义. 9.已知周长为8的等腰三角形,有一个腰长为3,则最短的一条中位线长为 .10.化简:()()2222x x x +--= .11.若一次函数y=2x+l 的图象与反比例函数图象的一个交点横坐标为l ,则反比例函数关系式为 .12.如图,已知点A ,B ,C 在⊙O 上,AC∥0B ,∠BOC=40°,则∠ABO= .13.在比例尺为1:200的地图上,测得A ,B 两地间的图上距离为4.5 cm ,则A ,B 两地间的实际距离为 m .14.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 .15.小明根据方程5x+2=6x-8编写了一道应用题.请你把空缺的部分补充完整.某手工小组计划教师节前做一批手工品赠给老师,如果每人做5个,那么就比计划少2个; .请问手工小组有几人?(设手工小组有x 人)16.如图,在直角三角形ABC 中,∠ABC=90°,AC=2,以点A 为圆心,AB 为半径画弧,交AC于点D ,则阴影部分的面积是 .16题图 17题图17.已知菱形ABCD 中,对角线AC=8cm ,BD=6cm ,在菱形内部(包括边界)任取一点P ,使△ACP 的面积大于6 cm 2的概率为 .三、解答题(解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)113---; (2)解不等式组30,2(1) 3.x x x -<⎧⎨+≥+⎩19.在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是;(2)从口袋内任取一张卡片记下数字后放回.搅匀后再从中任取一张,求两张卡片上数字和为5的概率.20.有A,B,C,D四个城市,人口和面积如下表所示:(1)问A城市的人口密度是每平方公里多少人?(2)请用最恰当的统计图......表示这四个城市的人口密度.21.玉树地震后,有一段公路急需抢修.此项工程原计划由甲工程队独立完成,需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天,为抗震救灾赢得了宝贵时间.求乙工程队独立完成这项工程需要多少天.22.已知二次函数y=ax2+bx+c的图象与y轴交于点A(O,-6),与x轴的一个交点坐标是B(-2,0). (1)求二次函数的关系式,并写出顶点坐标;(2)将二次函数图象沿x轴向左平移52个单位长度,求所得图象对应的函数关系式.23.某公园有一滑梯,横截面如图薪示,AB表示楼梯,BC表示平台,CD表示滑道.若点E,F均在线段AD上,四边形BCEF是矩形,且sin∠BAF=23,BF=3米,BC=1米,CD=6米.求:(1) ∠D的度数;(2)线段AE的长.教学时23题图24.红星食品厂独家生产具有地方特色的某种食品,产量y1(万千克)与销售价格x(元/千克)(2≤x≤10)满足函数关系式y1=0.5x+11.经市场调查发现:该食品市场需求量y2(万千克)与销售价格x(元/千克)(2≤x≤10)的关系如图所示.当产量小于或等于市场需求量时,食品将被全部售出;当产量大于市场需求量时,只能售出符合市场需求量的食品,剩余食品由于保质期短将被无条件销毁.(1)求y2与x的函数关系式;(2)当销售价格为多少时,产量等于市场需求量?(3)若该食品每千克的生产成本是2元,试求厂家所得利润W(万元)与销售价格x(元/千克)(2≤x≤10)之间的函数关系式.24题图。
求解最值问题的几种思路最值问题涉及的知识面较广,解法灵活多变,越含着丰富的数学思想方法,对发展学生的思维,提升学生解题能力起着十分重要的作用.本文举例介绍这类问题的常见思路和方法.一、利用非负数的性质在实数范围内,显然有22m n p p ++≥,当且仅当0m n ==时,等号成立,即22m n p ++的最小值为p .例1形码 设a 、b 为实数,求222a ab b a b ++--的最小值.解析 222a ab b a b ++--=22(1)2a b a b b +-+- =221331()2424b a b b -++-- =2213()(1)124b a b -++--1≥-. 当10,102b a b -+=-=,即0,1a b ==时,上式等号成立. 故222a ab b a b ++--的最小值为-1.二、均值代换法在一些数学问题中,常遇到含有m n p +=型条件的问题,若用,22p p m q n q =+=-来代换,往往能获得简捷的妙法.例2 已知x 、y 为实数,且222x y +=的最值.解析 由2222x y xy =+≥得1xy ≤设221,1x k y k =+=-,其中11k -≤≤,=== 又203313k +≤+≤+,即2334k ≤+≤.2.三、局部换元法例3 若1a b c ++=,求222a b c ++的最小值.解析 设11,33a b αβ=-=-, J 则1()3c αβ=++. 222222111()()()333a b c αβαβ⎡⎤∴++=-+-+++⎢⎥⎣⎦ 22211()33αβαβ=++++≥.故222a b c ++的最小值为13. 四、积化和差法 完全平方公式222()2a b a ab b +=++;222()2a b a ab b -=-+.将这两个公式的左右两边分别相减,得结论1 224()()ab a b a b =+--.①由于2()0a b -≥,故由①又可得如下积化和的完全平方不等式.结论2 24()ab a b ≤+,当且仅当a b =时,等号成立.②结论①、②表明两个代数式之积可化为它们的和差的关系式.应用上述公式解题,方法独特,别致新颖,给人一种清晰、明快的感觉.例4 设2222,1x y a a +=<,求S =的最大值.解 把S 两边平方得2222()S x y =-++即222S a =-+221(2)2S a =+-. 由积化和差公式,得22=- 代人上式,得22221(2)()22S S a +-=-.222111042S a ∴=--+≥, 2242S a ∴≤-,0,S S >∴≤Q又x y ==时,S ==S ∴=最大值注 有时将积化和差公式224()()ab a b a b =+--化为如下形式:22()()22a b a b ab ++=-, 用起来比较方便.五、配方法解题时把题中所给的代数式,应用配方法化成一个或几个完全平方式与常数的代数和的形式;再根据2()0a b ±≥,可求出代数式的最小值,根据2()0a b -±≤,可求出代数式的最大值.例5 求函数421y x x =++的最值.解析 2222213()1()24y x x x =++=++. 20x ≥Q ,2x ∴的最小值是0,x 最小也是0.当0x =时,y 的最小值为:213(0)124++=. 注 本题如果机械地套用二次函数求极值的公式去求y 的最值,那就错了.事实上,当2122b x a =-=-时,y 取得极小值,这是不可能的。
较深入的认识,可以通过对称的性质及三角形两边之和与第三边的关系找到证明的方法。
教学重点和难点:猜想验证的过程,及几何问题的说理性。
一、点关于一条直线的对称问题知识介绍:两条线段之和最短,往往利用对称的思想,把两条线段的和变为一条线段来研究,利用两点之间的线段最短,可以得出结果。
中学数学中常见的对称有两类,一类是轴对称,一类是中心对称。
轴对称有两个基本特征:垂直与相等。
二、桥该建在哪里:知识介绍:关于最短距离,我们有下面几个相应的结论:(1)在连接两点的所有线中,线段最短(两点之间,线段最短); (2)三角形的两边之和大于第三边,两边之差小于第三边; (3)在三角形中,大角对大边,小角对小边。
一般说来,线段和最短的问题,往往把几条线段连接成一条线段,利用两点之间线段最短或者三角形两边之和大于第三边来加以证明。
另外,在平移线段的时候,一般要用到平行四边形的判定和性质。
(判定:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形;性质:平行四边形的对边相等。
)问题分析:由于CD 的长度一定,所以BC+CD+DA 最短,只需BC+DA 最短既可。
我们想办法把线段AD 平移到和线段BC 共线的位置,于是变化为下面两图。
问题的总结与结论:一般来说,我们利用图形的对称性寻找到最近的位置,然后利用三角形和对称的性质去证明你所选取的位置是题目中所要求的位置即可。
三、对称问题的进一步延伸。
我们已经可以应用轴对称的特点找到一些特殊位置使得线段和最小,那么对于线段差最小的问题,是否可以得出一些相关的结论呢?1、直线L 的异侧有两个点A 、B ,在直线L 上求一个点C ,使得:A 、B 到C 的距离的差的绝对值最小。
2、你认识一些什么样的轴对称图形,它们各自有什么样的几何性质? 等腰三角形、矩形、正多边形等。
四、如何平分土地:问题超市:水渠旁有一大块耕地,要画一条直线为分界线,把耕地平均分成两块,分别承包给两个人,BC 边是灌溉用的水渠的一岸。
在平面几何中,
起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.
在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。
最值问题的解决方法通常有两种:
(1)应用几何性质:
①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;
②两点间线段最短;
③连结直线外一点和直线上各点的所有线段中,垂线段最短;
④定圆中的所有弦中,直径最长。
(2)运用代数证法:
①运用配方法求二次三项式的最值;
②运用一元二次方程根的判别式。
例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。
例2、已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大?
分析: 本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.
例3、如上右图是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出最大面积,使得窗户透光最好?
例4、已知P点是半圆上一个动点,试问P在什么位置时,PA+PB最大?
分析因为P点是半圆上的动点,当P近于A或B时,显然PA+PB渐小,在极限状况(P与A 重合时)等于AB.因此,猜想P在半圆弧中点时,PA+PB取最大值.
例5、如图,在直角△ABC中,AD是斜边上的高,M,N分别是△ABD,△ACD的内心,直线MN交AB,AC于K,L.求证:S△ABC≥2S△AKL.
例6、如图.已知在正三角形ABC内(包括边上)有两点P,Q.求证:PQ≤AB.证明:设过P,Q的直线与AB,AC分别交于P1,Q1,连结P1C,显然,PQ≤P1Q1.
因为∠AQ1P1+∠P1Q1C=180°,所以∠AQ1P1和∠P1Q1C中至少有一个直角或钝角.
若∠AQ1P1≥90°,则 PQ≤P1Q1≤AP1≤AB;
若∠P1Q1C≥90°,则 PQ≤P1Q1≤P1C.
同理,∠AP1C和∠BP1C中也至少有一个直角或钝角,不妨设∠BP1C≥90°,则 P1C≤BC=AB.对于P,Q两点的其它位置也可作类似的讨论,因此,PQ≤AB.
例7、设△ABC是边长为6的正三角形,过顶点A引直线l,顶点B,C到l的距离设为d1,d2,求d1+d2的最大值.
解如图,延长BA到B′,使AB′=AB,连B′C则过顶点A的直线l或者与BC相交,或者与B′C相交.以下分两种情况讨论.
(1)若l与BC相交于D,则
所以只有当l⊥BC时,取等号.
(2)若l′与B′C相交于D′,则
所以上式只有l′⊥B′C时,等号成立.
例8、如图.已知直角△AOB中,直角顶点O在单位圆心上,斜边与单位圆相切,延长AO,BO分别与单位圆交于C,D.试求四边形ABCD面积的最小值.
解设⊙O与AB相切于E,有OE=1,从而
即 AB≥2.当AO=BO时,AB有最小值2.从而
所以,当AO=OB时,四边形ABCD面积的最小值为
专题复习——几何的定值与最值
几何中的定值问题,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.
几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:
1.特殊位置与极端位置法;
2.几何定理(公理)法;
3.数形结合法等.
注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.
【例题就解】
【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以AP 和PB 为边作等边△APC 和等边△BPD ,则CD
长度的最小值为
.
思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D′,DQ ⊥CC′,CD 2=DQ 2+CQ 2,DQ=21AB 一常数,当CQ 越小,CD 越小,本例也可设AP=x ,则PB=x -10,从代数角度探求CD 的最小值.
注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特殊位置与极端位置是指:(1)中点处、垂直位置关系等; (2)端点处、临界位置等.
【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言,
为的度数( )
A .从30°到
60°变动 B .从60°到90°变动 C .保持30°不变 D .保持60°不变
思路点拨 先考虑当圆心在正三角形的顶点C 时,其弧的度数,再证明一般情形,从而作出判断.
注:几何定值与最值问题,一般都是置于动态背景下,动与静是相对的,我们可以研究问题中的变量,考虑当变化的元素运动到特定的位置,使图形变化为特殊图形时,研究的量取得定值与最值.
【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上的一动点, 直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.
思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.
【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC
与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘积与M 点的选择无关.
思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC 的边长是一个定值,说明AK ·BN 与
AB 有关,从图知AB 为△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,从而我们 ⌒
的证明目标更加明确.
注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证明问题.【例5】已知△XYZ是直角边长为1的等腰直角三角形(∠Z=90°),它的三个顶点分别在等腰Rt△ABC(∠C=90°)的三边上,求△ABC直角边长的最大可能值.
思路点拨顶点Z在斜边上或直角边CA(或CB)上,当顶点Z在斜边AB上时,取xy的中点,通过几何不等关系求出直角边的最大值,当顶点Z在(AC或CB)上时,设CX=x,CZ=y,建立x,y的关系式,运用代数的方法求直角边的最大值.
注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:
(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;
(2)构造二次函数求几何最值.。