平面解析几何中几种求最值的方法
- 格式:pdf
- 大小:105.67 KB
- 文档页数:1
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
解析几何求解技巧解析几何是高等数学的重要分支之一,它主要研究几何图形的性质和相关问题的解法。
解析几何的求解技巧是解决几何问题的关键,下面将介绍几种常用的解析几何求解技巧。
一、坐标法:坐标法是解析几何中最常见的求解技巧。
它利用坐标系和坐标代数的方法,通过确定几何图形上的点的坐标,将几何问题转化为代数方程的求解问题。
具体的求解步骤可以概括为:1. 建立坐标系。
根据题目所给条件,确定适当的坐标系,并选择合适的单位长度。
2. 确定几何图形上的点的坐标。
根据题目所给条件,推导出几何图形上点的坐标关系。
可以运用平面几何中的基本性质和定理,通过代数方法求解。
3. 转化为代数方程。
根据几何图形的性质和定理,将几何问题转化为代数方程的求解问题。
这一步骤需要灵活应用代数方程的解法技巧。
4. 求解代数方程。
根据所得的代数方程,运用代数解法将方程求解。
5. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
二、向量法:向量法是解析几何中另一种常用的求解技巧。
它运用向量的概念和运算,通过向量的相等、垂直、平行等性质,推导出几何图形和问题的解法。
具体的求解步骤可以概括为:1. 确定坐标系和向量的表示。
建立适当的坐标系,确定向量的表示方法。
常用的表示方法有坐标表示法、定点表示法和参数表示法等。
2. 利用向量的性质和运算推导条件。
根据题目所给条件,利用向量的性质和运算,推导出几何图形上的条件和关系。
3. 利用向量之间的关系求解。
根据所得的几何图形上的条件,利用向量的关系,运用向量的加减、数量积、向量积等运算进行求解。
4. 检验结果。
将求得的解代入原方程中,验证是否满足题目所给条件。
如果满足,即为几何问题的解;如果不满足,需重新检查求解过程。
三、分析法:分析法是解析几何中辅助性的求解技巧。
它通过对几何图形的分析,将几何问题转化为具有明确几何意义的问题,并通过几何性质和定理的应用,求解问题。
解析几何11种方法解析几何是数学的一个重要分支,它使用代数方法来研究几何对象。
以下是11种解析几何的方法:1.坐标法:这是解析几何中最基本的方法,通过引入坐标系,将几何问题转化为代数问题,进而通过代数运算解决几何问题。
2.参数法:当某些几何量(如距离、角度等)不容易直接求出时,可以引入参数,将问题转化为参数的求解问题。
3.向量法:向量是解析几何中的重要工具,它可以表示点、方向、速度等几何概念,通过向量的运算可以方便地解决许多几何问题。
4.极坐标法:在平面几何中,除了直角坐标系外,还可以使用极坐标系。
通过极坐标,可以方便地表示点和线的方程,并解决相关问题。
5.复数法:复数在解析几何中也有广泛应用,例如在解决圆的方程时,可以通过复数的方法简化计算。
6.三角法:在解析几何中,三角函数是重要的工具,它可以用来表示角度、长度等几何量,并解决相关问题。
7.面积法:在解决几何问题时,有时可以通过计算面积来找到解决方案,例如在解决三角形问题时。
8.解析法:通过解析几何的方法,可以将几何问题转化为代数问题,进而通过代数运算解决几何问题。
9.代数法:代数法是解析几何中的一种重要方法,通过代数运算和代数方程的求解,可以解决许多几何问题。
10.对称法:在解析几何中,有时可以通过观察图形的对称性来找到解决方案,例如在解决关于对称点、对称线的问题时。
11.数形结合法:数形结合是解析几何中的一种重要思想,通过将代数与几何相结合,可以更方便地解决许多问题。
以上就是解析几何的11种方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体的问题选择合适的方法来解决。
1、最值问题::设1F 、2F 分别是椭圆1422=+y x 的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求1PF ·2PF的最大值和最小值; (Ⅱ)设过定点)2,0(M 的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.:已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .求四边形ABCD 的面积的最小值.:已知椭圆C :2222by a x +=1(a >b >0)的离心率为36,短轴一个端点到右焦点的距离为3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值. 设F 是抛物线G :x 2=4y 的焦点.(Ⅰ)过点P (0,-4)作抛物线G 的切线,求切线方程:(Ⅱ)设A 、B 为势物线G 上异于原点的两点,且满足0·=FB FA ,延长AF 、BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.2、存在性问题:已知向量()OA = ,O 是坐标原点,动点M 满足:6OM OA OM OA ++-= ①求点M 的轨迹C 的方程②是否存在直线()P 0,2l 过点与轨迹C 交于A ,B 两点,且以AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,请说明理由。
在平面直角坐标系中,已知A 1(−3,0)、A 2(3,0)、P (x ,y )、M (92-x ,0),若实数λ使向量P A 1、λ、P A 2满足λ2·()2=A 1·A 2(Ⅰ)求P 点的轨迹方程,并判断P 点的轨迹是怎样的曲线;(Ⅱ)当λ=33时,过点A 1且斜率为1的直线与(Ⅰ)中的曲线相交的另一点为B ,能否在直线x =−9上找一点C ,使△A 1BC 为正三角形.在平面直角坐标系xoy 中,已知圆心在第二象限、半径为的圆C 与直线y x =相切于坐标原点O .椭圆22219x y a +=与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ + 与AB 共线?如果存在,求k 值;如果不存在,请说明理由3、取值范围问题:已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3((Ⅰ)求双曲线C 的方程; (Ⅱ)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.4、定值问题:已知直线l 过椭圆E:2222x y +=的右焦点F ,且与E 相交于,P Q 两点.① 设1()2OR OP OQ =+ (O 为原点),求点R 的轨迹方程;②若直线l 的倾斜角为060,证明11||||PF QF +为定值. 已知动点M 到两个定点12(3,0),(3,0)F F -的距离之和为10,A 、B 是动点M 轨迹C 上的任意两点. (1)求动点M 的轨迹C 的方程;(2)若原点O 满足条件AO OB λ= ,点P 是C 上不与A 、B 重合的一点,如果PA 、PB 的斜率都存在,问PA PBk k ⋅是否为定值?若是,求出其值;若不是,请说明理由。
高中数学:几何最值问题求法最值问题是平面解析几何中的一个既典型又综合的问题.求最值常见的方法有两种:代数法和几何法.若题目条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.若题目条件和结论能明显体现某种函数关系,则可先建立目标函数,再求函数的最值,这就是代数法.一、几何法利用平面几何性质求解最值问题,这种解法若运用得当,往往显得非常简洁明快.例1、已知P(x,y)是圆上的一点,求的最大值与最小值。
分析:,于是问题就可以转化为在以A(2,0)为圆心,以为半径的圆上求点P,使它与原点连线的斜率为最大或最小。
由示意图可知,当OP与此圆相切时,其斜率达到最大值或最小值。
由OA=2,AP1=AP2=,且AP1⊥OP1,AP2⊥OP2,OP1=OP2=1,且∠AOP1=∠AOP2=60°,得。
二、代数法用代数法求最值常用的方法有以下几种:1、利用判别式法求最值、利用此法求最值时,必须同时求得变量的范围,因为方程有解,Δ≥0所指的是在()范围内方程有解,这一点应切记.例2、(同例1)分析:设,将y=kx代入圆方程得。
x为实数,方程有解,,解得,故。
即。
2、利用二次函数性质求最值.用此法求最值时,必须注意变量的取值范围.例3、已知椭圆及点P(0,5),求点P到椭圆上点的距离的最大值与最小值.分析:以(0,5)为圆心,若内切于椭圆的圆半径为r1,则r1为点P到椭圆上点的距离的最小值;若外切于椭圆的圆半径为r2,则r2为点P到椭圆上点的距离的最大值.因,故点P(0,5)在椭圆内部.设以(0,5)为圆心的圆方程为,与椭圆方程联立消去x2,得。
当时,,即;当y=7时,,即。
注:这里将距离的最大值、最小值的探求转化为半径r的函数,利用函数的性质求得定义域内的最大值、最小值.值得注意的是因为r的定义域的限制,这里不适合利用判别式法.3、利用基本不等式求最值.利用基本不等式求最值时,必须注意应用基本不等式的条件,特别要注意等号的条件以及“和”(或“积”)是不是常数,若连续应用不等式,那么要特别注意同时取等号的条件是否存在.若存在,有最值;若不存在,无最值.例4、过点A(1,4)作一直线,它在两坐标轴上的截距都为正数,且其和为最小,求这条直线的方程.分析:可用截距式设所求直线方程为。
高中数学必备解析几何中的平面直线方程求解技巧解析几何是高中数学中的重要一部分,其中求解平面直线方程是一个基础而且实用的技巧。
本文将介绍几种常见的方法,帮助读者掌握平面直线方程求解技巧。
一、点斜式点斜式是求解平面直线方程最常用的方法之一。
它的基本思想是通过已知直线上的一点和直线的斜率来确定直线方程。
考虑一个已知直线L,假设通过直线上一点P(x₁, y₁),且直线L的斜率为k。
我们可以使用点斜式方程y - y₁ = k(x - x₁)来求解直线L的方程。
该方法简单直观,适用于已知一点和斜率的情况。
对于其他情况,我们可以通过已知两点求斜率,然后套用点斜式方程来求解直线方程。
二、截距式截距式是另一种常用的求解平面直线方程的方法。
它的基本思想是通过直线在坐标轴上的截距来确定直线方程。
考虑一个已知直线L,假设它与x轴相交于点A(a, 0),与y轴相交于点B(0, b)。
我们可以使用截距式方程x/a + y/b = 1来求解直线L的方程。
该方法适用于已知直线在坐标轴上的截距的情况。
如果我们已知直线通过两点,则可以利用截距公式推导出直线的截距,并进而求解直线方程。
三、法线式法线式是一种特殊的直线方程形式,它的基本思想是通过已知直线上一点P(x₁, y₁)以及直线的法线斜率来确定直线方程。
考虑一个已知直线L,假设通过直线上一点P(x₁, y₁),且直线的法线斜率为k。
我们可以使用法线式方程y - y₁ = -1/k(x - x₁)来求解直线L的方程。
法线式方程的求解方法类似于点斜式,只是斜率取其相反数的倒数。
通过已知点和法线斜率,我们可以轻松地求解直线方程。
四、两直线交点式当我们在解析几何中遇到两条直线相交且已知交点坐标时,可以使用两直线交点式来求解直线方程。
设已知直线L₁过点A(x₁, y₁)和B(x₂, y₂),直线L₂过点C(x₃,y₃)和D(x₄, y₄)。
我们可以使用两直线交点式(y - y₁)/(x - x₁) = (y₃ -y₄)/(x₃ - x₄)来求解直线方程。