七年级第一章三视图知识点
- 格式:docx
- 大小:36.92 KB
- 文档页数:3
七年级三视图知识点在学习物理时,我们常常会接触到三视图,那么什么是三视图呢?三视图是一种展示物体三个面向的图形表现方式,可以更直观地帮助我们了解物体的形状、大小、位置等信息。
在三视图中,我们通常会涉及到三种视图:俯视图、正视图、侧视图。
接下来,让我们一起来学习一下七年级中的三视图知识点吧!一、俯视图俯视图就是我们站在物体上方往下观察的图形表现方式,如图1所示。
在俯视图中,我们可以清楚地看到物体的顶部轮廓线以及从顶部看下来的面部特征。
俯视图也是我们最常接触到的一个视图,例如在城市规划中,我们常使用的就是城市的俯视图。
二、正视图正视图是一种面向物体正面的展示方式,如图2所示。
在正视图中,我们可以清晰地看到物体正面的轮廓线和细节信息。
正视图也是我们最常用到的一个视图,例如在制图中,我们常常需要根据物体的正视图来进行设计和制作。
三、侧视图侧视图是一种面向物体侧面的展示方式,如图3所示。
在侧视图中,我们可以清楚地看到物体侧面的轮廓线和细节信息。
侧视图在工程制图、建筑设计、艺术创作等领域都有广泛应用。
四、三视图的用途通过三视图的展开,我们可以更清晰地了解物体的形状、大小、位置等信息,帮助我们更准确地进行设计、制图等工作。
例如,在汽车设计中,设计师需要根据车辆的三视图来确定车辆的尺寸和造型;在建筑设计中,建筑师需要根据建筑物的三视图来设计建筑物的结构和功能。
因此,掌握三视图的知识对于我们未来的学习和职业发展非常重要。
五、总结三视图是物理学中一个非常基础和重要的知识点,通过对俯视图、正视图、侧视图的学习和理解,我们可以更加直观地了解物体的形状、大小和位置等信息。
同时,三视图也是工程制图、建筑设计和汽车设计等领域中必不可少的关键技能,帮助我们更准确地进行设计和制作。
因此,我们要认真学习三视图的知识,掌握好这一技能,为我们未来的学习和职业发展打下坚实的基础。
七年级数学上册知识点汇总只有非常努力,才能看起来毫不费力,相信自己,一定行!一、丰富的图形世界1.三视图:⭐⭐(重点)①常见图形的三视图(圆柱、圆锥等);②画三视图③通过三视图求表面积或体积2.展开图⭐⭐(重点)①正方体常规展开图(11种);②圆锥、圆柱、三棱柱等常见图形展开图;③正方体找对面题型;3.通过三视图求正方体个数问题.【经典例题】1.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.选:C.2.如图所示正方体的展开图的是()A.B.C.D.选:A.3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民选:A.4.用一个平面去截一个几何体,如果截面的形状是圆,则来的几何体可能是()A.正方体B.三棱柱C.四棱锥D.球选:D.5.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?()A.1个B.2个C.3个D.4个选:B.6.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.5选:C.7.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.【解答】解:(1)几何体的名称是正三棱柱;(2)表面展开图为:(3)3×6=18cm2,∴这个几何体的侧面积为18cm2二、 有理数(期中考试重点章节⭐⭐⭐)1. 概念① 有理数分类:整数和分数 ② “四非”:非负整数:正整数+0; 非负数:正数+0 非正整数:负整数+0; 非正数:负数+02. 相反数:a+b=0;a 的相反数为-a3. ⭐⭐⭐(重点)数轴:原点、正方向和单位长度的直线; 作用:比较大小,右边的数>左边的数数轴上两点之间的距离:①大-小;②|a-b|(不知道a 、b 大小)数轴上中点公式:a+b 2;4. 倒数:ab=1;倒数等于它本身的数:±1;绝对值等于它本身的数:正数+0;相反数等于它本身的数:0.5. ⭐⭐⭐(重点) 绝对值① |a |: 数a 对应的点到原点的距离;|a −b |:数a 所对的点到数b 的点的距离;② ,00,0,0a a a a a a >⎧⎪==⎨⎪-<⎩;|正数+0|=本身,|负数+0|=相反数③ 性质:非负性:0+0模型 6. 科学计数法:a ×10n ;(1≤|a |<10)7. 去括号:减变加不变,即()a b b a --=-;()a b a b -+=--8. ①常规计算:先乘方;再乘除;后加减;有括号先算括号里面的.(符号要细心,计算是王道!) ②有理数巧算:裂项相消法(必考)、错位相减法(易错);倒序相加法(等差数列求和) 9. 应用题:行程问题;股票问题;水位问题等;(括号里面的“+”、“-”所代表的意义很重要) 10. 动点问题:化动为静(思维很重要,注意分步得分)【数轴基本性质(唯一性和右边大于左边)】例1. 若数a ,b ,c 在数轴上的对应点如图所示,则下列各式正确的有( )①a +b >0; ②b ﹣c <0; ③>0; ④abc >0. A .1个 B .2个 C .3个 D .4个答案:A【中点公式(折叠、对称)】中点公式:2a b例2. 根据给出的数轴及已知条件,解答下面的问题:(1)已知点A ,B ,C 表示的数分别为1,﹣,﹣3观察数轴,与点A 的距离为3的点表示的数是 ,B ,C 两点之间的距离为 ;(2)若将数轴折叠,使得A 点与C 点重合,则与B 点重合的点表示的数是 ;若此数轴上M ,N 两点之间的距离为2015(M 在N 的左侧),且当A 点与C 点重合时,M 点与N 点也恰好重合,则M ,N 两点表示的数分别是:M ,N ;(3)若数轴上P ,Q 两点间的距离为m (P 在Q 左侧),表示数n 的点到P ,Q 两点的距离相等,则将数轴折叠,使得P 点与Q 点重合时,P ,Q 两点表示的数分别为:P ,Q (用含m ,n 的式子表示这两个数)【解答】解:(1)点A 的距离为3的点表示的数是1+3=4或1﹣3=﹣2; B ,C 两点之间的距离为﹣﹣(﹣3)=;(2)B 点重合的点表示的数是:﹣1+[﹣1﹣(﹣)]=; M =﹣1﹣=﹣1008.5,n =﹣1+=1006.5;(3)P =n ﹣,Q =n +.故答案为:4或﹣2,;,﹣1008.5,1006.5;n ﹣,n +.【非负数和为零(0+0模型)】例3.若|a ﹣3|与|b +4|互为相反数,则a ﹣b = ;若|a +1|+(b ﹣2)2=0,则(a +b )2015+a 2016= .答案为:7;2.【直接给定范围的绝对值化简】例4. 若a <0,b >0,化简|a |+|3b |﹣|a ﹣2b |得( )A .bB .5b ﹣2aC .﹣5bD .2a +b【解答】解:∵a <0,b >0, ∴a ﹣2b <0, ∴|a |+|3b |﹣|a ﹣2b | =﹣a +3b +a ﹣2b=b.故选:A.【与数轴相结合的绝对值化简】步骤:(1)判断>0,<0;(2)取绝对值符号:正数的绝对值是它本身;负数的绝对值是它的相反数;例5.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“<”或“>”填空:c﹣b0 a﹣b0 a+c0 (2)化简:|c﹣b|+|a﹣b|﹣|a+c|【解答】解:由数轴知:a<0,b>0,c>0且a<b<c、|a|<|c|,(1)c﹣b>0;a﹣b<0;a+c>0;(2)原式=c﹣b﹣(a﹣b)﹣(a+c)=c﹣b﹣a+b﹣a﹣c=﹣2a.【绝对值与自身商为±1的分类讨论问题】例6.直接写出答案若a>0,则=;若a<0,则=;思考:①若a、b为有理数,且ab≠0,则=;②若a、b、c为有理数,abc<0,则=;【解答】解:∵a>0,∴==1;∵a<0,∴==﹣1.①若a、b为有理数,且ab≠0,当a,b是一正一负时,则=0;当a,b是两正时,则=2;当a,b是两负时,则=﹣2;②若a 、b 、c 为有理数,abc <0, 当a ,b ,c 中有一个负数时,=1; 当a ,b ,c 中有三个负数时,=﹣3.【最值问题(零点分段法和几何法)】1.a 表示数轴上数a 对应的点与原点的距离;2.a b -表示数轴上数a 、数b 所对应的的两点之间的距离;3.a b +(即()a b --)表示数轴上数a 、数-b 所对应的的两点之间的距离.例7.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣1的两点之间的距离是3,那么a = .(2)若数轴上表示数a 的点位于﹣4与2之间,则|a +4|+|a ﹣2|的值为 ;(3)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x ﹣5|=7,这些点表示的数的和是 .(4)当a = 时,|a +3|+|a ﹣1|+|a ﹣4|的值最小,最小值是 .【解答】解:(1)|1﹣4|=3, |﹣3﹣2|=5, |a ﹣(﹣1)|=3,所以,a +1=3或a +1=﹣3, 解得a =﹣4或a =2;(2)∵表示数a 的点位于﹣4与2之间, ∴a +4>0,a ﹣2<0,∴|a +4|+|a ﹣2|=(a +4)+[﹣(a ﹣2)]=a +4﹣a +2=6;(3)使得|x +2|+|x ﹣5|=7的整数点有﹣2,﹣1,0,1,2,3,4,5, ﹣2﹣1+0+1+2+3+4+5=12. 故这些点表示的数的和是12;(4)a=1有最小值,最小值=|1+3|+|1﹣1|+|1﹣4|=4+0+3=7.故答案为:3,5,﹣4或2;6;12;1;7.【有理数巧算——倒序相加、裂项相消】例8.已知a,b是有理数,且(a﹣1)2+|b﹣2|=0,求:+++……+的值.【解答】解:∵(a﹣1)2+|b﹣2|=0,∴a=1,b=2,∴+++……+=+++……+=1﹣+﹣+﹣+……+﹣=1﹣=.例2.请你观察:=﹣,=﹣;=﹣;…+=﹣+﹣=1﹣=;++=﹣+﹣+﹣=1﹣=;…以上方法称为“裂项相消求和法”请类比完成:(1)+++=;(2)++++…+=.(3)计算:++++的值.【分析】(1)将已知等式相加后两两相消可得;(2)根据=﹣裂项相消可得;(3)根据=﹣裂项相消可得.【解答】解:(1)原式=﹣+﹣+﹣+﹣=1﹣=(2)原式=﹣+﹣+﹣+﹣+…+﹣=1﹣=,(3)原式=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)=(1﹣+﹣+﹣+﹣+﹣)=×(1﹣)=×=.【有理数的应用】例9. 我市股民老王第一周买进某公司股票1000股,每股27元,下表为第二周内每日该股的涨跌情况(星期六、日股市休市)(正号表示股票价格比前一天上涨,符号表示股票价格比前一天下跌,单位:元)星期一二三四五每股涨跌+4+4.5﹣1﹣2.5﹣6(1)星期三收盘时,每股是多少元?(2)本周每每股最高价多少元?最低价是多少元?(3)已知老王买进购票时付了1‰的手续费,卖出时还需付总金额1‰的手续费和1‰的交易税,如果老王在星期五收盘前将全部购票卖出,他的收益情况如何?(注:1‰=)【解答】解:(1)星期三收盘时,每股是34.5元;(2)本周内最高价是35.5元,最低价是26元;(3)在星期五按收盘价将全部股票卖出,他的收益为:1000×26﹣1000×26×(1‰+1‰)﹣1000×27﹣1000×27×1‰=26000﹣52﹣27000﹣27=﹣1079(元).例10. 足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,﹣30,+50,﹣25,+25,﹣30,+15,﹣28,+16,﹣18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【解答】解:(1)(+40)+(﹣30)+(+50)+(﹣25)+(+25)+(﹣30)+(+15)+(﹣28)+(+16)+(﹣18)=+15(米);答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40﹣30=10m,第三段,10+50=60m,第四段,60﹣25=35m,第五段,35+25=60m,第六段,60﹣30=30m,第七段,30+15=45m,第八段,45﹣28=17m,第九段,17+16=33m,第十段,33﹣18=15m,∴在最远处离出发点60m;(3)∵|+40|+|﹣30|+|+50|+|﹣25|+|+25|+|﹣30|+|+15|+|﹣28|+|+16|+|﹣18|=277(米),答:球员在一组练习过程中,跑了277米.例11. 某食品厂从生产的袋装食品中抽出样品10袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数1袋2袋3袋2袋1袋1袋(1)这批样品的平均质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为20克,则这10袋食品的总质量是多少?【解答】解:(1)由表格可得,(﹣5)×1+(﹣2)×2+0×3+1×2+3×1+6×1=2(克),即这批样品的平均质量比标准质量多,多2克;(2)10×20+2=20+2=202(克),即若每袋标准质量为20克,则这10袋食品的总质量是202克.【动点问题】例12.已知a是最大的负整数,b是﹣5的相反数,c=﹣|﹣2|,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P从点A出发沿数轴正方向运动,动点Q同时从点B出发也沿数轴正方向运动,点P的速度是每秒3个单位长度,点Q的速度是每秒1个单位长度,求运动几秒后,点P可以追上点Q?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于12,请求出所有点M 对应的数.【解答】解:(1)a是最大的负整数,即a=﹣1;b是﹣5的相反数,即b=5,c=﹣|﹣2|=﹣2,所以点A、B、C在数轴上位置如图所示:(2)设运动t秒后,点P可以追上点Q,则点P表示数﹣1+3t,点Q表示5+t,依题意得:﹣1+3t=5+t,解得:t=3.答:运动3秒后,点P可以追上点Q;(3)存在点M,使M到A、B、C三点的距离之和等于12,当M在C点左侧,则M对应的数是:﹣3;当M在AB之间,则M对应的数是4.故使点M到A、B、C三点的距离之和等于12,点M对应的数是﹣3或4.例13. 已知a是最大的负整数,b是多项式2m2n﹣m3n2﹣m﹣2的次数,c是单项式﹣2xy2的系数,且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出点A、B、C.(2)若动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,求运动几秒后,点Q可以追上点P?(3)在数轴上找一点M,使点M到A、B、C三点的距离之和等于10,请直接写出所有点M对应的数.(不必说明理由).【解答】解:(1)∵a是最大的负整数,∴a=﹣1,∵b是多项式2m2n﹣m3n2﹣m﹣2的次数,∴b=3+2=5,∵c是单项式﹣2xy2的系数,∴c=﹣2,如图所示:评分细则:描对一个点或两个点均不给分.(2)∵动点P、Q同时从A、B出发沿数轴负方向运动,点P的速度是每秒个单位长度,点Q的速度是每秒2个单位长度,∴AB=6,两点速度差为:2﹣,∴=4,答:运动4秒后,点Q可以追上点P.(3)存在点M,使P到A、B、C的距离和等于10,当M在AB之间,则M对应的数是2,当M在C点左侧,则M对应的数是:(只写对一个给1分).三、整式1.代数式的书写2.列代数式3.整式:单项式+多项式(次数、系数、项要非常清晰; )4.同类项(要求:①相同字母,②相同字母指数相同)合并同类项;5.①常规代数式化简求值(注意格式)②整体法代数式求值(必考⭐⭐⭐)③赋值法(特殊值±1,0)6.不含某项、与x无关等题型;①合并同类项;②系数和为0;7.找规律及新定义运算考点一:代数式的书写1. 下列代数式书写正确的是()A.a48B.x÷y C.a(x+y)D.112abc选:C.考点二:列代数式2.若x 表示一个两位数,y 也表示一个两位数,小明想用x 、y 来组成一个四位数,且把x 放在y 的右边,你认为下列表达式中正确的是( )A .100y +xB .100x +yC .x +yD .yx选:A .考点三:整式概念3. 在代数式a π、3xy 、b a 、−xy 3、−14中,整式的个数是( ) A .3B .4C .5D .6 【解答】解:a π、3xy 、−xy 3、−14是整式,选:B . 考点四:单项式(系数,指数,次数)4. 下列说法正确的是( )A .10不是单项式B .−abc 2的系数是﹣1 C .xy 2的系数是0,次数是﹣2 D .−23x 2y 的系数是−23,次数是3【解答】解:A .10是单项式,此选项错误;B .−abc 2的系数是−12,此选项错误;C .xy 2的系数是1,次数是3,此选项错误;D .−23x 2y 的系数是−23,次数是3,此选项正确;故选:D .5. 若关于x ,y 的单项式﹣x m y n﹣1与mx 2y 3的和仍是单项式,则m ﹣2n 的值为( ) A .0 B .﹣2 C .﹣4D .﹣6 【解答】解:由题意可知:﹣x m y n﹣1与mx 2y 3是同类项,∴m =2,n ﹣1=3,∴m =2,n =4,∴m ﹣2n =2﹣8=﹣6,故选:D . 考点五:多项式(看“+,-”,几次几项式,零次项)6. 多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,则m 的值是 ﹣1 . 【解答】解:∵多项式15x 2y |m|−(m +1)y +17是关于x ,y 的三次二项式,∴|m |+2=3,m +1=0,解得:m =﹣1.故答案为:﹣1.7. 已知关于x ,y 的多项式x 4+(m +2)x n y ﹣xy 2+3,其中n 为正整数.当m ,n 为 n =4,m ≠﹣2 时,它是五次四项式.【解答】解:∵多项式x 4+(m +2)x n y ﹣xy 2+3是五次四项式,∴n +1=5,m +2≠0,解得,n =4,m ≠﹣2,故答案为:n =4,m ≠﹣2.8. 要使关于x ,y 的多项式my 3+3nx 2y +2y 3﹣x 2y +y 不含三次项,求2m +3n 的值.【解答】解:∵多项式my 3+3nx 2y +2y 3﹣x 2y +y =(m +2)y 3+(3n ﹣1)x 2y +y 不含三次项,∴m +2=0,3n ﹣1=0,∴m =﹣2,n =13,∴2m +3n =2×(﹣2)+3×13=−3. 考点六:同类项(要求:①相同字母,②相同字母指数相同,合并同类项)9. 若a m +4b 与23a 2m+2b n+3是同类项,那么m +n = . 答案是:0.10.若25x 5m +2n +2y 3与−34x 6y 3m﹣2n ﹣1的差是一个单项式,则m = .答案为:1.11.去括号,并合并同类项:(1)(3a +1.5b )﹣(7a ﹣2b )(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)【解答】解:(1)(3a +1.5b )﹣(7a ﹣2b )=3a +1.5b ﹣7a +2b =﹣4a +3.5b ;(2)(8xy ﹣x 2+y 2)﹣4(x 2﹣y 2+2xy ﹣3)=8xy ﹣x 2+y 2﹣4x 2+4y 2﹣8xy +12=﹣5x 2+5y 2+12;考点七:整式加减类型一、整式加减的基础应用12.两个多项式A 和B ,A =▄▄▄,B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20.其中A 被墨水污染了.(1)求多项式A ;(2)x 取其中适合的一个数:2,﹣2,0,求B A 的值. 【解答】解:(1)∵B =x 2+4x +4.A ﹣B =3x 2﹣4x ﹣20,∴A =x 2+4x +4+3x 2﹣4x ﹣20=4x 2﹣16;(2)当x =0时,B A =4−16=−14. 13.李老师让同学们计算“当a =﹣2018,b =2019时,代数式3a 2+(ab ﹣a 2)﹣2(a 2+12ab ﹣1)的值小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误,请问是什么原因呢?【解答】解:原式=3a 2+ab ﹣a 2﹣2a 2﹣ab +2=2,结果与a 与b 的值无关,故小滨错把“a =﹣2018,b =2019”抄成了“a =2018,b =﹣2019”,但他最终的计算结果并没错误.类型二、几何问题14. 如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a ,b 来表示未被覆盖的阴影部分面积与空白部分面积的差为( )A .4ab ﹣3b 2B .2a 2﹣b 2C .3a 2﹣2abD .4ab ﹣a 2﹣b 2【解答】解:设小正方形的边长为x ,a +x =b +2x ,解得,x =a ﹣b ,未被覆盖的阴影部分面积与空白部分面积的差为:[(a +x )2﹣2x 2]﹣2x 2=a 2+2ax +x 2﹣2x 2﹣2x 2=a 2+2ax ﹣3x 2=a 2+2a (a ﹣b )﹣3(a ﹣b )2=a 2+2a 2﹣2ab ﹣3a 2+6ab ﹣3b 2=4ab ﹣3b 2,故选:A .15. 完全相同的4个小矩形如图所示放置,形成了一个长、宽分别为m 、n 的大长方形,则图中阴影部分的周长是( )A .4mB .4nC .2m +nD .m +2n 【解答】解:设小矩形的长为a ,宽为b ,可得a +2b =m ,可得左边阴影部分的长为2b ,宽为n ﹣a ,右边阴影部分的长为m ﹣2b ,宽为n ﹣2b ,图中阴影部分的周长为2(2b +n ﹣a )+2(m ﹣2b +n ﹣2b )=4b +2n ﹣2a +2m +2n ﹣8b=2m +4n ﹣2a ﹣4b=2m +4n ﹣2(a +2b )=2m +4n ﹣2m=4n ,故选:B .16.方方和圆圆的房间窗帘的装饰物如图所示,它们分别由两个四分之一圆和四个半圆组成(半径都分别相同),它们的窗户能射进阳光的面积分别是多少(窗框面积不计)谁的窗户射进阳光的面积大?【解答】解:第一个窗户射进的阳光的面积为ab −12×π(b 2)2=ab −πb 28 第二个窗户射进的阳光的面积为ab ﹣2×π(b 8)2=ab −πb 232 ∵πb 28>πb 232∴第一个窗户射进的阳光的面积<第二个窗户射进的阳光的面积.类型三、花费与方案问题17.某超市在春节期间对顾客实行优惠,规定如下:一次性购物优惠办法 少于200元不予优惠 低于500元但不低于200元九折优惠 500元或超过500元 其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)王老师一次性购物600元,他实际付款 530 元.(2)若顾客在该超市一次性购物x 元,当x 小于500元但不小于200时,他实际付款 0.9x 元,当x 大于或等于500元时,他实际付款 (0.8x +50) 元.(用含x 的代数式表示).(3)如果王老师两次购物货款合计820元,第一次购物的货款为a 元(200<a <300),用含a 的代数式表示:两次购物王老师实际付款多少元?【解答】解:(1)500×0.9+(600﹣500)×0.8=530;(2)0.9x;500×0.9+(x﹣500)×0.8=0.8x+50;(3)0.9a+0.8(820﹣a﹣500)+450=0.1a+706.18.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.考点八:代数式化简求值(先化简后求值,整体部分可约分,注意分母不为0)19.化简求值3(a2﹣ab+2b2)﹣2(2a2﹣ab+b2),其中a=12,b=﹣1.【解答】解:原式=3a2﹣3ab+6b2﹣4a2+2ab﹣2b2=﹣a2﹣ab+4b2,当a=12,b=﹣1时,原式=−14+12+4=414.考点九:整体法求值(整体换元,整体思想)例题:已知代数式m2+m+1=0,那么代数式2018-2m2-2m的值是()A.2016B.-2016C.2020D.-2020【解答】解:∵m2+m+1=0,∴m2+m=-1.∴-2m2-2m=2.∴原式=2108+2=2020.故选:C.考点十:规律探索(找不变,看变化,找到自然数变化)20.定义程序例题1:如图,是一个运算程序的示意图,若开始输入x的值为81,则第2019次输出的结果为()A.27B.9C.3D.1选:C.21:对正有理数a,b,定义运算*如下:a*b=aba+b,则3*(-4)=______答案为:12.四、线段与角1.线段的定义及性质④线段、直线、射线的特征:险段、射线可以看成直线的一部分。
1,2,2,2,2,2,1 俯视图主(正)视图左视图“三视图"考点汇总由于近年来中考越来越注重能力的考查,因而几何体的三视图成为考试的一个热点,这类题不仅考查了同学们的空间想象能力,同时更注重动手操作能力的考查.现对考点归纳如下,供同学们参考.一、由几何体,识别其视图例1(泰州市)下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )析解:这道题主要考查的是由几何体来识别其视图.从上面看,共有2行,第一行只能看到3个小正方体,第二行2个小正方体,所以俯视图是D ,故应选D .点评:我们从正面、上面和侧面(左面或右面)三个不同方向观察同一物体,描绘三次所看到的图,即为三视图.从正面看到的图形叫做主视图;从左边看到的图形叫做左视图;从上面看到的图形叫做俯视图.二、由视图,确定几何体例2(眉山市)一个物体的三视图如图所示,该物体是( )A .圆柱B .圆锥C .棱锥D .棱柱析解:由正(主)视图可知,此几何体是锥体,可排除A 、D ;再结合俯视图和左视图可知,此几何体是圆锥,故应选B .点评:由三视图确定几何体的形状要借助三个视图进行综合分析、想象,同时合理的猜想、结合生活经验进行估测也非常重要.三、由视图,确定小立方块个数例3(成都市)右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A .5个B .6个C .7个D .8个B C DA析解:观察主视图,从左到右每列中小立方块的个数依次为1、2、2;将数字填入俯视图中从左到右的每列小正方形中(每个小正方形中左边的数字);观察左视图,从左到右每行小立方块的个数依次为1、2、1,将数字填入俯视图中从上到下的每行小正方形中(每个小正方形中右边的数字);取图中每个小正方形中一对数字中较小的一个数(两数相等则任取一个),于是可求得搭成的几何体所用的小立方块的个数是1+1+1+2+2+1=8,故应选D .点评:解这类问题的一般思路是先根据主视图和左视图确定出俯视图中每个小正方形相应位置上的小立方块的个数,再求出组成这个几何体所用的小立方块的个数.四、由俯视图及小立方块个数,识别其它视图例4(常州市)下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )ABCD析解:根据俯视图上小立方块的数字,先确定主视图有3列,然后再根据每一列中最大的数字确定这一列的层数,第一列有4层,第二列有3层,第三列有2层.则该几何体的主视图为C ,故应选C .点评:解这类问题的一般方法是先由俯视图确定几行几列,再根据各个位置上的小立方块的个数确定每行每列的最高层数,从而识别出其它视图.尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
《三视图》知识清单一、什么是三视图三视图是指能够正确反映物体长、宽、高尺寸的正投影工程图。
三视图分别是主视图、俯视图和左视图。
主视图是从物体的前面向后面投射所得的视图,能反映物体的前面形状;俯视图是从物体的上面向下面投射所得的视图,能反映物体的上面形状;左视图则是从物体的左面向右面投射所得的视图,能反映物体的左面形状。
通过这三个视图,可以较为全面、准确地表达出物体的形状和结构,为设计、制造等工作提供重要的依据。
二、三视图的投影规律1、主、俯视图长对正主视图和俯视图反映物体的长度,两者的长度方向尺寸是相等的,即“长对正”。
2、主、左视图高平齐主视图和左视图反映物体的高度,它们的高度方向尺寸是相同的,即“高平齐”。
3、俯、左视图宽相等俯视图和左视图反映物体的宽度,其宽度方向尺寸是一致的,即“宽相等”。
这三个投影规律是绘制和阅读三视图的关键,必须牢记并熟练运用。
三、三视图的绘制方法1、观察分析物体在绘制三视图之前,要仔细观察物体的形状、结构,明确物体的主要特征和各部分之间的关系。
2、确定视图方向一般情况下,主视图的选择要能够最清晰地反映物体的主要形状特征。
俯视图通常放在主视图的正下方,左视图放在主视图的正右方。
3、绘制草图先画出物体的大致轮廓,按照投影规律确定各视图的位置和大小。
注意线条的虚实,看得见的轮廓线用实线表示,看不见的轮廓线用虚线表示。
4、加深图线在草图的基础上,用较粗的实线加深物体的轮廓线,用细实线表示尺寸线、中心线等。
5、标注尺寸标注出物体的长、宽、高尺寸,尺寸标注要符合国家标准的规定。
四、三视图中的线条类型1、实线表示物体可见的轮廓线。
2、虚线表示物体不可见的轮廓线。
3、点划线通常用于表示对称中心线、轴线等。
4、双点划线用于表示假想的轮廓线,如运动部件的极限位置轮廓线。
正确理解和使用这些线条类型,能够清晰准确地表达物体的形状和结构。
五、读三视图的方法1、抓特征首先观察各个视图的形状特征,初步判断物体的大致形状。
七年级上册三视图知识点在工程制图领域中,三视图是一种常用的绘图方式。
它利用三个不同视角的图形,同时表示被绘制物品的长度、宽度和高度。
在七年级上册的学习中,三视图作为常见知识点出现。
以下将为大家详细介绍三视图的定义、种类、方法和注意事项。
一、三视图的定义三视图,即俯视图、前视图和侧视图,常用于描述物体的三个主要视角。
三视图的绘制,既包括准确的尺寸和比例,也涉及到正面、左右和上下的视角。
在三视图上不仅可以保存基本几何形状和测量尺寸,还可以记录材料和工艺要求。
二、三视图的种类依据其使用频率和类型,三视图大致可以分为以下几类:1. 正视图法正视图法也称为零度视图法。
在这种情况下,被绘制物体的正面视角与观察者的位置重合。
这种视图通常以前视图、侧视图和俯视图为基础。
2. 零度视图法在零度视图法中,观察者在一个平行于被绘制物体的面上,通过直接观察来获取有关物品的信息。
这个法则适用于任何基于平坦的物品(如纸张)的绘图。
3. 角度视图法在角度视图法中,被绘制物体的各个面分别与观察者形成了不同的角度。
这种视图包括了基本的俯视图、侧视图和前视图。
同时,还可以包括其他几种视角,如斜视图、推视图和横视图等等。
三、三视图的绘制方法在绘制三视图时,主要的过程包括制定侧面图、正面图和俯视图、画外观线、绘制尺寸线、标注尺寸、画隐藏线和标注名称等步骤。
其中,每一个步骤都需要特别注意,确保最终的效果是准确和清晰的。
四、三视图的注意事项在绘制三视图时,一定要特别注意清晰的细节和精华。
以下是一些关键的注意事项:1. 确认依据:在绘制三视图之前,一定要先确认所依据的参考图纸和数据的来源。
2. 视图的数量和排列:在使用三视图时,一定要确保正确的视图数量和位置,及其排列方式。
3. 线条的清晰度:除了基本的尺寸和比例之外,线条的清晰度也关系到绘图的质量水平。
一定要过滤掉任何不必要的零散线条,在纸张上画出清晰和有序的图形。
4. 标准的标注:三视图不光是几何形状的展示,也关系到绘制产品的材料、尺寸和工艺等行业标准的定义。
第二节三视图
要点精讲
1.视图:物体的正投影称为视图,把从物体正面的视图称为主视图,从物体的左侧面得到的视图称为左视图,从物体上面得到的视图称为俯视图,统称三视图。
2.三视图的位置:
俯视图画在主视图的下方,左侧图画在主视图的右面。
3.画三视图的“三等原则”:
(1)主视图与俯视图的长度相等,且相互对正,即“长对正”
(2)主视图与左视图的高度相等,且相互平齐,即“高平齐”
(3)俯视图与左视图的宽度相等,即“宽相等”
4.常见几何体的平面或侧面展开图
①圆柱体的侧面展开图是矩形
②圆锥体的侧面展开图是扇形
③直棱柱的侧面展开图是矩形
④正三棱锥
⑤正方体
⑥长方体
典型例题
1.圆锥体的主视图是,左视图是,俯视图是.【答案】三角形、三角形、圆
2.球的三视图分别是,,.
【答案】圆,圆,圆。
七年级上册三视图知识点归纳在学习物理学、建筑设计、机械设计等领域的时候,三视图是我们经常使用的绘图方法。
在三视图中,一个物体或者建筑物被分别从正、上和右三个方向进行投影。
对于七年级学生来说,三视图是很重要的基础知识。
本文将会详细介绍三视图的定义、基本要素和绘制方法,以帮助学生更好地掌握这项技能。
一、三视图的定义三视图是一种投影图形,它由正视图、俯视图和右视图三个图形组成。
正视图显示物体或者建筑物的前面、俯视图显示物体或者建筑物的顶部,右视图显示物体或者建筑物的右侧。
通过三视图,我们可以看到物体或者建筑物的三个主要方向。
二、三视图的基本要素1. 正视图:正视图显示物体或者建筑物的前面,包含了物体的所有主要细节和特征。
在正视图中,物体或者建筑物的前面应该向上。
2. 俯视图:俯视图显示物体或者建筑物的顶部,包含了物体的主要外廓线和尺寸。
在俯视图中,物体或者建筑物的顶部应该向右。
3. 右视图:右视图显示物体或者建筑物的右侧,包含了物体侧面的所有主要细节和特征。
在右视图中,物体或者建筑物的侧面应该向上。
三、三视图的绘制方法为了画好三视图,必须先确定物体或者建筑物的大小和比例尺,然后按照以下步骤进行绘制:1. 首先绘制正视图,按照比例尺将物体或者建筑物正视图上的长度、宽度和高度绘制出来。
2. 接着,在正视图下方绘制俯视图。
在俯视图上标记出物体或者建筑物的长度和宽度。
3. 最后,在正视图右侧绘制右视图。
在右视图上标记出物体或者建筑物的长度和高度。
需要注意的是,三视图的比例尺必须保持一致,以确保三个图形之间的比例关系正确。
四、三视图的应用三视图可以帮助我们更清楚直观地了解物体或者建筑物的形状、结构和尺寸。
它们是设计、制造和施工过程中不可缺少的工具。
在物理学中,三视图可以帮助我们更好地理解运动、力学和能量转换等概念。
在建筑设计和机械设计中,三视图可以帮助我们进行设计、制造和材料选取等方面的决策。
总之,三视图是一项非常重要的基础技能,它在很多领域都有着广泛的应用。
七年级第一章三视图知识点在学习物理时,三视图是一种十分基础和重要的概念。
对于七年级的学生来说,掌握三视图的知识点是十分关键的。
下面将介绍三视图的概念、特点以及如何进行正确的绘制。
一、三视图的概念
三视图,顾名思义,就是指一件物体能够被分别画成正视图、左视图和俯视图三个不同方位的视图。
其中,正视图是指物体正对观察者的视图,左视图是指物体从左侧观察时的视图,俯视图是指物体从上方向下观察时的视图。
二、三视图的特点
1. 三视图互相独立:每个视图所表现的物体形状和大小都是独立的。
任何时候,三视图都应该互相独立,不应该重合或出现多余的线条。
2. 三视图共同构成一个立体图形:通过分析三个视图,我们可以更加全面地了解一个立体图形的形状和特征。
3. 三视图应该处于同一平面内:三视图应该在同一平面内展示,这样方便我们进行观察和比较。
三、正确绘制三视图的方法
1. 确定三视图的位置:首先要明确立体图形的位置和基准线,
然后确定正视图的位置,再绘制左视图和俯视图。
2. 绘制正视图:一般正视图是在左边,需要根据物品的形状和
大小合理绘制。
3. 绘制左视图和俯视图:左视图在正视图的右侧,需按照正视
图匹配线条精细绘制;俯视图在正视图的下方,需要做好比例和
对称。
4. 绘制通用线条:三视图中的通用线条指的是三个视图中都有
的线条,应该先绘制好,再逐一补充其他线条。
综上所述,三视图是学习物理中一个非常重要的知识点,对于七年级的学生来说,需要认真掌握。
正确绘制三视图不仅能够提高我们对于有关的物体形状和大小的理解,也有助于我们更好地进行模型设计和制作。