等腰三角形专项训练(经典习题)[1]
- 格式:doc
- 大小:437.50 KB
- 文档页数:4
等腰三角形经典习题(必看)等腰三角形经典题(必看)以下是一些经典的等腰三角形题,希望能对你的研究有所帮助。
1. 判断等腰三角形给定一个三角形ABC,其中AB=AC。
你需要判断这个三角形是否为等腰三角形。
解答:如果角B等于角C,则该三角形为等腰三角形。
2. 求等腰三角形的周长已知一个等腰三角形ABC,其中AB=AC,且BC=8cm。
你需要求解这个等腰三角形的周长。
解答:由于AB=AC且BC=8cm,那么周长等于AB+AC+BC=2AB+BC=2(BC/2)+BC=BC+BC=2BC=2*8cm=16cm。
3. 求等腰三角形的面积已知一个等腰三角形ABC,其中AB=AC=10cm,且角BAC等于60度。
你需要求解这个等腰三角形的面积。
解答:由于AB=AC=10cm且角BAC等于60度,我们可以利用正弦定理来计算三角形的高。
设三角形的高为h,那么有sin60度=h/10cm,解得h=10cm*sin60度=10cm*sqrt(3)/2=5sqrt(3)cm。
等腰三角形的面积可以通过底边乘以高再除以2来计算,即面积=10cm*5sqrt(3)cm/2=25sqrt(3)cm²。
4. 求等腰三角形的顶角已知一个等腰三角形ABC,其中AB=AC=5cm,且BC=6cm。
你需要求解这个等腰三角形的顶角。
解答:由于AB=AC=5cm且BC=6cm,我们可以使用余弦定理来计算角BAC的大小。
设角BAC为x度,则有cosx=(5²+5²-6²)/(2*5*5)=19/25。
解得x=arccos(19/25)≈31.8度。
因此,等腰三角形的顶角大约为31.8度。
以上是一些关于等腰三角形的经典习题,希望对你的学习有所帮助。
如果你还有其他问题,请随时向我提问。
等腰三角形专项训练一、选择与填空1、一个等腰三角形的一个角是50° ,它的一腰上的高与底边的夹角是()A. 25°B. 40°C. 25°或 40°D.不确立 .2、.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为()0或 150 00或 120 0003、有一个等腰三角形的周长为25,一边长为 11,那么腰长为 ()A. 11B. 7C.14D. 7 或 114、等边三角形的两条高线订交所成钝角的度数是()A. 105°B. 120°C. 135°D. 150°5 、以下命题正确的个数是()①假如等腰三角形内一点究竟边两头点的距离相等, 那么过这点与极点的直线必垂直于底边 ;②假如把等腰三角形的底边向两个方向延伸相等的线段, 那么延伸线段的两个端点与极点距离相等; ③等腰三角形底边中线上一点到两腰的距离相等; ④等腰三角形高上一点究竟边的两头点距离相等.个个个个6、以下图形中必定有 4 条对称轴的是()A.长方形B.正方形C.等边三角形D.等腰直角三角形7、以下图形 : ①两个点 ; ②线段 ; ③角 ;④长方形 ; ⑤两条订交直线 ; ⑥三角形 ,此中必定是轴对称图形的有()个个个个8、等腰三角形是轴对称图形,它的对称轴有()条条条条或3条9、若点 P 为⊿ ABC 内部一点,且PA=PB=PC,则点 P 是⊿ ABC的()( A)三边中线的交点(B)三内角均分线的交点( C)三条高的交点(D)三边垂直均分线的交点10 若△ ABC两边的垂直均分线的交点在三角形的外面,则△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能11、等腰△ ABC中, AB=AC=10,∠ A=30 °,则腰 AB 上的高等于 ___________.12、在△ ABC中 ,AB=AC,AD⊥ BC 于 D,由以上两个条件可得_________________.( 写出一个结论即可 )13、如图5:在△ ABC 中 , ∠ A=90 ,BD 均分∠ ABC,交 AC 于点 D,已知 AD=㎝ ,则 D 到 BC 边的距离为 __________.14、假如等腰三角形的三边长均为整数且周长为10,则它的三边长分别为 ______________.15、在△ ABC 中,AB=AC,∠ BAC=120°,AB 的垂直均分线交BC于 D,且 BD=10cm,则 DC=____.16、在△ ABC中,∠ A=78°,点 D, E, F 分别在边 BC,AB, AC上, BD=BE,CD=CF,?则∠EDF=_______.17、如图,⊿ MNP 中 ,∠ P=60,MN=NP,MQ ⊥ PN,垂足为 Q,延伸 MN 至 G,取 NG=NQ,若⊿ MNP 的周长为 12, MQ=a,则⊿ MGQ 的周长为()(A) 8+2a( B) 8+a( C) 6+a( D) 6+2a18、如图9-13 所示,△ ABC中, BC 边的垂直均分线DE 交 BC 于 D,交 AC于 E,BE= 5 厘米,△ BCE的周长是 18 厘米,则 BC=厘米二、作图题如图, A、 B 两个乡村在河岸的同一侧,现要在河岸上开设取水口,铺设浇灌管道。
等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50。
,则其顶角为________ ・2.如图,HABC中…13=∕C, BC=6cm, JD 平分ZBAC.则BD= _________________ c m.第3题图3.如图,'ABC中,-lδ=FC, D为EC中点,ZBAD=35。
,则ZC的度数为()A.35oB. 45。
C・ 55。
D・ 60o4.已知等腰三角形的一个内角为50。
,则这个等腰三角形的顶角为()A・ 50o B. 80oC. 50。
或80。
D・ 40。
或65。
5.如图,在Z∖J5C 中,D 是BC 边上一点,^AB=.-ID=DC, ZAW=40°,求ZC 的度数.6.如图,ΔJBCΦ, .IB=AC9 D 是EC 的中点,E, F分别是.1B. JC±的点,且AE=AF. 求证:DE=DF.1. 在 ∕∖ABC 中,ZJ=40% Z5 = 70o ,则 MBC 为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2. 已知ΔJPC 中,Z5=50% ZJ = 80c , -lδ=5cm.则 AC= _________________ ・3. 如图,在ΛABC 中,-Q 丄BC 于点Zh 请你再添加一个条件,使苴可以确定AlSC 为等腰三角形,则添加的条件是 ________ ・第3题图4. 如图,已知NlBC 中,ZJ = 36% AB=AC, BD 为ZABC 的平分线,则图中共有 _______________ 个等腰三角形.5. 如图,D 是ZXJ5C 的BC 边上的中点,DE 丄AC. DFLAB.垂足分别是E, F,且DE=DF 求证:AB=AC.6.如图,肋〃 CZ λ直线/交,松于点E,交CD 于点F, FG 平分ZEFD 交直线曲于点G 求证:ZLEFG 是等腰三角形.第4题图13・3.2等边三角形第1课时等边三角形的性质与判定1. ____________________________________________________________ 如图,a∕∕b.等边MBC的顶点D C在直线b上,则Zl的度数为_______________________第1题图第3题图2.在∕∖ABC中,ZJ=60°,现有下面三个条件:®ZB=ZC;③ZA=ZB.能判定Z∖J5C为等边三角形的有____________________________ .3・如图,在等边AABC中,BD丄AC于D∙若,松=4,则AD= ________________ ・4.如图,ΔJ J9C是等边三角形,ZCBD=90°. BD=BC.连接.10交BC于点求ZBAD 的度数.5・如图,E是等边AABC中JC边上的点,Z1 = Z2, BE=CD.求证: (I)ZUEE 竺ZUS⑵AADE为等边三角形.第2课时含30。
4.A- 40。
B・ 50。
C. 60。
已知:如图,CD=AD=BC,在△ABC中,AB=AC. D为4B边上一点,若则ZA二___________ .第4题图如图,在△ABC中, D为4B上一点,E为BC上一点,且AC=CD=BD=BE. ZA=50。
,则ZBDE的度数为_____________ •等腰三角形(习题)已知:如图,在△ABC 中,AB=AC. ZA=80S 则ZC二若等腰三角形的一个角比另一个角大30\则该等腰三角形的顶角的度数为 _________________ .如图,在△4BC 中,AB=AC, ZA=40。
,CD//AB,则ZBCD二2.3.D-5.如图,在△ABC 中,AB=AC.在AB, AC ±分别截取AP,AQ.使AP=AQ.再分别以点P, 2为圆心,以大t PQ 的2长为半径作弧,两弧在ZBAC 内交于点R,作射线AR,交 BC 于点D.若BC 二6,则BD 的长为(A- 2 B ・ 3 C. 4 已知;如图,在△ABC 中,AB=AC. AD 是BC 边上的中线, 点P 在AD 上.求证:PB=PC ・已知:如图,B, D E, C 在同一直线上,AB=AC.6. 7. D ・5AD=AE.求证:BD二CE.如图,在△ABC 中,BC=5 cm, BP, CP 分别是ZABC 和ZACB 的平分线,且PD//AB. PE//AC.则的周•长是E. 若长方形的长AD 为8 cm,宽CD 为4 cm,则△CFD的周长是 _____ cm.如图,在△ABC 中,D, E 是BC 的三等分点,且△>!£)£是等边三角形,则ZBAC= ___________ •如图,在 RtAABC 中,ZACB=90\ ZB=60% CD 是/\ABC的臥且BD=\.则AD 二 __________ ・房梁的一部分如图所示,其中BC±AC. ZA=30。
等腰三角形练习题一题型研究题型一:等腰三角形的性质+=,则∠B的1.如图,在ABC中,105∠=︒,AD BCBAC⊥,垂足为D,若AB BD CD度数为()A.20︒B.25︒C.45︒D.50︒2.如图,在△ABC中,∠ABC=60°,BC=20,点D在边AB上,CA=CD,BD=8,则AD=()A.2 B.3 C.4 D.63.如图,在ABC中,10==,8AB ACBC=,AD平分BAC∠交BC于点D,点E为AC的△的周长为()中点,连接DE,则CDEA.12 B.13 C.14 D.18题型二:等腰三角形的判定4.点C、D都在线段AB上,且AD=BC,AE=BF,∠A=∠B,CF与DE相交于点G.(1)求证∠E=∠F;(2)若CF=10,DG=4,求EG的长.5.已知:如图,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .求证:MN =BM +CN .6.【问题提出】在ABC 中,2ACB B ∠=∠,AD 为BAC ∠的角平分线,探究线段AB ,AC ,CD 的数量关系.【问题解决】如图1,当90ACB ∠=︒,过点D 作DE AB ⊥,垂足为E ,易得AB AC CD =+;由此,如图2,当90ACB ∠≠︒时,猜想线段AB ,AC ,CD 有怎样的数量关系?给出证明.【方法迁移】如图3,当90ACB ∠≠︒,AD 为ABC 的外角平分线时,探究线段AB ,AC ,CD 又有怎样的数量关系?直接写出结论,不证明.题型三:等边三角形的性质7.如图,在等腰直角三角形ABC中,∠BAC=90°,等边三角形ADE的顶点D在BC边上,连接CE,已知∠DCE=90°,CD=2,则AB的长为()A.2B.31+C.22D.38.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若BC=5,则五边形DECHF的周长为()A.8 B.10 C.11 D.12AD=,E是高AD上的一个动点,F是边AB 9.如图,在等边三角形ABC中,BC边上的高8的中点,在点E运动的过程中,存在EB EF+的最小值,则这个最小值是()A.5 B.6 C.7 D.8题型四:等边三角形的判定10.已知:如图,在四边形ABCD中,AB∥CD,且AB=CD,点E在AB上,将△BCE沿CE对折得到△FCE,EF恰好过点A,FC边与AD边交于点G,且DC=DG.(1)求证:△ABC≌△CDA;(2)试判断△F AG的形状,并说明理由.11.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若CD与AE相交于点F,CD与AB相交于点G,求∠AFD的度数.12.在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,BD=CE,BE=CF,(1)求证:∠B=∠DEF;(2)连接DF,当∠A的度数是多少时,△DEF是等边三角形.题型五:等腰和等边三角形的综合问题13.如图,ABC 是等边三角形,点D ,E 分别在边AB ,BC 上,AD BE =,线段AE ,CD 交于点F .作AEH CFE ∠=∠,交CF 于点H .(1)求证:ACD BAE ∠=∠;(2)用等式表示线段AF ,DF ,CH 之间的数量关系,并证明.14.已知在ABC 中,BAC 45∠=︒,AE ,BF 是ABC 的高,分别交BC ,AC 于点E ,F .(1)如图1,若ABC C ∠<∠,且75BDE ∠=︒,求BAE ∠的度数;(2)如图2,若ABC C ∠=∠.①求BAE ∠的度数;②求证:ADF BCF ≌△△.15.在等边△ABC中,D为BA延长线上一点,F为BC上一点,过B作BE∥AC,连接DE,EF,且∠DEF=60°.(1)如图1,若BE=2,BD=5,求BF的长.(2)如图2,若F为CB延长线上一点,试探究BD、BE、BF的关系,并说明理由.(3)如图3,若F为BC延长线上一点,且AD:BE:AC=1:2:3,请直接写出CF:BE的值.二随堂练习一、单选题16.如图,等边△ABC 中,AD 为BC 边上的高,点M 、N 分别在AD 、AC 上,且AM =CN ,连BM 、BN ,当BM +BN 最小时,∠MBN 的度数为( )A .15°B .22.5°C .30°D .47.5°17.如图,已知ABC 是等腰三角形,AB BC =,BD 平分ABC ∠,若6AC =,则AD 的长为( )A .2B .3C .4D .818.如图,在平面直角坐标系xOy 中,点B 的坐标为()2,0,若点A 在第一象限内,且AB OB =,60AOB ∠=︒,则点A 到y 轴的距离为( )A .12B .1C .32D .2 19.如图,30ABC ︒∠=,点D 是它内部一点,BD m =.点E ,F 分别是BA ,BC 上的两个动点,则DEF 周长的最小值为( )A .0.5mB .mC .1.5mD .2m20.如图,把一张长方形纸片ABCD 沿对角线AC 折叠,点D 的对应点为点,F CF 与AB 交于点E ,若长方形ABCD 的周长为16,则CBE △的周长为( )A .8B .16C .32D .421.如图,ABC 中,AB BC =,60C ∠=°,AD 是BC 上的高,DE AC ∥,图中与BD (BD 除外)相等的线段共有( )条.A .1B .2C .3D .422.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =9,则线段MN 的长( )A .大于9B .等于9C .小于9D .不能确定23.如图,在ABC 中,AB AC =,点D ,E ,F 分别在边BC ,AC ,AB 上,且BD CE =,DC BF =,且60EDF ∠=︒.(1)求证:BDF CED △≌△;(2)判断ABC 的形状,并说明理由.24.△ABC 是等边三角形,点D 、E 分别在边AC 、BC 上,且AD =CE ,连接AE 、BD 交于点F .(1)如图1,求∠BFE 的度数;(2)如图2,连接CF ,当CF ⊥BD 时,求AF BF的值; (3)如图3,点P 在线段AE 上,连接CP ,且CP =AF ,在图中找出与线段 AP 相等的线段,并证明.高分突破一:选择题25.如图,在ACD △中,60CAD ∠=︒,以AC 为底边向外作等腰ABC ,60BAC ADC ∠+∠=︒,在CD 上截取DE AB =,连接BE .若30BEC ∠=︒,则BAC ∠的度数为( )A .10°B .15°C .20°D .30°26.如图,将一个等腰直角三角形△ABC 按如图方式折叠,若DE =a ,DC =b ,下列四个结论:①DC ′平分∠BDE ;②BC 长为2a +b ;③△BDC ′是等腰三角形;④△CED 的周长等于BC 的长.其中,正确的是( )A .①②④B .②③④C .②③D .②④27.如图,过边长为4的等边ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当P A =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .95B .2C .115D .12528.已知:如图在ABC ∆,ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD CE =;②BD CE ⊥;③45ACE DBC ∠+∠=︒;④180BAE DAC ∠+∠=︒,其中结论正确的个数是( )(注:等腰三角形的两个底角相等)A .1B .2C .3D .429.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,那么下列结论:①△BDF 和△CEF 都是等腰三角形;②DE =BD +CE ;③△ADE 的周长等于AB 与AC 的和;④BF =CF .其中正确的有( )A .①②③B .①②③④C .①②D .①30.如图,∠EAF =18°,AB BC CD ==,则∠ECD 等于( )A .36°B .54°C .72°D .108°31.如图,在△ABC 中,AC =BC ,∠ACB =90°,M 是AB 边上的中点,点D 、E 分别是AC 、BC 边上的动点,DE 与CM 相交于点F 且∠DME =90°.则下列5个结论:(1)图中共有两对全等三角形;(2)△DEM 是等腰三角形;(3)∠CDM =∠CFE ;(4)AD +BE =AC ;(5)四边形CDME 的面积发生改变.其中正确的结论有个( )A .2B .3C .4D .532.如图所示,△ABC 与△ADE 顶点A 重合,点D ,E 分别在边BC ,AC 上,且AB =AC ,AD =DE ,∠B =∠ADE =40°,则∠EDC 的度数为( )A .20°B .30°C .40°D .5033.如图,Rt △ABC 中,∠C =90°,AC =BC ,点D 、E 分别是边AB 、AC 上的点,把△ADE 沿DE 折叠,点A 恰好落在BC 上的点F 处,若点F 为BC 的中点,则CE AC 的值是( ) A .12B .22C .25D .38 二、填空题 34.如图,1230∠=∠=︒,A B ∠=∠,AE BE =,点D 在边AC 上,AE 与BD 相交于点O ,则∠C 的度数为______.35.如图,在ABC 中,AE 是BC 边上的中线,过点C 作CD AE ⊥,交AE 的延长线于点D ,连结BD .若AB BD =,BCD △的面积为10,则ABC 的面积为______.36.如图,在等腰△ABC 中,AB =AC =10,BC =16,AD 是BC 边上的中线且AD =6,F 是AD 上的动点,E 是AC 边上的动点,则CF +EF 的最小值等于______.37.如图,已知等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面结论:①∠ACO=15°;②∠APO+∠DCO=30°;③△OPC 是等边三角形;④AC=AO+AP ;其中正确的有 ______(填上所有正确结论的序号).38.如图,在R △ABC 中,AB =AC ,点D 为BC 中点,点E 在AB 边上,连接DE ,过点D作DE 的垂线,交AC 于点F .下列结论:①△AED ≌△CFD ;②EF =AD ;③BE +CF =AC ;④S 四边形AEDF =12AD 2,其中正确的结论是 _____(填序号).三、解答题39.如图,在ABC 中,60ACB ∠=︒,点D 在AC 上,BC CD =,以AB 为边向左侧作等边三角形ABE ,连ED .(1)求证:ABC EBD ≌△△;(2)过点B 作BF ED ⊥于点F ,2DF =,求BD 的长.40.如图,ABC 是等边三角形,过点B 作BD //AC ,点D 在直线AB 下方,在射线BD 上截取2BD BC =,连接AE .(1)用无刻度的直尺和圆规按要求作图,并在图中标出相应字母(不写作法,保留作图痕迹)(2)在(1)条件下,求证:AE AB ⊥.41.如图,在ABC 中,90BAC ∠=︒,3AB AC ==,D 为BC 边的中点,点E 、F 分别在AB 、AC 边上运动,且始终保持BE AF =,连接DE 、DF 、EF .(1)求证:ADE ≌CDF ;(2)判断DEF 的形状,并说明理由;(3)求四边形AEDF 的面积;(4)若2BE =,求EF 的长.42.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,AD 是BC 的中线,AE BF =.(1)求证:DE DF =(2)DEF 是什么形状的三角形?请说明理由.43.在△ABC 中,AC =BC ,∠ACB =90°,点D 、E 分别在AB 、BC 上,且AD =BE ,BD =AC ,连接CD 、DE .(1)如图1,求证:DE =CD ;(2)如图2,过E 作EF ⊥AB 于F ,求证:∠FED =∠CED ;(3)如图3,若延长ED 、CA 相交于G ,求证:D 为EG 的中点.44.如图1,在△ABC 中,AB AC =,点E 在线段BC 上,连接AE 并延长到G ,使得EG AE =,过点G 作GD BA ∥分别交BC ,AC 于点F ,D .(1)求证:△≌△ABE GFE ;(2)若3GD =,1CD =,求AB 的长度;(3)如图2,过点D 作DH BC ⊥于H ,P 是直线DH 上的一个动点,连接AF ,AP ,FP ,若45C ∠=︒,2AF =,在(2)条件下,求△AFP 周长的最小值.45.已知△ABC ≌△ADE ,且它们都是等腰直角三角形,∠ABC =∠ADE =90°.(1)如图1,当点D在边AC上时,连接BD并延长交CE于点F,①求证:∠CBD=∠EDF;②求证:点F为线段CE的中点;(2)△ADE绕着点A顺时针旋转,如图2所示,连接BD并延长交CE于点F,点F还是线段CE的中点吗?请说明理由.。
完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。
1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。
解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。
2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。
解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。
解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。
4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。
解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。
A等腰三角形练习题一、计算题:1. 女口图,△ABC 中,AB=AC,BC=BD,AD=DE=EB求6的度数2. 如图,CA=CB,DF=DB,AE=AD求/A的度数3、AB 于丄AB 于E, DF 丄BC 交AC 于点F,若/EDF=70。
,求AFD 的度数4. 女口图,△ABC 中, AB=AC,BC=BD=ED=EA 求/A的度数ACA5. 如图,△ABC 中,AB二AC , D 在BC 上, /BAD=30 °在AC 上取点E,使AE=AD,求/EDC的度数6. 如图,△ABC 中,/C=901BE=AC,BD= 2,DE+BC=1,求/ABC的度数,D为AB上一点,作DE丄BC于E,若C7. 如图,△ABC 中,AD 平分Z BAC,若AC二AB+BD 求ZB : Z C的值二、证明题:8. 如图,A DEF 中,/EDF=2 ZE, FA丄DE 于点A,问:DF、AD、AE 间有什么样的大小关系9. 如图,△ABC中,Z B=60。
,角平分线AD、CE交于点0求证:AE+CD二AC12.如图,△BC中,AB=AC,D 点,且/ ABD= ZACD =60 求证:CD=AB-BD13. 已知:如图,AB=AC=BE , CD为A ABC中AB边上的中线1D求证:CD= 2CEB C14. 如图,△ABC 中,/1二 /2,/EDC二 ZBAC求证:BD=EDD15. 如图,△ABC 中,AB=AC,BE=CF,EF 求证:EG=FG16. 如图,△ABC 中,/ABC=2 ZC , AD 是BC 边上的高,B 到点E ,使17. 如图,AABC 中,AB=AC,AD 和BE 两条高,交于点 H ,且AE=BE求证:AH=2BDBE=BD求证:AF=FCA18. 如图,△ABC 中,AB二AC, /BAC=90 °,BD=AB, /ABD=30求证:AD=DC19. 如图,等边△ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED20. 如图,四边形ABCD中,/BAD+ ZBCD=180 °,AD、BC的延长线交于点F, DC、AB的延长线交于点E,/E、/F的平分线交于点H 求证:EH丄FH一、计算题:1. 女口图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求/A的度数设/ABD为X,则/A为2x由8x=180 °得 /A=2x=45 °2. 如图,CA=CB,DF=DB,AE=AD求/A的度数设/A 为X,由5x=180 °BD得/A=363. 如图,△ABC 中,AB=AC , D 在BC 上,DE 丄AB 于E, DF 丄BC 交AC 于点F,若/EDF=70求Z AFD的度数Z AFD=1604. 如图,△ABC中,求/A的度数设/A为x180ZA= 7AB=AC,BC=BD=ED=EA5. 如图,△ABC 中,AB二AC , D 在BC 上,/BAD=30 °在AC 上取点E,使AE=AD,求/EDC的度数设/ADE为xx—156. 如图,△ABC中,/C=90 °,D为AB上一点,作DE丄BC于E,若1BE=AC,BD= 2,DE+BC=1,求/ABC的度数延长DE到点F,使EF=BC可证得:△ABC幻^FE所以/仁ZF由Z2+ ZF=90 °得Z1+ ZF=90 °1在Rt ADBF 中,BD= 2,DF=1所以/F = Z1=30 °7. 如图,A ABC 中,AD 平分/BAC,若AC二AB+BD求ZB : /C的值在AC上取一点E,使AE=AB可证/△ABD坐A DE所以Z B= Z AED由AC=AB+BD,得DE=EC, 所以Z AED=2 ZC故/B : Z C=2:1、证明题:8. 如图,AKBC中,ZABC, /CAB的平分线交于点P,过点P作DE //AB ,分别交BC、AC于点D、E求证:DE=BD+AE13证明APBD 和BEA 是等腰三角形9. 如图,A DEF 中,/EDF=2 ZE , FA 丄 DE 于点 A ,问:DF 、AD 、AE10. 如图,A ABC 中,Z B=60求证:AE+CD 二AC 在AC 上取点F,使 AF=AE易证明MOE ^zAOF,,角平分线AD 、CE 交于点OBED间有什么样的大小关系DF+AD=AE在AE上取点B,使AB=AD 得Z AOE二 ZAOF由ZB=60 °,角平分线AD、CE,得Z AOC=120所以Z AOE= ZAOF= ZCOF= /COD=60故△COD幻©OF,得CF=CD所以AE+CD二AC11. 如图,©ABC 中,AB=AC, zA=100 °,BD 平分/ABC, 求证:BC=BD+AD 延长BD到点E,使BE=BC,连结CE 在BC上取点F,使BF=BA易证©ABD 坐©BD,得AD=DF再证©CDE 坐©DF,得DE=DF故BE=BC=BD+AD也可:在BC上取点E,使BF=BD,连结DF在BF上取点E,使BF=BA,连结DE先证DE=DC,再由©ABD坐©BD,得AD=DE,最后证明DE=DF即可BE F12. 如图,AABC中,AB=AC,D 为AABC外一点,且/ ABD二 zACD =60求证:CD=AB-BD在AB上取点E,使BE=BD ,在AC上取点F,使CF=CD得ABDE与△CDF均为等边三角形,只需证MDF幻Z ED13. 已知:如图,AB=AC=BE , CD为A ABC中AB 边上的中线1求证:CD= 2CE延长CD到点E,使DE=CD.连结AE证明MCE坐zBCE14. 如图,A ABC 中,/1二 /2,/EDC二 ZBAC求证:BD=ED易证/△ABD坐A DF,得BD=DF, ZB= Z AFD由ZB+ ZBAC+ ZC= ZDEC+ ZEDC+ /C=180所以ZB= ZDEC所以/DEC二Z AFD所以DE=DF,故BD=ED15. 如图,A ABC 中,AB=AC,BE=CF,EF 交BC 于点G求证:EG=FG16. 如图,A ABC中,/ABC=2 ZC, AD是BC边上的高,B到点E,使ABE=BD求证:AF=FC17. 如图,△ABC中,AB=AC,AD 和BE两条高,交于点求证:AH=2BD由△AHE坐^CE,得BC=AH18. 如图,A ABC 中,AB=AC, /BAC=90 °,BD=AB, zABD=30求证:AD=DC作AF丄BD于F,DE丄AC于E可证得Z DAF=DAE=15 °所以/△ADE坐A DF得AF=AE,由AB=2AF=2AE=AC,所以AE=EC,因此DE是AC的中垂线,所以AD=DC19. 如图,等边A ABC中,分别延长BA至点E,延长BC至点D,使AE=BD求证:EC=ED延长BD到点F,使DF=BC,可得等边厶BEF,F 18C D只需证明A BCE幻△DE即可20. 如图,四边形ABCD中,/BAD+ ZBCD=180 °,AD、BC的延长线交于点F, DC、AB的延长线交于点E,/E、/F的平分线交于点H求证:EH丄FH延长EH交AF于点G由ZBAD+ /BCD=180ZDCF+ ZBCD=180 °得/BAD二 /DCF,由外角定理,得/1二2 故MGM是等腰三角形由三线合一,得EH丄。
中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形AQ CPB∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60° ∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
等腰三角形经典习题(必看)题一:求等腰三角形的面积
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该等腰三角形的面积。
解题思路
由于等腰三角形的底和高两边相等,可以利用三角形的面积公式求解。
面积公式为:$S = \frac{1}{2} \times x \times y$。
题二:求等腰三角形的周长
题目描述
给定一个等腰三角形,已知底的长度为x,求该等腰三角形的周长。
解题思路
由于等腰三角形的底和两边相等,可以利用周长公式求解。
周
长公式为:$P = 2 \times x + 2 \times \sqrt{\frac{x^2}{4} + y^2}$。
题三:求等腰三角形的顶角
题目描述
给定一个等腰三角形,已知底和高的长度分别为x和y,求该
等腰三角形的顶角。
解题思路
等腰三角形的顶角可以通过三角函数求得。
顶角的弧度可以表
示为:$r = \arctan(\frac{y}{\frac{x}{2}})$,然后将弧度转换为角度:$a = \frac{180 \times r}{\pi}$。
总结
通过以上题,我们可以掌握等腰三角形的面积、周长和顶角的
求解方法,这些基础知识对于进一步研究和应用等腰三角形有重要
意义。
以上为等腰三角形经典习题,希望对您的学习有所帮助。
等腰三角形专项训练
一、选择与填空
1、一个等腰三角形的一个角是50°,它的一腰上的高与底边的夹角是( )
A.25°B.40°C.25°或40°D.不确定.
2、.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为()
A.600
B.1200
C.600或1500
D.600或1200
3、有一个等腰三角形的周长为25,一边长为11,那么腰长为( )
A.11 B.7 C.14 D.7或11
4、等边三角形的两条高线相交所成钝角的度数是( )
A.105°B.120°C.135°D.150°
5、下列命题正确的个数是( )
①如果等腰三角形内一点到底边两端点的距离相等, 那么过这点与顶点的直线必垂直于底边; ②如果把等腰三角形的底边向两个方向延长相等的线段, 那么延长线段的两个端点与顶点距离相等; ③等腰三角形底边中线上一点到两腰的距离相等; ④等腰三角形高上一点到底边的两端点距离相等.
A.1个
B.2个
C.3个
D.4个
6、下列图形中一定有4条对称轴的是()
A.长方形
B.正方形
C.等边三角形
D.等腰直角三角形
7、下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,
其中一定是轴对称图形的有()
A.5个
B.3个
C.4个
D.6个
8、等腰三角形是轴对称图形,它的对称轴有()
A.1条
B.2条
C.3条
D.1条或3条
9、若点P为⊿ABC内部一点,且PA=PB=PC,则点P是⊿ABC的()
(A)三边中线的交点(B)三内角平分线的交点
(C)三条高的交点(D)三边垂直平分线的交点
10若△ABC两边的垂直平分线的交点在三角形的外部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.都有可能
11、等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.
12、在△ABC中,AB=AC,AD⊥BC于D,由以上两个条件可得_________________.(写出一个结论即可)
A
13、如图5:在△ABC 中, ∠A=900
,BD 平分∠ABC,交AC 于点D,已知AD=4.3㎝,则D 到BC 边的距离为__________.
14、如果等腰三角形的三边长均为整数且周长为10,则它的三边长分别为______________. 15、在△ABC 中,AB=AC ,∠BAC=120°,AB 的垂直平分线交BC 于D ,且BD=10cm ,则DC=____. 16、在△ABC 中,∠A=78°,点D ,E ,F 分别在边BC ,AB ,AC 上,BD=BE ,CD=CF ,•则∠EDF=_______. 17、如图,⊿MNP 中,∠P= 60,MN=NP ,MQ ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ , 若⊿MNP 的周长为12,MQ=a ,则⊿MGQ 的周长为 ( ) (A) 8+2a (B )8+a (C ) 6+a (D )6+2a
18、如图9-13所示,△ABC 中,BC 边的垂直平分线DE 交BC 于D ,交AC 于E ,
BE =5厘米,△BCE 的周长是18厘米,则BC = 厘米
二、作图题
如图,A 、B 两个村庄在河岸的同一侧,现要在河岸上开设取水口,铺设灌溉管道。
为了使管道铺设距离最短,请在图中画出取水口P 的位置。
三、解答题 1、如图:在△ABC 中,AB=AC ,AD ⊥BC , DE ⊥
AB 于点E, DF ⊥AC 于点F 。
试说明DE=DF 。
2.如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点O ,过点O 作EF ∥BC ,交AB 于E ,交AC 于F ,若AB=18,AC=16,求△AEF 的周长?
3、如图11,已知BO 、CO 分别是∠ABC 和∠ACB 的平分线,OE ∥AB ,OF ∥AC ,如果已
知BC 的长为a ,你能知道△OEF 的周长吗?算算看.
4、已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.
A
F
B
C
D E
A B C
F E
O 图11
5、等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.
6、如图,点D,E 在△ABC 的边BC 上,AB=AC ,AD=AE , (1) 试比较BD 与CE 的大小,写出你得到的结论; (2) 对你得到的结论说明理由.
7、如图:在△ABC 中,AB=AC,P 为BC 边上任意一点,PF ⊥AB 于F,PE ⊥AC 于E,若AC 边上的高BD=a.
(1)试说明PE +PF=a;
(2)若点P 在BC 的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a 的关系式,不需要说明理由.
B
A B
C
P
F
E D。