金属液态成型基础作业
- 格式:docx
- 大小:22.71 KB
- 文档页数:3
1. 金属的液态成形(铸造)1.0概述将金属材料加热到高温熔化状态,然后采取一定的成形方法,待其冷却、凝固后获得所需金属制品,这种制造金属毛坯的过程称为金属的液态成形。
金属的液态成形除了铸造之外,还有液态模锻。
1.0.1铸造的定义铸造是指将液态合金浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,获得所需形状、尺寸和性能的毛坯或零件的金属液态成形方法。
它是生产机器零件毛坯的主要方法之一。
1.0.2铸造的基本过程铸造生产的基本过程包括以下三个步骤:①根据零件的要求,准备一定的铸型;②把金属液体浇满铸型的型腔;③金属液体在铸型型腔中冷凝成形,获得一定形状和尺寸的铸件。
1.0.3铸造生产的特点铸造的实质就是液态金属(合金)逐步冷凝成形,具有以下特点:优点:①适应性广几乎所有金属及其合金,只要能够熔化成液态便能铸造,尤其是适合生产塑性差的材料。
②工艺灵活性大各种形状、尺寸(壁厚从0.5~1000mm、轮廓从几毫米至几十米)、重量(从几克~几百吨)和生产批量的铸件都能生产,能够制成如机床床身、箱体、机架、支座等具有复杂内腔的毛坯。
某些形状极其复杂的零件只能用铸造方法制造毛坯。
③省工省料铸件毛坯与零件形状相似,尺寸相近,加工余量小,金属利用率高,可以省工省料,精密铸件甚至不需切削加工,就可直接装配。
④生产成本低铸造用的原材料来源广泛,可直接利用报废的机件和切屑。
造型设备投资少,易操作。
缺点:①铸件内部晶粒比较粗大,组织疏松,容易产生气孔、夹渣等铸造缺陷,机械性能和可靠性不如锻件,尤其是冲击韧性较差,不宜制造受冲击或交变载荷作用的零件。
②生产过程比较复杂,工序多且一些工艺过程难以精确控制,铸件质量不稳定,废品率较高。
③工人劳动强度大,劳动条件差。
1.0.4铸造生产的发展历史我国是世界上最早掌握铸造生产的文明古国之一。
早在三千多年前,青铜铸器已有应用,二千五百多年前,铸铁工具也已相当普遍。
我国劳动人民对世界铸造业的三大贡献(三大铸造技术):泥型铸造(砂型铸造)、铁型铸造(金属型铸造)、失蜡铸造(熔模铸造)。
金属液态成型基础作业1、试述液态金属的充型能力和流动性之间在概念上的区别,并举例说明。
答:? 液态金属的填充能力:充满铸型型腔,获得形状完整轮廓清晰的铸件能力。
影响因素:金属液的流动能力、模具性能、铸造条件和铸件结构。
?流动性:液态金属本身的流动能力,与金属本身有关:成分,温度,杂质物理性质。
其流动性是确定的,但填充能力不高。
它可以通过改变一些因素来改变。
流动性是指在特定条件下的填充能力。
11、四类因素中,在一般条件下,哪些是可以控制的?哪些是不可控的?提高浇铸造温度会带来什么副作用?答:一般条件下:合金与铸件结构不可控制,而铸型和浇铸条件可以控制,铸造温度过高,容易使金属严重吸入氧化,达不到预期效果。
3试述液态金属充型能力与流动性间的联系和区别,并分析充型能力与流动性的影响因素。
答:(1)液态金属充型能力与流动性间的联系和区别液态金属填充型腔并获得形状完整、轮廓清晰的铸件的能力,即液态金属填充型腔的能力,简称液态金属填充能力。
液态金属本身的流动性称为“流动性”,这是液态金属的工艺特性之一。
液态金属的充型能力首先取决于金属本身的流动能力,还受外部条件的影响,如模具性能、浇注条件、铸件结构等因素。
它是各种因素的综合反映。
在工程应用和研究中,通常是在相同的条件下(如相同的模具性能、浇注系统、浇注过程中控制相同的合金液过热度等)浇注各种合金的流动性试样,合金的流动性用试样的长度表示,合金的填充能力由测量的合金流动性表示。
因此,可以认为合金的流动性是一定条件下的填充能力。
对于同一种合金,还可以通过流动性试样研究各种铸造工艺因素对其充型能力的影响。
(2)充填量和流动性的影响因素①合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。
一般来说,在流动性曲线上,纯金属、共晶成分和金属间化合物对应的位置流动性最好,流动性随结晶温度范围的增加而降低,在最大结晶温度范围内流动性最差,即,随着结晶温度范围的增加,填充能力越来越差。
材料成形工艺基础作业集与自测题目录作业一金属的液态成形 (1)作业二金属的塑性成形 (9)作业三材料的焊接成形 (14)作业四切削加工1 (18)作业五切削加工2 (21)作业六切削加工3 (24)作业七切削加工4 (26)自测题 (29)一、金属的液态成形 (29)二、金属的塑性成形 (33)三、材料的焊接成形 (38)四、切削加工 (43)作业一金属的液态成形一、填空题1. 液态金属的充型能力要取决于合金的流动性。
流动性不好的合金铸件易产生、气孔、夹渣等铸造缺陷。
2.影响液态合金流动性的主要因素有、、不溶杂质和气体等。
合金的凝固温度范围越宽,其流动性越。
3.在铸造生产中,合金的浇注温度越离,其充型能力越;充型压力越大,其充型能力越;铸件的壁越厚,其充型能力越。
4.任何一种液态金属注入铸型以后,从浇注温度冷却至室温都要历三个个相互联系的收缩阶段,即、和。
导致铸件产缩孔和缩松的根本原因是;导致铸件产生应力、变形、裂纹的原因是。
5.在铸造生产中,合金的浇注温度越高,其收缩率越;铸件的壁越厚,其收缩率越;铸件的结构越复杂,其收缩率越;铸型的导热性越好,其收缩率越。
6.铸件在凝固过程中所造成的体积缩减如得不到液态金属补充,将产生缩孔或缩忪。
凝固温度范围窄的合金,倾向于“逐层凝固”,因此易产生;而凝固温度范宽的合金,倾向于“糊状凝固”,因此易产生。
7.铸造生产中,合金的结品温度范围越小,越倾向于凝固。
铸件内外之间的温度梯度越大,其凝固区宽度越。
铸件的其他凝固方式还有凝固、凝固。
影响合金凝固方式的因素有、。
8.准确地估计铸件上缩孔可能产生的位置,是合理安排冒口和冷铁的主要依据,生产中确定缩孔位置的常用方法有、和等。
9.顺序凝固原则主要适用于的合金,其目的是;同时凝固原则主要适用于的合金,其目的是。
10.铸件在冷却收缩过程中,因壁厚不均匀等因素造成的铸件各部分收缩不一致而引起的内应力,称为其目的是;铸件收缩受到铸型、型芯及浇注系统的机械阻碍而产生的应力称为。
第1章 液态金属的结构与性质1.液体原子的分布特征为 无序、 有序,即液态金属原子团的结构更类似于 。
2.实际液态金属内部存在 起伏、 起伏和 起伏 。
3.物质表面张力的大小与其内部质点间结合力大小成 比,界面张力的大小与界面两侧质点间结合力大小成 比。
衡量界面张力大小的标志是润湿角θ的大小,润湿角θ越小,说明界面能越 。
4.界面张力的大小可以用润湿角来衡量,两种物质原子间的结合力 ,就润湿,润湿角 ;而两种物质原子间的结合力 ,就不润湿,润湿角 。
5.影响液态金属表面张力的主要因素是 , ,和 。
6.钢液中的MnO ,当钢液的温度为1550℃时,3/0049.0m s N⋅=η,3/81.97000m N g ⨯=液ρ,3/81.95400m N g ⨯=杂ρ,对于r=0.0001m 的球形杂质,其上浮速度是多少?参考答案:0.0071m/s7.影响液态金属充型能力的因素可归纳为 合金本身性质 、 铸型性质 、 浇注方面 、 铸件结构方面 四个方面的因素。
8.影响液态金属黏度的因素有 合金成分 、 温度 、 非金属夹杂物 。
9.合金流动性:合金本身的流动能力;充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
10.液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?答:液态金属的流动性和充型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
提高液态金属的充型能力的措施:(1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度大,导热率小;④粘度、表面张力小。
(2)铸型性质方面:①蓄热系数小;②适当提高铸型温度;③提高透气性。
(3)浇注条件方面:①提高浇注温度;②提高浇注压力。
(4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
第2章作业参考答案1. 液态金属成形的一般工艺过程是怎样的?结合其工艺特点分析该类工艺的优点、缺点和和适用范围。
液态金属成形是将液态金属注入铸型中使之冷却、凝固而形成零件的方法,一般工艺过程包括模样制造、铸型制造、金属熔化与充型、凝固等关键步骤。
铸造为液体成形具有不受零件大小/薄厚/复杂程度限制、可制造各种合金铸件、相对焊接和塑性成形而言尺寸精度高、成本低等优点;但需要造型、浇注等步骤,工艺相对繁琐,工件承载能力不如锻件,同时工作环境差,粉尘多。
铸造适用于绝大部分零件,适用范围广。
(工艺过程三点明确。
明确分析优点、缺点和适用范围,同时结合其工艺特点)2.铸造合金流动性差对铸件质量有何影响?浇注时金属液过热温度及其他工艺条件相同的情况下,初步判断一下HT350和HT200两种合金,哪个流动性好,为什么?什么是液态金属的充型性能?它与那些因素有关?流动性差,金属充型能力差,铸件成形质量降低;液态金属中的气体夹杂物不易浮出,易产生气孔、夹杂;对缩孔和裂纹的充填和愈合作用减弱,易产生缩孔、裂纹等缺陷。
HT200流动性好,HT200碳含量在3.0~3.6%,HT350在2.7~3.2%,因HT200成分更靠近共晶点,固-液区间小,熔点较低,故流动性好(固液两相区越大,结晶温度范围越大,枝晶越发达,流动性越差)。
(流动性影响,判断及理由)充型能力:指液态金属充满型腔,获得形状完整、轮廓清晰健全铸件的能力。
充型能力首先取决于合金的流动性,同时又受到铸型性质(如铸型蓄热系数、铸型温度、铸型中的气体)、浇注条件(如浇注温度、充型压头、浇注系统结构)以及铸件结构(如模数、复杂程度等)的影响。
(充型能力定义,四个影响方面)3. 缩孔、缩松的区别是什么?什么样的合金容易出现疏松缺陷?生产中如何采取措施防止缩孔、缩松缺陷的产生?缩孔缩松的区别在形态,而取决于凝固方式,当铸件以逐层凝固方式凝固时,液态金属的流动使收缩集中到铸件最后凝固部分形成集中孔,即缩孔;而铸件以体积凝固方式凝固时,枝晶间隙的液体得不到补缩而形成小的孔洞,即缩松。
第一章金属液态成形1.①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。
②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。
流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。
③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。
④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。
2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。
3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。
缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。
4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。
浇不足是沙型没有全部充满。
冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。
出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。
而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。
逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。
定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。
5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。
铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。
金属的液态成形
金属的液态成形是现代制造业中一种重要的工艺。
它利用金属的熔融
中性,通过注射、挤压、铸造等操作,将金属材料精确地成形。
以下
是液态成形的步骤。
第一步,准备金属材料。
在液态成形过程中,首先需要准备好金属材料。
不同的成形工艺需要不同的金属材料。
一般情况下,常见的液态
成形材料有铝、铜、镁、钢等。
第二步,加热金属材料。
将金属材料加热到其熔点以上,使其成为液态,从而为后续加工过程做好准备。
这一步中需要注意金属材料的熔
点和其他性质,避免出现烧结、氧化等现象。
第三步,选择成形工艺。
根据金属材料的特性,以及生产需求,选择
不同的成形工艺。
一般来说,液态成形工艺分为注射、挤压、铸造等。
第四步,进行液态成形操作。
在进行液态成形操作时,需要注意操作
人员的专业技能和经验水平,尤其是对于一些高难度和高风险的操作。
操作中需要注意安全,配合机械和设备运转,精确控制工艺参数和加
工速度。
第五步,进行收尾工作。
当液态成形结束后,需要对设备和金属材料
进行清洗、维修和保养等收尾工作,确保设备和材料的安全可靠,以
及生产线的正常运转。
总体来说,液态成形在现代制造业中扮演着重要的角色,是现代制造
业的重要组成部分。
液态成形工艺的精细化、自动化和智能化也正在不断提高,使其在新时代更加高效、安全、环保和持续发展。
材料成形理论基础习题第一部分 液态金属凝固学1. 纯金属和实际合金的液态结构有何不同?举例说明。
答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。
原子集团的空穴或裂纹内分布着排列无规则的游离原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。
实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。
(2)例如钢液,在钢液中主要为Fe ,含有C 、Si 、S 、P 、Mn 、O 、H 等元素。
这些元素或以原子集团存在,或以高熔点化合物如SiO 、CaO 、MnO 等形式存在,共同构成有较大成分起伏的钢液主体以及杂质、气体和空穴等。
2. 液态金属的表面张力和界面张力有何不同?表面张力和附加压力有何关系?答:(1)液态金属的表面张力是界面张力的一个特例。
表面张力对应于液-气的交界面,而界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。
(2)表面张力与附加压力符合下列公式的关系:1211r r ρσ=+()式中r 1、r 2分别为曲面的曲率半径。
附加压力是因为液面弯曲后由表面张力引起的。
3. 液态合金的流动性和充型能力有何异同?如何提高液态金属的充型能力?答:(1)液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条件下的充型能力,是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。
而充型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。
(2)提高液态金属的冲型能力的措施:1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大;④粘度、表面张力大。
2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。
3)浇注条件方面:①提高浇注温度;②提高浇注压力。
4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度;②降低结构复杂程度。
一、简答题1.常用金属精密液态成形方法有哪些答:常用的金属精密液态成形方法有:熔模精密铸造、石膏型精密铸造、陶瓷型精密铸造、消失模铸造、金属型铸造、压力铸造、低压铸造、差压铸造、真空吸铸、调压铸造、挤压铸造、离心铸造、壳型铸造、连续铸造、半固态铸造、喷射成形技术、石墨型铸造、电渣熔铸和电磁铸造等。
2.金属精密液态成形技术的特点是什么对铸件生产有哪些影响特点:(1)特殊的铸型制造工艺与材料。
(2)特殊的液态金属充填方式与铸件冷凝条件。
对铸件生产的影响:由于铸型材料与铸型制作工艺的改变,对铸件表面粗糙度产生很大影响,不但尺寸精度很高,还可使铸件表面粗糙度降低,从而可实现近净成形。
在某些精密液态成形过程中,金属液是在外力(如离心力、电磁力、压力等)作用下完成充型和凝固的,因此提高了金属液的充型能力,有利于薄壁铸件的成形;液态金属在压力下凝固,有利于获得细晶组织,减少缩松缺陷,提高力学性能。
熔模:一、名词解释(1.硅溶胶:硅溶胶是由无定形二氧化硅的微小颗粒分散在水中而形成的稳定胶体。
硅溶胶是熔模铸造常用的一种优质黏结剂。
2.硅酸乙酯水解:3.水玻璃模数:水玻璃中的SiO2与Na2O摩尔数之比。
4.树脂模料:是以树脂及改性树脂为主要组分的模料。
5.压型温度:6.涂料的粉液比:涂料中耐火材料与黏结剂的比例。
7析晶:石英玻璃在熔点以下处于介稳定状态,在热力学上是不稳定的,当加热到一定温度,开始转变为方石英,此转变过程称“析晶”。
\二、填空题1.熔模铸造的模料强度通常以抗弯强度来衡量。
2.硅溶胶型壳的干燥过程实质上就是硅溶胶的胶凝过程。
3.一般说来说:硅溶胶中SiO2含量越高、密度越大,则型壳强度越高。
4.涂料中最基本的两个组成耐火材料和黏结剂之间的比例,即为涂料的粉液比。
5.通常按模料熔点的高低将其分为高温、中温和低温模料。
6.硅溶胶中Na20含量和PH值反映了硅溶胶及其涂料的稳定性。
7.模料的耐热性是指温度升高时模料的抗软化变形的能力。
第二讲1、哪些现象说明金属的熔化并不是原子间结合力的全部破坏?答:以下现象说明金属的熔化并不是原子间结合力的全部破坏:(1)物质熔化时体积变化、熵变(及焓变)一般均不大。
[注意:简答题此部分可略:如金属熔化时典型的体积变化△Vm/V(多为增大)为3~5%左右,表明液体原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。
](2)金属熔化潜热比其汽化潜热小得多(1/15~1/30),表明熔化时其内部原子结合键只有部分被破坏。
2、实际液态金属的结构是怎样的?3、名词解释:能量起伏、结构起伏、浓度起伏、粘度、运动粘度、雷诺数、层流、紊流、表面张力和表面能。
答:雷诺数:流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。
用符号Re 表示。
Re是一个无因次量。
层流:流体流动时,如果流体质点的轨迹(一般说随初始空间坐标x、y、z和时间t而变)是有规则的光滑曲线(最简单的情形是直线),这种流动叫层流。
紊流:在一定雷诺数下,流体表现在时间和空间上的随机脉动运动,流体中含有大量不同尺度的涡旋(eddy)。
4、分析粘度的影响因素及其对粘度的影响规律。
5、分析表面张力的影响因素及其对表面张力的影响规律。
第三讲1、流动性与充型能力的联系和区别。
答:区别:①二者概念不同。
铸造工艺学中的流动性指液态金属本身的流动能力,常用规定的铸型条件和浇注条件下的试样的长度或薄厚尺寸来衡量;而充型能力是指液态金属充满铸型型腔,并使铸件形状完整、轮廓清晰的能力。
②影响因素有区别。
流动性是液态金属本身的流动能力,与金属的成分、温度、杂质含量,及其物理性质有关;而充型能力除了取决于金属本身的流动能力外,还受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响。
联系:都是影响成形产品质量的因素。
①流动性好的合金充型能力强;流动性差的合金充型能力亦差,但是,可以通过改善外界条件提高其充型能力。
②可认为合金的流动性是在确定条件(试样结构、铸型性质、浇注条件)下的充型能力。
工程材料及成形工艺基础期末试题三及答案一、填空题(每空1分,共20分)1. 影响合金充型能力的主要因素有()、()、()等。
2. 金属塑性成形的方法有()、()、()、()和()等五种。
3. 焊接热源主要有()、()、()、()、()、()和()等。
4. 塑料的成形工艺性能主要包括()、()、热敏性和吸水性四种类型。
5. 工程材料选择的依据包括保证()的原则、()的原则和()的原则三个方面。
二、选择题(每空2分,共10分)1. 当浇注具有圆柱形内腔的铸件时,用()可省去型芯。
a.压力铸造;b.熔模铸造;c.离心铸造2. 区别冷变形和热变形的依据是()。
a.变形时是否有加热;b.变形温度的高低;c.变形后是否有加工硬化组织。
3. 随温度下降从奥氏体中析出的渗碳体称为(),从铁素体中析出的渗碳体称为()。
a.一次渗碳体;b.二次渗碳体;c.三次渗碳体。
4. 常温下金属的晶粒越细,则力学性能是()。
a.强度越高,塑性越好;b.强度越高,塑性越差;c.强度越低,塑性越差。
5. 金属型铸造适用于()生产。
a.大批、大量;b.小批量;c.成批、大量、也可单件。
三、名词解释(每题3分,共30分)1. 金属液态成形2. 金属塑性成形3. 焊接成形4. 有机高分子材料制品的成形5. 快速成形技术6. 材料的工艺性能7.焊接性8.铸造9.加工硬化四、判断题(每题1.5分,共9分)1.接近共晶成分的合金,流动性最好。
()2.由于可锻铸铁的塑性比灰铸铁好,所以是可以锻造的铸铁。
()3.砂型铸造、金属型铸造、熔模铸造、压力铸造相比,大批生产时压力铸造的生产率最高。
()4.承受重载荷的重要零件,例如轴、齿轮、连杆等大多采用锻件毛坯。
()5.灰铸铁通过球化退火可以转变为球墨铸铁。
()6.在室温下进行金属变形加工,称为冷加工。
()五、问答题(共31分)1.钨的熔点为3380 ℃,铅的熔点为327 ℃,试计算钨及铅的再结晶温度。
1、试述液态金属的充型能力和流动性之间在概念上的区别,并举例说明。
答:
①液态金属的充型能力:
充满铸型型腔,获得形状完整轮廓清晰的铸件能力。
影响因素:金属液体的流动能力,铸型性质,浇铸条件,铸件结构。
②流动性:
液态金属本身的流动能力,与金属本身有关:成分,温度,杂质物理性质。
其流动性一定,但充型能力不高,可以改变某些因素来改变,流动性是特定条件下的充型能力。
11、四类因素中,在一般条件下,哪些是可以控制的?哪些是不可控的?提高浇
铸温度会带来什么副作用?
答:一般条件下:合金与铸件结构不可控制,而铸型和浇铸条件可以控制,浇铸温度太高,容易使金属吸气,氧化严重达不到预期效果。
3试述液态金属充型能力与流动性间的联系和区别,并分析充型能力与流动性的影响因素。
答:(1) 液态金属充型能力与流动性间的联系和区别
液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力,简称为液态金属充型能力。
液态金属本身的流动能力称为“流动性”,是液态金属的工艺性能之一。
液态金属的充型能力首先取决于金属本身的流动能力,同时又受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。
在工程应用及研究中,通常,在相同的条件下(如相同的铸型性质、浇注系统,以及浇注时控制合金液相同过热度,等等)浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。
因此可以认为:合金的流动性是在确定条件下的充型能力。
对于同一种合金,也可以用流动性试样研究各铸造工艺因素对其充型能力的影响。
(2) 充型能力与流动性的影响因素
①合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。
一般而言,在流动性曲线上,对应着纯金属、共晶成分和金属间化合物之处流动性最好,流动性随着结晶温度范围的增大而下降,在结晶温度范围最大处流动性最差,也就是说充型能力随着结晶温度范围的增大而越来越差。
因为对于纯金属、共晶和金属间化合物成分的合金,在固定的凝固温度下,已凝固的固相层由表面逐步向内部推进,固相层内表面比较光滑,对液体的流动阻力小,合金液流动时间长,所以流动性好,充型能力强。
而具有宽结晶温度范围的合金在型腔中流动时,断面上存在着发达的树枝晶与未凝固的液体相混杂的两相区,金属液流动性不好,充型能力差。
②结晶潜热。
对于纯金属、共晶和金属间化合物成分的合金,在一般的浇注条件下,放出的潜热越多,凝固过程进行的越慢,流动性越好,充型能力越强;而对于宽结晶温度范围的合金,由于潜热放出15~20%以后,晶粒就连成网络而停止流动,潜热对充型能力影响不大。
但也有例外的
情况,由于Si晶体结晶潜热为α-Al的4倍以上,Al-Si合金由于潜热的影响,最好流动性并不在共晶成分处。
③金属的比热.
密度和导热系数比热和密度较大的合金,含的热量较多,保持液态的时间长,流动性好;导热系数小,热量散失慢,保持液态时间长,流动性好。
④液态金属的粘度
粘度对层流流动的流速影响较大,对紊流流动的流速影响不大。
浇注系统或型腔中的流动,基木是紊流流动,粘度对流动性的影响不明显。
⑤浇注温度
液态金属温度越高.其流动性越好,充型能力就越强
4.凝固方式及其影响因素
一般将金属的凝固方式分为三种类型:逐层凝固方式、体积凝固方式(或称糊状凝固方式)和中间凝固方式。
在凝固过程中铸件断面上的凝固区域宽度为零,固体和液体由一条界线(凝固前沿)清楚地分开。
随着温度的下降,固体层不断加厚,逐步达到铸件中心。
这种情况为逐层凝固方式。
铸件凝固的某一段时间内,其凝固区域几乎贯穿整个铸件断面时,则在凝固区域里既有已结晶的晶体,也有未凝固的液体,这种情况为体积凝固方式或称糊状凝固方式。
铸件断面上的凝固区域宽度介于前两者之间时,称中间凝固方式。
凝固方式取决与凝固区域的宽度,而凝固区域的宽度取决于合金的结晶温度范围和冷却强度(温度梯度)。
结晶温度范围越宽,温度梯度越小,越倾向于体积凝固方式。
5.金属凝固方式与铸件质量的关系
逐层方式凝固,凝固前沿直接与液态金属接触。
当液态凝固成为固体而发生体积收缩时,可以不断地得到液体的补充,所以产生分散性缩松的倾向性很小,而是在铸件最后凝固的部位留下集中缩孔。
由于集中缩孔容易消除,一般认为这类合金的补缩性良好。
在板状或棒状铸件会出现中心线缩孔。
这类铸件在凝固过程中,当收缩受阻而产生晶间裂纹时,也容易得到金属液的填充,使裂纹愈合。
体积凝固方式:凝固区域宽,容易发展成为树枝晶发达的粗大等轴枝晶组织。
当粗大的等轴枝晶相互连接以后(固相约为70%),将使凝固的液态金属分割为一个个互不沟通的溶池,最后在铸件中形成分散性的缩孔,即缩松。
对于这类铸件采用普通冒口消除其缩松是很难的,而往往需要采取其它辅助措施,以增加铸件的致密性。
由于粗大的等轴晶比较早的连成骨架,在铸件中产生热裂的倾向性很大。
这是因为,等轴晶越粗大,高温强度就越低;此外当晶间出现裂纹时,也得不到液态金属的充填使之愈合。
如果这类合金在充填过程中发生凝固时,其充型性能也很差。
5.什么是定向凝固原则和同时凝固原则?如何保证铸件按规定凝固方式进行凝固?
答:定向凝固(也称顺序凝固)就是在铸件上可能出现缩孔的厚大部位安放冒口,在远离冒口的部位安放冷铁,使铸件上远离冒口的部位先凝固,靠近冒口的部位后凝固。
同时凝固,就是从工艺上采取各种措施,使铸件各部分之间的温差尽量减小,以达到各部分
几乎同时凝固的方法。
控制铸件凝固方式的方法:(1)正确布置浇注系统的引人位置,控制浇注温度、浇注速度和铸件凝固位置;(2)采用冒口和冷铁;(3)改变铸件的结构;(4)采用具有不同蓄热系数的造型材料。
10.试确定如下两种铸件的凝固时间(均为无过热注入砂型)。
⑴厚度为100mm 的板型铸件。
⑵直径为100mm 的球型铸件。
⑶比较计算结果并讨论之。
答:
()()()()
时间相差很大。
折算厚度不同造成凝固固两种形状不同,使得倍,)(996.898.104.98398.101004.5107.1610
67.17.166100
624.981004.5510104.551004.51051004.505.01004.505.050210012123322222221642322231≈===⎪⎪⎭⎫ ⎝
⎛⨯⨯=⨯=====⨯⎪⎭
⎫ ⎝⎛=⨯⎪⎭⎫ ⎝⎛=⨯⨯=⨯==
⨯====--------τττττs m mm D R s k R k m
mm R。