工程断裂力学4-3-4-5
- 格式:ppt
- 大小:3.11 MB
- 文档页数:30
第三章弹塑性断裂力学(EPFM)简要§3-1 Dugdale方法(D-M模型)§3-2 裂纹尖端张开位移CTOD(COD)定义及准则§3-3 COD 与K1的一致性§3-4 COD准则的应用34COD§3-5 J 积分的定义及守恒性§3-5-1 J 积分的定义§3-5-2 J 积分的守恒性§3-6 线弹性条件下J 与K的关系§3-7 在弹塑性条件下J 与CTOD的关系常见的定义有以下几种:(1)弹塑性交界线与裂纹表面的交界点处的张开位移看作CTOD。
对D-M模型描述的裂纹,经Paris等人的工作,Well 在1965年用大量试验得出,可以用裂纹尖端的CTOD ()作为表征裂纹δ弹塑性应力应变场的单一参数,当此参数值达到材料的临界值,材料就会发生开裂。
即为开裂准则。
使用这一准则必须解决两个问题:(1)使用小试样能方便准确地测量出材料稳定(与外载荷裂纹尺寸及裂纹几何的关系(即cδδ=的开裂参数;(2)建立裂纹尖端的与外载荷、裂纹尺寸及裂纹几何的关系(即的表达式)。
c δδ(,,)f p a Y δ=试验表明用TPB 、CT 等小试样可以实现,试验证明开裂点的是材料常数,但失稳扩展点的不是常数!换句话说,CTOD 只是开裂判据,不是破坏判据!c δc δδGB/T 2358-1994对的测试方法做了详尽的说明,本课不讲实验测试(大家要c c δ用时,严格按标准的要求技术细节做即可,不用讲了就忘了)。
CTOD 方法在中低强度钢压力容器和管道,即焊接结构等方面在工程上有广泛应用它的优点是方法简单直观易测缺点是定义不明确理论依据不足用。
它的优点是方法简单、直观,易测,缺点是定义不明确,理论依据不足。
§3-5 J 积分的定义及守恒性3-5JJ 积分是J.R .Rice在1968年提出的,并由此建立了弹塑性断裂力学的另一个方法。
断裂力学及其工程应用概述断裂力学是研究材料在外界加载下发生断裂的力学学科,它研究材料的断裂机理、断裂过程以及预测和评估断裂行为。
在工程应用方面,断裂力学为我们提供了对结构材料的强度和可靠性进行评估的依据。
断裂理论基础断裂分类1.脆性断裂:材料在加载情况下突然断裂,没有明显的塑性变形。
2.韧性断裂:材料在加载情况下发生明显的塑性变形后才发生断裂。
断裂模式1.剪切断裂:沿一个平面发生剪切破坏。
2.弯曲断裂:材料在受到弯曲力作用下发生断裂。
3.拉伸断裂:材料在受到拉力作用下发生断裂。
断裂力学的应用断裂评估断裂力学可以用于评估材料的强度和可靠性,为工程结构的设计提供依据。
通过对材料的本构关系、断裂韧度等参数的计算和预测,可以预防工程结构的断裂失效。
断裂预测断裂力学可以通过对材料的试验研究和模型建立,预测材料在不同加载情况下的断裂性能。
这对于材料选择、设计优化以及工程结构的安全性评估非常重要。
断裂控制利用断裂力学的理论和方法,可以通过控制和改善材料的断裂性能,提高工程结构的抗断裂能力。
例如,在航空航天工程中,采用了各种断裂控制技术来提升飞机的安全性能。
断裂分析通过断裂力学的分析方法,可以对已发生断裂的材料进行破坏模式分析和失效原因分析。
这有助于我们总结经验教训,改进设计和制造工艺,减少事故的发生。
断裂力学研究的挑战断裂力学的研究面临着许多挑战,其中主要包括以下几个方面: 1. 多尺度效应:材料的断裂行为在不同尺度下表现出不同的特性,从宏观到微观的转换是一个难点。
2. 多物理场耦合:许多工程应用中,断裂问题往往与温度、湿度、电磁场等物理场耦合,这给研究带来了复杂性。
3. 断裂预测精度:目前断裂力学的预测精度仍有待提高,特别是在复杂载荷和多尺度情况下。
结语断裂力学是一个综合性学科,它对材料的强度和可靠性评估以及工程结构的设计和安全性评估起着重要作用。
尽管面临许多挑战,但随着科学技术的不断进步,断裂力学将在未来发挥更重要的作用,并为工程领域的发展做出更大贡献。
Ⅰ-Ⅱ复合型裂缝应力强度因子和应变能释放率的关系刘梦和;王向东;邵兵【摘要】为了探究复合型裂缝的应力强度因子K和应变能释放率G的关系,基于最大应力准则,采用能量法对Ⅰ-Ⅱ复合型裂缝的扩展进行理论分析.根据单一型裂缝应力强度因子和应变能释放率的关系,推导出Ⅰ-Ⅱ复合型裂缝K与G的关系公式,利用Abaqus软件建立Ⅰ-Ⅱ复合型裂缝的有限元模型,计算Ⅰ-Ⅱ复合型裂缝的应力强度因子和应变能释放率,与推导公式的计算结果进行对比,二者误差仅为2.5%,验证了推导公式的合理性.%In order to study the relationship between stress intensity factor and strain energy release rate of mixed mode cracks, the growth of I-II mixed mode cracks is theoretically analyzed by means of the energy method based on the maximum stress criterion. A formula for the relationship between the stress intensity factor and the strain energy release rate of the I-II mixed mode cracks is deduced according to the available relationship between the stress intensity factor and the strain energy release rate of single mode crack. A FEM model for the I-II mixed mode cracks is established by use of the software ABAQUS. It is employed to calculate the stress intensity factor and strain energy release rate of the I-II mixed mode cracks. The model results are compared with those calculated by the deduced formula. The error is only 2. 5% , and the rationality of the proposed formula is validated.【期刊名称】《水利水电科技进展》【年(卷),期】2012(032)006【总页数】3页(P31-33)【关键词】Ⅰ-Ⅱ复合型裂缝;最大应力准则;应力强度因子;应变能释放率【作者】刘梦和;王向东;邵兵【作者单位】河海大学力学与材料学院,江苏南京210098;河海大学力学与材料学院,江苏南京210098;河海大学力学与材料学院,江苏南京210098【正文语种】中文【中图分类】TV313断裂力学是以含裂缝构件为研究对象,分析在各种外界因素(荷载、腐蚀和温变等)作用下裂缝稳定扩展或失稳扩展的规律,研究含裂缝构件安全性的学科[1]。
断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。
而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
可见理论断裂强度即相当于克服最大引力σc。
该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。