当前位置:文档之家› 现代信号处理在实际中的应用

现代信号处理在实际中的应用

现代信号处理在实际中的应用
现代信号处理在实际中的应用

现代信号处理在实际中的应用现代信号处理是超大规摸集成电路(VLSI):时代的信号处理技术,它包括信号分析、系统理论、统计方法和数值分析等领城之间相互影响和渗透的结果,而超大规模集成电路技术的迅速发展又促使其本身与计算机工程和信号处理的紧密结合、即现代信号处理要求信号处理的理论与实现,算法与结构紧密结资和相互影响以满足大容盆和高速度的运算要求.运算量的要求尽替砚代信号处理要涉及极广泛的数学概念,但其基本核心是线性代数和线性运算的理论。在李月老师为期四周的讲座中,我们了解到目前信号处理的应甩已经迅速扩展到生物工程、地震和地球物理研究、图像处理和模式识别、雷达和声纳检洲与对统、声音和语言研究以及遐远通讯等许多领域,在这些应用中都对信号处理器提出了高速和实时处理伪要求,因而促使了现代信号处理技术的发展。

机械设备状态监测与故障诊断是一项与现代化大生产密切相关的技术,近些年在国民生产与经济重要部门中受到了广泛的重视.已基本上形成了一门既有基础理论,又有实际应用背景的独立学科,是当今科学技术研究的热点之一。

在机械故障诊断学科的发展过程中,人们发现最重要、最关键而且也是最困难的问题之一是故障特征信息提取,这可以说是当前故障诊断研究中的瓶颈,它直接关系到故障诊断的准确率和故障早期预报的可靠性。为了从根本上解决故障特征信息提取这个关键问题,人们

主要是借助信号处理、特别是现代信号处理的理论和技术手段。

现代信号处理与分析的本质可以用一个"非"字来高度概括,即研究和分析非线性、非因果、非最小相位系统,非高斯、非平稳、非整数维(分形)信号和非白色的加性噪声。

从机械设备上所测得的(振动)信号千变万化,大量是非平稳、非高斯分布和非线性的随机信号,尤其是当故障发生时更为突出。这正是现代信号处理技术可以大显身手的地方。为了更有效、更容易地获取故障特征信息,研究和发展基于非高斯、非平稳信号分析理论的故障特征信息提取方法成为必然趋势。

非高斯信号处理方法在机械故障诊断中的应用

一般情况下,总是假定被分析信号服从高斯分布。但在机械设备故障诊断中所遇到的实际信号,高斯分布的假设往往并不成立。为此随着研究的深入,非高斯信号处理方法的研究逐步兴起。分析非高斯信号的主要数学工具是高阶统计量和相应的高阶谱(高阶矩、高阶累计量,以及它们的多维傅里叶变换一高阶矩谱和高阶累计量谱,此外还有倒高阶累计量谱)虽然早在60年代,数学、统计学、流体动力学、信号处理等领域的研究人员就幵始了对高阶统计量的研究,但真正的研究高潮却是在80年代后期才形成的。基于非高斯信号处理的方法在机械设备故障诊断中的研究已有进展,但应用尚不够深入。非高斯信号处理方法在故障特征信息提取上面具有很大的潜力,早在1977年了. T.Sato等人就将双谱应用于齿轮振动信号分析,但由于双谱的物理解释困难,在当时其应用受到了限制。1993 年,R.W.Baker

等人介绍了利用高阶谱特征来监测加工刀具磨损的结果。1995年,J.W.A.Fackerell等人在将双谱用于故障诊断上作了有益的尝试。他们指出双谱应用于故障诊断有三个优势:1)机器故障总是与零部件的失效及运行状态的非线性有关,双相关只用一个传感器的数据即可提供非线性信息,并且双谱可用于检测二次相位耦合,并确定是否存在二次非线性。2)许多机器包含了旋转部,其振动信号带有周期性,而周期性的偏离往往预示着机械故障。周期性信号的双谱一般呈"钉床"形。3)机械故障诊断一般能获得大量实验数据,可以得到比较准确的HOS估计。

非平稳信号处理方法在机械故障诊断中的应用

研究时变非平稳信号的方法之一是时-频分布。早在1946年就有人提出用时-频二维变量来描述信号。选用高斯函数f(t)=e-a2作为母函数,并通过离散时移和频移构造出一系列基函数然后利用这些基函数对x(t)信号进行变换和处理。

在1948年将量子物理中的Wigner分布引入到信号分析领域,他在定义中釆用解析信号的方式来消除Wigner分布中正、负频率之间的交叉项,因此,后人将此分布称为WAD分布。 WAD分布奠定了现代时-频分布理论的基础。80年代初,T.D.C.A.Classen等人对WAD分布的深入研究取得了一系列成果,进一步引起人们对时-频分布理论的广泛重视,由此引发的研究高潮一直持续到今天。

另一方面,物理学家L.Cohen在1966年提出了广义核分布概念,并定义了能量化的Cohen 类,被认为是时-频分布系统化道路上的里

程碑。在Cohen的统一框架下,人们提出了多种不同的时-频分布,如平滑的伪Wigner分布。CWAD分布、锥形核分布、降低干扰项分布和径向高斯核分布等。近年来,由于小波分析的发展,人们又定义了与Cohen相同的具有尺度伸缩特性的仿射类时-频分布。

研究时变非平稳信号的另一类方法是借助小波分析。目前,具有时,频分析特性和多尺度分析能力的小波理论经过一段艰苦、抽象的研究工作之后,以其优良的数学性能和潜在的应用能力,在许多应用领域引起了持续的研究热潮。

在具体应用方面,时-频分布和小波分析用于故障诊断已有大量研究论文发表。最新进展是1997年W.J.Staszewski等人将WAD时-频分布与神经网络相结合用于齿轮故障探测和分类。国内史习智、屈粱生、何正嘉等人也都有关于将时-频分布用于故障诊断的论文发表。小波分析方面, Y.Wu和R.Du利用小波包来诊断车削中的颤振故障,结果非常满意,国内屈梁生等人在将小波(包)分析应用于机械故障诊断方面,围绕轴承、齿轮以及机械设备的典型故障,开展了许多有价值的研究工作。

4循环平稳信号处理方法在机械故障诊断中的应用前景

统计特性随时间变化的信号统称为时变信号或非平稳信号。在非平稳信号中,有一个重要的子类:它们的相关函数随时间按周期或多周期(各周期不能通约)规律变化,这类信号称为循环平稳信号。循环平稳信号广泛存在于具有季节性和规律性变化的信号中。旋转机械的振动信号是具有规律性变化的信号的典型例子。

循环平稳信号处理理论是现代信号处理理论中的一个研究新领域,其核心是高阶循环累积量理论,它是分析循环平稳信号的主要数学工具。循环平稳信号处理理论通过信号的二次变换,将信号展开成二维的谱阵,其中一维是普通意义下的频率轴,另一维分量则称为循环频率。这样,从信号处理的角度就增加了信号的利用率。根据信号与噪声具有不同循环频率分量的特征达到信噪分离的目的,并且能够比较容易地从复杂背景中提取出微弱的特征信息。根据旋转机械在工作过程中其物理参数具有周期时变特性的特点,采用循环平稳信号处理理论建立一种合理的信号处理新模型,并研究在强噪声污染下的特征信息提取方法,可望为旋转机械故障早期预报和提高故障诊断准确率带来新的突破。

5非线性信号处理方法在故障诊断中的应用

当机器发生故障时,如转轴裂纹、动静碰磨等,系统的非线性特性往往比较突出。因此,机械设备故障诊断领域可以说是非线性科学的一个非常适合的应用领域。将混沌与分形动力系统理论中的新方法引入机械故障诊断领域,研究基于非线性信号处理理论的特征提取方法具有重耍意义。M.l.Aadams和L.A.Abu-Mahafous1994年提出将混沌概念作为诊断工具用于旋转机械振动信号的分析,他们分析了轴承间隙的变化对混沌运动轨道及吸引子的影响。国内屈梁生和孟建于1996年提出用分维数定量评估大型旋转机械运行过程中转子轴心轨迹的晃动程度。D.logan和J.Mathew(1996年)首次提出应用关联维数探测轴承振动信号中的混沌行为。姜建东和陈进利用关联维数对齿轮

非线性故障诊断方法进行了探讨。陈怡然和周轶尘等(1997年)应用多重分形方法分析分析发动机不同状态下的振动信号,初步探讨得出缸盖振动中存在确定性混沌运动,分维数可以区分发动机的不同故障状态的有益结论。姜建东和屈梁生(1998年)将关联维数引入大型旋转机械非线性故的定量诊断。

对这些学科理论与技术的应用实例的了解,便于现阶段储备知识,锻炼能力。其实现代信号处理在地震勘测和脑磁研究中的应用更为广泛和深入,在这里无法一一细说。只是单此一项也足以让我们领略它的魅力。感谢老师们四周的授课和指导。

数字信号处理实验程序2.

2.1 clc close all; n=0:15; p=8;q=2; x=exp(-(n-p.^2/q; figure(1; subplot(3,1,1; stem(n,x; title('exp(-(n-p^2/q,p=8,q=2'; xk1=fft(x,16; q=4; x=exp(-(n-p.^2/q; subplot(3,1,2; xk2=fft(x,16; stem(n,x; title('exp(-(n-p^2/q,p=8,q=4'; q=8; x=exp(-(n-p.^2/q;

xk3=fft(x,16; subplot(3,1,3; stem(n,x; title('exp(-(n-p^2/q,p=8,q=8';%时域特性figure(2; subplot(3,1,1; stem(n,abs(xk1; title('exp(-(n-p^2/q,p=8,q=2'; subplot(3,1,2; stem(n,abs(xk2; title('exp(-(n-p^2/q,p=8,q=4'; subplot(3,1,3; stem(n,abs(xk3; title('exp(-(n-p^2/q,p=8,q=8';%频域特性%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%% p=8;q=8; figure(3; subplot(3,1,1; stem(n,x; title('exp(-(n-p^2/q,p=8,q=8';

xk1=fft(x,16; p=13; x=exp(-(n-p.^2/q; subplot(3,1,2; xk2=fft(x,16; stem(n,x; title('exp(-(n-p^2/q,p=13,q=8'; p=14; x=exp(-(n-p.^2/q; xk3=fft(x,16; subplot(3,1,3; stem(n,x; title('exp(-(n-p^2/q,p=14,q=8';%时域特性figure(4; subplot(3,1,1; stem(n,abs(xk1; title('exp(-(n-p^2/q,p=8,q=8'; subplot(3,1,2; stem(n,abs(xk2; title('exp(-(n-p^2/q,p=13,q=8'; subplot(3,1,3;

现代信号处理技术试题

学院________________班级_____________学号________姓名______ 现代信号处理技术试题 一、选择题(下面各题中只有一个答案是正确的,请将正确答案的序号写在每 小题的()上;每小题2分,共20分) 1. 下列四个离散信号,只有( )是周期序列。 A.)100sin(n B. n j e 3 C.)30sin()cos(n n +π D.5432π π j j e e + 2.x(n)非零范围为21N n N ≤≤,h(n)的非零范围为43N n N ≤≤,y(n)=x(n)*h(n) 的非零范围为( )。 A.4231N N n N N +≤≤+ B. 42311N N n N N +≤≤-+ C. 14231-+≤≤+N N n N N D. 114231-+≤≤-+N N n N N 3.求周期序列[]?? ? ??=k k x 5cos 2~π的DFS 系数为( )。 A.[]???==others m m x 09,12~ B. []???==others m m x 09,110~ C. []???==others m m x 0510~ D. []? ??==others m m x 05,15~ 4.序列[]{}210121,,:,,==k k x 的幅度谱和相位谱为( ) 。 A.()()02cos 42=ΩΩ=Ωφ,j e X B. ()()Ω-=ΩΩ=Ωφ,2 cos 42j e X C. () ()2 -2cos 42πφ+Ω=ΩΩ=Ω,j e X D. ()()Ω-=Ω=Ωφ,4j e X 5.当序列x[k]为实序列,且具有周期偶对称性,则序列的DFT 满足( )。 A.X[m]周期共轭对称 B. X[m]虚部为零,实部周期奇对称 C.X[m]实部为零,虚部周期奇对称 D. X[m]虚部为零,实部周期偶对称 6.与512点的DFT 相比,512点的FFT 只需( )。 A.1/2的计算量 B.1/100的计算量 C.2倍的计算量 D.1/10的计算量 7.通带和阻带内均有波纹的IIR 滤波器是( )。 A.Butterworth B.Chebyshev I C.Chebyshev II D.椭圆 8.M 阶FIR 滤波器具有线性相位的条件是( )。 A. ()()n h n h -= B. ()()n M h n h -±=

数字信号处理的步骤与注意事项,并编写1024个采样点的FFT C语言程序

数字信号处理的步骤与注意事项,并编写1024个采样点的FFT C语言程序1. 数字信号处理 1.1 数字信号处理概述 数字信号处理是研究如何用数字或符号序列来表示信号以及如何对这些序列进行处理的一门学科。随着计算机技术的发展,数字信号处理技术得到了越来越广泛的应用,它已成为现代科学技术必不可少的工具。数字信号是数据序列,其处理实际上就是进行各种数学运算,如加、减、乘以及各种逻辑运算等等。因此,数字信号处理既可以是软件处理也可以是硬件处理。所谓软件处理,就是对所需要的运算编制程序,然后在计算机上实现,其处理灵活、方便。所谓硬件处理,就是用加法器、乘法器、延时器以及它们的各种组合来构成数字电路,以实现所需要的运算。硬件处理显然不如软件处理灵活方便,但能对数字信号进行实时处理。近年来日益广泛采用的各种数字信号处理器(如TI TMS320系列、Philps Trimedia系列等)可以认为是软硬件处理方式的结合,这种处理时用数字信号处理芯片以及存储器来组成硬件电路,所需要的运算靠特定的汇编语言编程来实现。因此,采用数字信号处理器既方便灵活,又能做到实时处理,所以数字信号处理器(DSP)已经越来越广泛地应用于包括通信在内的各个领域之中。 1.2 数字信号处理的优点 (1)精度高 数字系统的特性不因环境的变化而变化,计算精度是模拟系统所无法相比的,运算位数由8位提高到16位、32位、64位。 (2)可靠性高 模拟系统中各种参数受温度、环境影响较大,因而易出现感应、杂散效应,甚至会出现震荡等等;而数字系统受温度、环境影响较小。模拟信号受到干扰即产生失真,而数字信号由于只有两种状态,因此,所受的干扰只要在一定范围以内,就不会产生影响,这就是说,数字信号抗干扰能力强。另外,如果用数字信号进行传输,在中继站还可以再生。总的说来,信号的数字处理可靠性高。(3)灵活性强 可以通过改变数字信号系统的参数来改变系统的性能。数字信号的灵活性还表现在可以利用一套计算设备同时处理多路相互独立的信号,即所谓的“时分复用”,这在数字电话系统中是非常有用的技术。 (4)便于大规模集成化 数字部件具有高度的规范性,易于实现大规模集成化和大规模生产,数字系统体积小、重量轻。 (5)数字信号便于加密处理 由于数字信号实际上为数据序列,因此便于加密运算处理。

现代信号处理及其应用

成绩: 现代信号处理 及其应用 题目:现代信号处理在通信对抗中的应用学号:111143321 姓名:王琦 2015年6月

现代信号处理在通信对抗中的应用 摘要:信息技术在现代军事领域占有越来越重要的地位,成为决定战争胜负的一个关键因素。信息战已经成为现代战争的主要作战形式之一。应用于军事通信对抗的现代信号处理理论发展非常迅速,这得益于两个方面的动力:其一,军事通信的技术和手段不断更新。其二,现代信号处理的三大热点—谱估计、高阶统计量方法、时频分析的理论和技术日臻完善,并逐渐应用于通信对抗领域。通信对抗是电子战的重要组成部分。 关键词:通信对抗;信号检测;现代信号处理技术 一、引言 信号处理是信息科学的重要组成部分。在现代科技领域,电子信息系统的应用范围十分广泛,主要有通信、导航、雷达、声纳、自动控制、地震勘探、医学仪器、射电天文等。这些领域的研究进展很大程度上依赖于信号处理理论和技术的进步。通信对抗是电子战的重要组成部分,也是电子战领域中技术含量最高的部分。[1]通信对抗不仅采用了最先进的电子和通信技术,而且有力地推动了信号处理理论的发展,促进了通信技术的发展。通信对抗在现代战争中具有广泛的应用价值。本文探讨的内容主要涉及现代信号处理理论在通信对抗技术中相关的应用。 二、现代信号处理技术基本原理 信号是信息的载体,是随时间和空间变化的物理量。要想得到有用信息就必须对信号进行分析处理。它分为确定信号和随机信号。其中,确定信号:序列在每个时刻的取值服从某种固定函数的关系的信号;随机信号:序列的取值服从某种概率规律的信号。而确定信号又分为周期信号与非周期信号;随机信号分为平稳随机信号和非平稳随机信号。 现代信号处理技术,则是要把记录在某种媒体上的信号进行处理,以便抽取出有用信息的过程,是对信号进行提取、变换、分析、综合等处理过程的统称。 [2]利用观测数据作出关于信号与(或)系统的某种统计决策。统计决策理论主要解决两大类问题:假设检验与估计。信号检测、雷达动目标检测等是假设检验的典型问题。估计理论设计的范围更广泛,它又被分为非参数化和参数化两类方法。 三、现代信号处理技术在通信对抗中应用 在军事通信对抗中,军用无线电台是电子战部队实施电子侦测、截获和干扰的主要目标。电台在工作中常常受到敌方有针对性地发射的电磁波攻击。扩频通信是目前军用电台的常见通信方式。扩频通信具有良好的低功率谱密度发射所带

现代数字信号处理复习题

现代数字信号处理复习题 一、填空题 1、平稳随机信号是指:概率分布不随时间推移而变化的随机信号,也就是说,平稳随机信号的统计特性与起始 时间无关,只与时间间隔有关。 判断随机信号是否广义平稳的三个条件是: (1)x(t)的均值为与时间无关的常数:C t m x =)( (C 为常数) ; (2)x(t)的自相关函数与起始时间无关,即:)(),(),(ττx i i x j i x R t t R t t R =+=; (3)信号的瞬时功率有限,即:∞<=)0(x x R D 。 高斯白噪声信号是指:噪声的概率密度函数满足正态分布统计特性,同时其功率谱密度函数是常数的一类噪 声信号。 信号的遍历性是指:从随机过程中得到的任一样本函数,好象经历了随机过程的所有可能状态,因此,用一个 样本函数的时间平均就可以代替它的集合平均 。 广义遍历信号x(n)的时间均值的定义为: ,其时间自相关函数的定义为: 。 2、连续随机信号f(t)在区间上的能量E 定义为: 其功率P 定义为: 离散随机信号f(n)在区间 上的能量E 定义为: 其功率P 定义为: 注意:(1)如果信号的能量0

现代信号处理方法1-3

1.3 时频分布及其性质 1.3.1 单分量信号与多分量信号 从物理学的角度看,信号可以分为单分量信号和多分量信号两类,而时-频分布的一个主要优点就是能够确定一个信号是单分量的还是多分量的。所谓单分量信号就是在任一时间只有一个频率或一个频率窄带的信号。一般地,单分量信号看上去只有一个山峰(如图 1.2.2),图中所示的是信号)()()(t j e t A t s ?=的时-频表示,在每一个时间,山峰的峰值有明显的不同。如果它是充分局部化的,那么峰值就是瞬时频率;山峰的宽度就是瞬时带宽。一般地,如果)(t z 是信号)(cos )()(t t a t s φ=的解析信号,)(f Z 是)(t z 对应的频谱, 图1.2.2 单分量信号时-频表示及其特征 则其瞬时频率定义如下: )]([arg 21)(t z dt d t f i π= (1.2.1) 与瞬时频率对偶的物理量叫做群延迟,定义如下: )]([arg 21)(f Z dt d f g πτ= (1.2.2) 而多分量信号是由两个(或多个)山峰构成, 每一个山峰都有它自己不同的瞬时 频率和瞬时带宽。(如图1.2.3所示)。 图1.2.3 多分量信号时-频表示及特征

1.3.2 时-频分布定义 Fourier 变换的另一种形式 ?∞ ∞ --=dt e t s f S ft j π2)()( ?∞ ∞ -=df e f S t s tf j π2)()( Cohen 指出,尽管信号)(t z 的时-频分布有许多形式,但不同的时-频分布只是体现 在积分变换核的函数形式上,而对于时-频分布各种性质的要求则反映在对核函数的约束条件上,因此它可以用一个统一形式来表示,通常把它叫做Cohen 类时-频分布,连续时间信号)(t z ()(t z 为连续时间信号)(t s 的解析信号)的Cohen 类时-频分布定义为 ττφτττπdudvd e v u z u z f t P vu f vt j ) (2*),()2 1()21(),(-+-∞ ∞ -∞ ∞ -∞ ∞ --+=?? ? (1.3.1) 式中),(v τφ称为核函数。原则上,核函数可以是时间和频率两者的函数,但常用的核函数与时间和频率无关,只是时延τ和频偏v 的函数,即核函数具有时、频移不变性。这个定义提供了全面理解任何一种时-频分析方法的通用工具,而且能够在信号分析中将信号的一种时-频表示及其性质同另一种时-频表示及其性质联系在一起。进一步可将(1.3.1)简记为 ττφττπdvd e v v A f t P f vt j z )(2),(),(),(+-∞ ∞ -∞ ∞ -? ? = (1.3.2) 式中),(v A z τ是双线性变换(双时间信号))2 ()2(),(*τ τ τ-+ =t z t z t k z 关于时间t 作 Fourier 反变换得到的一种二维时-频分布函数,称为模糊函数,即 dt e t z t z v A tv j z πτ ττ2*)2 ()2(),(-+=?∞ ∞- (1.3.3) 因为Cohen 类时-频分布是以核函数加权的模糊函数的二维Fourier 变换,所以Cohen 类 时-频分布又称为广义双线性时-频分布。 两个连续信号)(t x ,)(t y 的互时-频分布定义为: ???∞ ∞-∞ ∞--+-∞ ∞ --+= ττφτττπdudvd e v u y u x f t P vu f vt j xy ) (2*),()2 1()21(),( ? ? ∞ ∞-∞ ∞ -+-=dv d e v v A f tv j xy ττφττπ)(2),(),( (1.3.4) 式中 du e u y u x v A vu j xy πτ ττ2*)2 ()2(),(?∞ ∞--+= (1.3.5) 是)(t x 和)(t y 的互模函数。

数字信号处理实验及参考程序

数字信号处理实验实验一离散时间信号与系统及MA TLAB实现 1.单位冲激信号: n = -5:5; x = (n==0); subplot(122); stem(n, x); 2.单位阶跃信号: x=zeros(1,11); n0=0; n1=-5; n2=5; n = n1:n2; x(:,n+6) = ((n-n0)>=0); stem(n,x); 3.正弦序列: n = 0:1/3200:1/100; x=3*sin(200*pi*n+1.2); stem(n,x); 4.指数序列 n = 0:1/2:10; x1= 3*(0.7.^n); x2=3*exp((0.7+j*314)*n); subplot(221); stem(n,x1); subplot(222); stem(n,x2); 5.信号延迟 n=0:20; Y1=sin(100*n); Y2=sin(100*(n-3)); subplot(221); stem(n,Y1); subplot(222); stem(n,Y2);

6.信号相加 X1=[2 0.5 0.9 1 0 0 0 0]; X2=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7]; X=X1+X2; stem(X); 7.信号翻转 X1=[2 0.5 0.9 1]; n=1:4; X2=X1(5-n); subplot(221); stem(n,X1); subplot(222); stem(n,X2); 8.用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 9.用MA TLAB计算差分方程 当输入序列为时的输出结果。 N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n'); ylabel('幅度') 10.冲激响应impz N=64; a=[0.8 -0.44 0.36 0.22];

数字信号处理程序课程设计

数字信号处理课程设计 设计题目: 姓名: 学号: 院系班级: 组次: 指导教师: 时间:2015年11月21日——2015年12月6日

摘要 基于 MATLAB 的图像边缘检测算法的研究和实现 图像边缘是图像的最基本的特征。所谓边缘,就是指图像局部强度变化最明显的部分,存在于区域与区域、目标与目标、目标与背景、基元与基元之间,包含有图像处理中用于识别的关键信息。边缘检测是数字图像处理中,最基础也是最重要的环节之一。本文介绍了六种经典的边缘检测算子,包括 Roberts 算子,Sobel 算子,Canny算子,Prewitt 算子,LOG 算法。并且利用 MATLAB 系统所提供的相关函数等,对同一副图像结合用这些不同的算子分别进行处理,分析并得到他们处理图像的特点。比较传统的边缘检测算子,因为是基于图像函数的一阶导数进行考察的,因而它们具有共同的特点是计算简单、速度较快,但是对噪声都比较敏感。LOG 算法和 Canny算法,都是先对图像进行平滑去噪,抗噪性能较好,但是会损失一些边缘信息,其中 LOG算法比较适合处理渐变灰度图像,而 Canny 算子更适合处理阶跃型边缘图像。小波变换边缘检测法,则能够很好的保留图像的边缘信息,更适合处理小阵列图像。 关键词: MATLAB;图像处理;边缘检测;微分算子

目录 第一章绪论 (4) 1.1设计目的与要求 (4) 1.2叙述国内外研究动态 (5) 第二章软件设计- 基于MatLab的边缘检测算法 (6) 2.1 MatLab简介 (6) 2.2边缘检测算法原理 (7) 2.2.1 Roberts 边缘算子 (7) 2.2.2 Sobel 边缘算子 (8) 2.2.3 Prewitt 边缘算子 (8) 2.2.4 Log 边缘算子 (8) 2.2.5 Canny 边缘算子 (8) 2.3边缘检测算法--测试程序 (9) 第三章实验结果及分析 (13) 3.1 Roberts算子检测图像边缘的实现 (13) 3.2 Sobel算子检测图像边缘的实现 (14) 3.3 Prewitt算子检测图像边缘的实现 (15) 3.4高斯一拉普拉斯LOG算子检测图像边缘的实现 (16) 3.5 Canny算子检测图像边缘的实现 (17) 第四章总结与心得体会 (20) 参考文献 (21) 致谢 (22)

现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结 题型:10个简答题,无分析题。前5个为必做题,后面出7个题,选做5个,每个题10分。 要点: 第一章:几种变换的特点,正交分解,内积,基函数; 第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好) 第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用? 第五章:多分辨分析,正交小波基的构造,小波包的基本概念 第六章:三种小波各自的优点,奇异点怎么选取 第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤 第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。看8.3小节。 信号的时域分析 信号的预处理 传感器获取的信号往往比较微弱,并伴随着各种噪声。 不同类型的传感器,其输出信号的形式也不尽相同。 为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。 所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。 常用的信号预处理方法 信号类型转换 信号放大 信号滤波 去除均值 去除趋势项 理想低通滤波器具有矩形幅频特性和线性相位特性。 经典滤波器 定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留 现代滤波器 当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能 现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除 将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤 采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍 量化是对信号采样点取值进行数字化转换的过程。量化结果以一定位数的数字近似表示信号在采样点的取值。 信号采样过程须使用窗函数,将无限长信号截断成为有限长度的信号。 从理论上看,截断过程就是在时域将无限长信号乘以有限时间宽度的窗函数 数字信号的分辨率包括时间分辨率和频率分辨率 数字信号的时间分辨率即采样间隔ρt,它反映了数字信号在时域中取值点之间的细密程度 数字信号的频率分辨率为ρω=2π/T

数字信号处理窗函数程序

1. 矩形窗: 程序代码: wp=0.2*pi; wst=0.3*pi; tr_width=wst-wp; N(1)=ceil(1.8*pi/tr_width)+1; w_boxcar=boxcar(N(1))'; N(2)=ceil(6.2*pi/tr_width)+1; w_hanning=hanning(N(2))'; N(3)=ceil(6.6*pi/tr_width)+1; w_hamming=hamming(N(3))'; N(4)=ceil(11*pi/tr_width)+1; w_blackman=blackman(N(4))'; N(5)=ceil((50-7.95)/(2.285*tr_width)+1); w_kaiser=kaiser(N(5),0.1102*(50-8.7))'; n=0:(N(1)-1); wc=(wp+wst)/2; alpha=(N(1)-1)/2; hd=(wc/pi)*sinc(wc/pi*(n-alpha)); h=hd.*w_boxcar; figure(1); subplot(221);stem(n,hd,'filled'); axis tight;xlabel('n');ylabel('hd(n)'); [Hr,w1]=zerophase(h); subplot(222);plot(w1/pi,Hr); axis tight;xlabel('\omega/\pi');ylabel('H(\omega)'); subplot(223);stem(n,h,'filled'); axis tight;xlabel('n');ylabel('h(n)'); [H,w]=freqz(h,1); subplot(224);plot(w/pi,20*log10(abs(H)/max(abs(H)))); xlabel('\omega/\pi');ylabel('db'); grid on 程序结果:

数字信号处理实验全部程序MATLAB

实验一熟悉MATLAB环境 一、实验目的 (1)熟悉MATLAB的主要操作命令。 (2)学会简单的矩阵输入和数据读写。 (3)掌握简单的绘图命令。 (4)用MATLAB编程并学会创建函数。 (5)观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 实验程序: A=[1 2 3 4]; B=[3 4 5 6]; n=1:4; C=A+B;D=A-B;E=A.*B;F=A./B;G=A.^B; subplot(4,2,1);stem(n,A,'fill');xlabel ('时间序列n');ylabel('A'); subplot(4,2,2);stem(n,B,'fill');xlabel ('时间序列n ');ylabel('B'); subplot(4,2,3);stem(n,C,'fill');xlabel ('时间序列n ');ylabel('A+B'); subplot(4,2,4);stem(n,D,'fill');xlabel ('时间序列n ');ylabel('A-B'); subplot(4,2,5);stem(n,E,'fill');xlabel ('时间序列n ');ylabel('A.*B'); subplot(4,2,6);stem(n,F,'fill');xlabel ('时间序列n ');ylabel('A./B'); subplot(4,2,7);stem(n,G,'fill');xlabel ('时间序列n ');ylabel('A.^B'); 运行结果:

现代数字信号处理习题

1.设()u n 是离散时间平稳随机过程,证明其功率谱()w 0S ≥。 证明:将()u n 通过冲激响应为()h n 的LTI 离散时间系统,设其频率响应()w H 为 ()001,w -w w 0, w -w w H w ???? 输出随机过程()y n 的功率谱为()()()2y S w H w S w = 输出随机过程()y n 的平均功率为()()()00201 1r 022w w y y w w S w dw S w dw π π π+?-?= =?? 当频率宽度w 0???→时,上式可表示为()()()01 r 00y S w w π =?≥ 由于频率0w 是任意的,所以有()w 0 S ≥ 3、已知:状态方程 )()1,()1()1,()(1n n n n x n n F n x ν-Γ+--=观测方程 )()()()(2n n x n C n z ν+= )()]()([111n Q n n E H =νν )()]()([222n Q n n E H =νν 滤波初值 )]0([)|0(0x E x =ξ } )]]0([)0()]][0([)0({[)0(H x E x x E x E P --= 请简述在此已知条件下卡尔曼滤波算法的递推步骤。 解:步骤1 状态一步预测,即 1 *11)|1(?)1,()|(N n n C n x n n F n x ∈--=--∧ ξξ 步骤2 由观测信号z(n)计算新息过程,即 1*11)|(?)()()|(?)()(M n n C n x n C n z n z n z n ∈-=-=--ξξα 步骤3 一步预测误差自相关矩阵 N N H H C n n n Q n n n n F n P n n F n n P *1)1,()1()1,() 1,()1()1,()1,(∈-Γ--Γ+---=- 步骤4 新息过程自相关矩阵M M H C n Q n C n n P n C n A *2)()()1,()()(∈+-= 步骤5 卡尔曼增益M N H C n A n C n n P n K *1)()()1,()(∈-=- 或 )()()()(1 2n Q n C n P n K H -= 步骤6 状态估计 1*1)()()|(?)|(?N n n C n n K n x n x ∈+=-αξξ 步骤7 状态估计自相关矩阵 N N C n n P n C n K I n P *)1,()]()([)(∈--= 或 )()()()]()()[1,()]()([)(2n K n Q n K n C n K I n n P n C n K I n P H H +---= 步骤8 重复步骤1-7,进行递推滤波计算 4、经典谱估计方法:

数字信号处理DFTMATLAB程序

页脚内容1 实验三 频域信号处理 1. 实验目的 (1) 学习信号DFT 变换的matlab 实现; (2) 学习fft 的matlab 实现; (3) 验证DFT 的相关性质。 2. 思考题 (1) 若()()()sin sin 4x n n n ππ=+是一个128点的有限长序列,求其128点DFT 结果; 程序如下: 求DFT 变换矩阵A : clc; clear; N=128; A=dftmtx(N) Ai=conj(dftmtx(N)); n=0:(N-1);

k=0:(N-1); nk=n'*k; Wn=(sin(pi/8)+sin(pi/4)).^nk Wk=conj(Wn)/N; 求128点的DFT(分别用FFT函数和dftmtx函数) clc; clear; N=128; n=0:N-1; x=sin(pi/8*n)+sin(pi/4*n); subplot(3,1,1) plot(n,x); grid on title('原图') y1=fft(x,N); A=dftmtx(N); 页脚内容2

y2=x(1:N)*A; subplot(3,1,2) plot(n,y1) grid on title('FFT') subplot(3,1,3) plot(n,y2) grid on title('dftmtx') 程序运行结果如图1所示: 原图 -13FFT -13dftmtx 页脚内容3

页脚内容4 图 1 (2) 对模拟信号()()()2sin 45sin 8x t t t ππ=+,以0.01t n =,()0:1n N =-进行采样,求 a ) N =40点的FFT 幅度谱,从图中能否观察出两个频谱分量; b ) 提高采样点数值N=128,再求该信号的幅度频谱,此时幅度频谱发生了什么变化?信号的两个模拟频率和数字频率分别为多少?FFT 频谱分析结果和理论上是否一致? 程序如下: clc; clear; N=40; n=0:N-1; t=0.01*n x=2*sin(4*pi*t)+5*sin(8*pi*t); subplot(2,1,1) plot(x(1:N)) grid on title('原图') y1=fft(x,N);

现代信号处理

现代信号处理课程设计实验报告 实验课题:现代信号处理 专业班级: 学生姓名: 学生学号: 指导老师: 完成时间:

目录 一.前言-------------------------------------------------2 二.课程设计内容要求及题目-------------------------3 三.设计思想和系统功能结构及功能说明-----------4 四.关键部分的详细描述和介绍,流程图描述关键模块和设计思想--------------------------------------------------7 五.问题分析及心得体会--------------------------20 六.参考文献------------------------------------------21 七.附录:程序源代码清单------------------------21

一、前言 数字滤波在通信、图像编码、语音编码、雷达等许多领域中有着十分广泛的应用。目前,数字信号滤波器的设计在图像处理、数据压缩等方面的应用取得了令人瞩目的进展和成就。它是数字信号处理理论的一部分。数字信号处理主要是研究用数字或符号的序列来表示信号波形,并用数字的方式去处理这些序列,以便估计信号的特征参量,或削弱信号中的多余分量和增强信号中的有用分量。具体来说,凡是用数字方式对信号进行滤波、变换、调制、解调、均衡、增强、压缩、固定、识别、产生等加工处理,都可纳入数字信号处理领域。数字信号处理学科的一项重大进展是关于数字滤波器设计方法的研究。关于数字滤波器,早在上世纪40年代末期就有人讨论设计它的可能性问题,在50年代也有人讨论过数字滤波器,但直到60年代中期,才开始形成关于数字滤波器的一整套完整的正规理论。在这一时期,提出了各种各样的数字滤波器结构,有的以运算误差最小为特点,有的则以运算速度高见长,而有的则二者兼而有之。出现了数字滤波器的各种实现方法,对递归和非递归两类滤波器作了全面的比较,统一了数字滤波器的基本概念和理论。 数字滤波器与模拟滤波器相比,具有精度高、稳定、体积小、重量轻、灵活、不要求阻抗匹配以及能实现模拟滤波器无法进行的特殊滤波等优点。 上学期学习了《数字信号处理》这门课,这学期的课程设计使我更加形象具体的掌握这门课程,并且可以熟练的运用MATLAB进行编程,

2012《现代数字信号处理》课程复习...

“现代数字信号处理”复习思考题 变换 1.给出DFT的定义和主要性质。 2.DTFT与DFT之间有什么关系? 3.写出FT、DTFT、DFT的数学表达式。 离散时间系统分析 1.说明IIR滤波器的直接型、级联型和并联型结构的主要特点。 2.全通数字滤波器、最小相位滤波器有何特点? 3.线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何? 4.简述FIR离散时间系统的Lattice结构的特点。 5.简述IIR离散时间系统的Lattice结构的特点。 采样 1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标? 维纳滤波 1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。 2.写出最优滤波器的均方误差表示式。 3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。 4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。 5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。 6.维纳滤波理论对信号和系统作了哪些假设和限制? 自适应信号处理 1.如何确定LMS算法的μ值,μ值与算法收敛的关系如何? 2.什么是失调量?它与哪些因素有关? 3.RLS算法如何实现?它与LMS算法有何区别? 4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少? 5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。 功率谱估计 1.为什么偏差为零的估计不一定是正确的估计? 2.什么叫一致估计?它要满足哪些条件? 3.什么叫维拉-辛钦(Wiener-Khinteche)定理? 4.功率谱的两种定义。 5.功率谱有哪些重要性质? 6.平稳随机信号通过线性系统时输入和输出之间的关系。 7.AR模型的正则方程(Yule-Walker方程)的导出。 8.用有限长数据估计自相关函数的估计质量如何? 9.周期图法谱估计的缺点是什么?为什么会产生这些缺点? 10.改进的周期图法谱估计有哪些方法?它们的根据是什么? 11.既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗? 12.经典谱估计和现代谱估计的主要差别在哪里? 13.为什么AR模型谱估计应用比较普遍? 14.对于高斯随机过程最大熵谱估计可归结为什么样的模型? 15.为什么Levison-Durbin快速算法的反射系数的模小于1? 16.什么是前向预测?什么是后向预测? 17.AR模型谱估计自相关法的主要缺点是什么? 18.Burg算法与Levison-Durbin算法的区别有哪些?

现代信号处理论文(1)

AR 模型的功率谱估计BURG 算法的分析与仿真 钱平 (信号与信息处理 S101904010) 一.引言 现代谱估计法主要以随机过程的参数模型为基础,也可以称其为参数模型方法或简称模型方法。现代谱估计技术的研究和应用主要起始于20世纪60年代,在分辨率的可靠性和滤波性能方面有较大进步。目前,现代谱估计研究侧重于一维谱分析,其他如多维谱估计、多通道谱估计、高阶谱估计等的研究正在兴起,特别是双谱和三谱估计的研究受到重视,人们希望这些新方法能在提取信息、估计相位和描述非线性等方面获得更多的应用。 现代谱估计从方法上大致可分为参数模型谱估计和非参数模型谱估计两种。基于参数建摸的功率谱估计是现代功率谱估计的重要内容,其目的就是为了改善功率谱估计的频率分辨率,它主要包括AR 模型、MA 模型、ARMA 模型,其中基于AR 模型的功率谱估计是现代功率谱估计中最常用的一种方法,这是因为AR 模型参数的精确估计可以通过解一组线性方程求得,而对于MA 和ARMA 模型功率谱估计来说,其参数的精确估计需要解一组高阶的非线性方程。在利用AR 模型进行功率谱估计时,必须计算出AR 模型的参数和激励白噪声序列的方差。这些参数的提取算法主要包括自相关法、Burg 算法、协方差法、 改进的协方差法,以及最大似然估计法。本章主要针对采用AR 模型的两种方法:Levinson-Durbin 递推算法、Burg 递推算法。 实际中,数字信号的功率谱只能用所得的有限次记录的有限长数据来予以估计,这就产生了功率谱估计这一研究领域。功率谱的估计大致可分为经典功率谱估计和现代功率谱估计,针对经典谱估计的分辨率低和方差性能不好等问题提出了现代谱估计,AR 模型谱估计就是现代谱估计常用的方法之一。 信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。 二.AR 模型的构建 假定u(n)、x(n)都是实平稳的随机信号,u(n)为白噪声,方差为 ,现在,我们希望建立AR 模型 的参数和x(n)的自相关函数的关系,也即AR 模型的正则方程(normal equation)。 由 )}()]()({[)}()({)(1 n x m n u k m n x E m n x n x E m p k k x a r ++-+-=+=∑= )()()(1 m k m m r r a r xu x p k k x +--=∑= (1) 由于u(n)是方差为 的白噪声,有 ?? ?=≠=-0 00)}()({2 m m m n x n u E σ (2) 由Z 变换的定义, ,当 时,有h(0)=1。综合(1)及(2)两式, ???????=-≥--=∑∑==0)(1)()(1 2 1 m k m k m m p k x k p k x k x r a r a r σ (3) 在上面的推导中,应用了自相关函数的偶对称性。上式可写成矩阵式:

现代信号处理考试题

一、 基本概念填空 1、 统计检测理论是利用 信号 与 噪声 的统计特性等信息来建立最佳判决的数学理论。 2、 主要解决在受噪声干扰的观测中信号有无的判决问题 3、 信号估计主要解决的是在受噪声干扰的观测中,信号参量 和 波形 的确定问题。 4、 在二元假设检验中,如果发送端发送为H 1,而检测为H 0,则成为 漏警 ,发送端发送H 0,而检测为H 1,则称为 虚警 。 5、 若滤波器的冲激响应时无限长,称为 IIR 滤波器,反之,称为 FIR 滤波器 6、 若滤波器的输出到达 最大信噪比 成为 匹配 滤波器;若使输出滤波器的 均方估计误差 为最小,称为 维纳 滤波器。 7、 在参量估计中,所包含的转换空间有 参量空间 和 观测空间 8、 在小波分析中,小波函数应满足 ∫φφ(tt )ddtt =0+∞?∞ 和 ∫|φφ(tt )|ddtt =1+∞ ?∞ 两个数学条件。 9、 在小波的基本概念中,主要存在 F (w )=∫ff (tt )ee ?ii ii ii ddtt +∞?∞和f(t)=12ππ∫FF (ww )ee ii ii ii ddww +∞?∞ 两个基本方程。(这个不确定答案,个人感觉是) 10、 在谱估计中,有 经典谱估计 和 现代谱估计 组成了完整的谱估计。 11、 如果系统为一个稳定系统,则在Z 变换中,零极点的分布

应在单位圆内,如果系统为因果系统,在拉普拉斯变换中, 零极点的分布应在左边平面。 二、问题 1、在信号检测中,在什么条件下,使用贝叶斯准则,什么条 件下使用极大极小准则?什么条件下使用Neyman-Pearson准 则? 答:先验概率和代价函数均已知的情况下,使用贝叶斯准则,先验概率未知,但可选代价函数时,使用极大极小准则,先验 概率和代价函数均未知的情况下,使用Neyman-Pearson准则。 2、在参量估计中,无偏估计和渐进无偏估计的定义是什么? 答:无偏估计:若估计量的均值等于被估计量的均值(随机变 量),即E?θθ??=EE(θθ)或等于被估计量的真值(非随机参 量)E?θθ??=θθ,则称θθ?为θ的无偏估计。 渐进无偏估计:若lim NN→∞EE?θθ??=EE(θ ),称θθ?为θ的渐进无偏估计。 3、卡尔曼滤波器的主要特征是什么? 答:随机过程的状态空间模型,用矩阵表示,可同时估计多参 量,根据观测数据,提出递推算法,便于实时处理。 4、在现代信号处理中,对信号的处理通常是给出一个算法, 对一个算法性能的评价,应从那些方面进行评价。 答:算法的复杂度,算法的稳定性和现有算法的比较,算法的 运算速度、可靠性、算法的收敛速度。

数字信号处理实验参考程序

实验一参考程序: 1 产生10点的单位抽样序列δ(n); function unit_pulse(N) % unit_pulse.m N=10; x=zeros(1,N); x(1)=1; n=0:N-1; figure(1); stem(n,x);xlabel('单位抽样序列') axis([-1 20 0 1.1]) 2产生10点同时移位3位的单位抽样序列δ(n-3); function shift_unit_pulse(N,k) % shift_unit_pulse.m N=10; k=3; x=zeros(1,N); x(k+1)=1; n=0:N-1; figure(2); stem(n,x);xlabel('移位3位的单位抽样序列') axis([-1 10 0 1.1]) function [x, n]=i shift_unit_pulse (n0,ns,nf) n=[0:9]; x=[(n-3)==0] 3产生任意序列 f(n)=8δ(n)+7δ(n-1)+6δ(n-2) +5δ(n-3)+ 4δ(n-4)+7δ(n-5);function arbitrary_pulse(N) % arbitrary_pulse.m N=10 x=zeros(1,N); x(1)=8;x(2)=7;x(3)=6;x(4)=5;x(5)=4;x(6)=7; n=0:N-1; figure(3); stem(n,x);xlabel('任意序列f(n)') axis([-1 10 0 9]) 4产生N=10点的单位阶跃序列 function unit_step(N) % unit_step.m

相关主题
文本预览
相关文档 最新文档