现代信号处理_2013-复习总结
- 格式:pdf
- 大小:209.05 KB
- 文档页数:13
“现代数字信号处理”复习思考题变换1. 给出DFT的定义和主要性质。
2. DTFT与DFT之间有什么关系?3. 写出FT、DTFT、DFT的数学表达式。
离散时间系统分析1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。
2. 全通数字滤波器、最小相位滤波器有何特点?3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何?4. 简述FIR离散时间系统的Lattice结构的特点。
5. 简述IIR离散时间系统的Lattice结构的特点。
采样1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标?维纳滤波1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。
2.写出最优滤波器的均方误差表示式。
3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。
4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。
5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。
6.维纳滤波理论对信号和系统作了哪些假设和限制?自适应信号处理1.如何确定LMS算法的值,值与算法收敛的关系如何?2.什么是失调量?它与哪些因素有关?3.RLS算法如何实现?它与LMS算法有何区别?4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。
功率谱估计1. 为什么偏差为零的估计不一定是正确的估计?2. 什么叫一致估计?它要满足哪些条件?3. 什么叫维拉-辛钦(Wiener-Khinteche)定理?4. 功率谱的两种定义。
5. 功率谱有哪些重要性质?6. 平稳随机信号通过线形系统时输入和输出之间的关系。
7. AR模型的正则方程(Yule-Walker方程)的导出。
8. 用有限长数据估计自相关函数的估计质量如何?9. 周期图法谱估计的缺点是什么?为什么会产生这些缺点?10. 改进的周期图法谱估计有哪些方法?它们的根据是什么?11. 既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗?12. 经典谱估计和现代谱估计的主要差别在哪里?13. 为什么AR模型谱估计应用比较普遍?14. 对于高斯随机过程最大熵谱估计可归结为什么样的模型?15. 为什么Levison-Durbin快速算法的反射系数的模小于1?16. 什么是前向预测?什么是后向预测?17. AR模型谱估计自相关法的主要缺点是什么?18. Burg算法与Levison-Durbin算法的区别有哪些?。
第1章 离散时间信号与系统1、 傅里叶分析和Z 变换的区别、缺陷、特点关系:点数为N 的有限长序列x(n)的Z 变换为X(z),而其离散傅里叶变换为X(k),两者均表示了同一有限长序列x(n)的变换,它们之间的关系是:对z 变换在单位圆上取样可得DFT 。
而DFT 的内插就是变换。
傅里叶变换优缺点(1) 傅里叶变换缺乏时间和频率的定位功能 (2) 傅里叶变换对于非平稳信号的局限性(3) 傅里叶变换在时间和频率分辨率上的局限性傅立叶变换是最基本得变换,由傅里叶级数推导出。
傅立叶级数只适用于周期信号,把非周期信号看成周期T 趋于无穷的周期信号,就推导出傅里叶变换,能很好的处理非周期信号的频谱。
但是傅立叶变换的弱点是必须原信号必须绝对可积,因此适用范围不广。
Z 变换的本质是离散时间傅里叶变换(DTFT ),如果说拉普拉斯变换专门分析模拟信号,那Z 变换就是专门分析数字信号,Z 变换可以把离散卷积变成多项式乘法,对离散数字系统能发挥很好的作用。
Z 变换看系统频率响应,就是令Z 在复频域的单位圆上跑一圈,即Z=e^(j2πf),即可得到频率响应。
2、系统的记忆性、因果性、可逆性(1)记忆性如果系统在任意时刻n0的响应仅与该时刻的输入f(n0)有关,而与其它时刻的输入无关,则称该系统为非记忆系统(或系统无记忆性),否则称为记忆系统。
系统的记忆性有时也被称为动态特性。
该特性强调系统的响应是否仅与当前时刻的输入有关。
对于无记忆LTI 系统,其系统冲激响应为,其中()()h n K n δ=,K 为一常数。
由于系统频率响应是冲激响应的傅氏变换、系统函数为系统冲激响应的z 变换,因此,无记忆LTI 系统的系统频率响应和系统函数分别为H(ω)=K ,H(z)=K 。
(2) 因果性如果系统任意时刻的响应与以后的输入无关,则该系统称为因果系统(或系统具有因果性),否则为非因果系统。
该特性强调的是,系统的响应是否与未来的输入有关。
信号处理知识点总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】第一章信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱非周期信号:无限区间绝对可积à傅里叶变换à连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:ω=nω0 , n=0,±1,±2, …..脉冲函数的强度:傅里叶复指数系数的2π倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章 连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,d(t)称为微分器f(t)与阶跃函数的卷积, u(t)称为积分器 3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和4.有限长序列隐含着周期性5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6.FFT 的计算工作量:FFT 算法对于N 点DFT,仅需(N/2)log2N次复数乘法运算和Nlog2N 次复数加法)()()(t f t t f '='*δ⎰∞-=*td f t u t f λλ)()()(第三章随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。
学习要点u 1.课随机变量的描述 u 2.随机变量的数值特征 u 3.离散随机过程 u 4.狭义平衡随机过程 u 5.随机过程的数值特征 u 随机过程的数值特征u 6.自相关序列和自协方差序列 u 7.离散随机过程的平均u 8.相关序列和协方差序列的性质 u 9.功率谱u 10.离散随机信号通过线性非移变系统 习题一解:因为正弦与余弦为正交函数:12()cos()sin(),()PSD pi i i i i i i x n A w n B w n A B x n σ==+∑设 其中随机变量都服从均值为零、方差为的高斯分布,并且两两之间互相独立。
求的均值、自相关函数和功率谱密度()。
[][][]111()()cos()sin() cos()+sin() =0pi i ii i p p i i i ii i x n E x n E A w n B w n E A w n E B w n ===⎛⎫=+ ⎪⎝⎭∑∑∑的均值为:=[][]1211221112121112()()()()=cos()sin()cos()sin()cos()cos()sin()sin()=cos(),-p p i i i i i i i i i i p p p p i j i j i j i j i j i i px n x n E x n x n E A w n B w n A w n B w n E A A w n w n E B B w n w n w m m n n φσ======⎛⎫⎛⎫++⎪⎪⎝⎭⎝⎭⎡⎤⎡⎤+⎣⎦⎣⎦=∑∑∑∑∑∑∑的自相关函数为:=第二章维纳滤波器第二章维纳滤波器习题课 内容• 维纳滤波器分类 • 维纳滤波器的时域解 • 维纳滤波器的Z 域解 • 维纳滤波器的预测器 一、维纳滤波分类二、维纳滤波的时域解三、维纳滤波的复频域(Z)解[][][][]1221222()P ()FT ()()=FT cos(),-(-)()=(-)()p i i pi i ipi i i x n x n x n x n w m m n n w w w w w w w w φσσπδδσπδδ⎡⎤=⎣⎦⎡⎤=⎢⎥⎣⎦=++++∑∑∑的功率谱函数为:(2)ˆ(),(-1),(-2),,()x n x n x n s n N + 由过去的观测值估计当前甚至将来的信号值,即以来确定,这属于预测或外推。
重难点1.信号的概念与分类按所具有的时间特性划分:确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。
其周期为各个周期的最小公倍数。
① 连续正弦信号一定是周期信号。
② 两连续周期信号之和不一定是周期信号。
周期信号是功率信号。
除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。
1.典型信号① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()tSa t t= 奇异信号(1)单位阶跃信号1()u t ={ 0t =是()u t 的跳变点。
(2) 单位冲激信号单位冲激信号的性质: (1)取样性 11()()(0)()()()f t t dt f t t f t dt f t δδ∞∞-∞-∞=-=⎰⎰(0)t <(0)t >()1t dt δ∞-∞=⎰()0t δ=(当0t ≠时)相乘性质:()()(0)()f t t f t δδ=000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1()at t aδδ=(4)微积分性质 d ()()d u t t tδ= ; ()d ()t u t δττ-∞=⎰(5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ;()()d (0)f t t t f δ∞-∞''=-⎰ ()d ()tt t t δδ-∞'=⎰ ;()()t t δδ''-=- ()d 0t t δ∞-∞'=⎰带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。
《信号处理技术及应用》复习要点总结题型:10个简答题,无分析题。
前5个为必做题,后面出7个题,选做5个,每个题10分。
要点:第一章:几种变换的特点,正交分解,内积,基函数;第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好)第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用?第五章:多分辨分析,正交小波基的构造,小波包的基本概念第六章:三种小波各自的优点,奇异点怎么选取第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。
看8.3小节。
信号的时域分析信号的预处理传感器获取的信号往往比较微弱,并伴随着各种噪声。
不同类型的传感器,其输出信号的形式也不尽相同。
为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。
所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。
常用的信号预处理方法信号类型转换信号放大信号滤波去除均值去除趋势项理想低通滤波器具有矩形幅频特性和线性相位特性。
经典滤波器定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留现代滤波器当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍量化是对信号采样点取值进行数字化转换的过程。