当前位置:文档之家› 基于FPGA的高速数字峰值保持器设计

基于FPGA的高速数字峰值保持器设计

基于FPGA的高速数字峰值保持器设计
基于FPGA的高速数字峰值保持器设计

基于FPGA的高速数字峰值保持器设计

易先军;叶春生

【摘要】分析了模拟峰值保持器的特点,介绍了一种基于现场可编程逻辑器件FPGA与高速A/D转换器的数字式峰值保持电路,并给出了该电路的峰值采集仿真结果.

【期刊名称】《计量技术》

【年(卷),期】2005(000)009

【总页数】3页(P26-28)

【关键词】峰值保持;FPGA;VHDL;高速A/D转换

【作者】易先军;叶春生

【作者单位】华中科技大学,塑性成形模拟与模具技术国家重点实验室,武

汉,430074;武汉工程大学,电气信息学院,武汉,430073;华中科技大学,塑性成形模拟与模具技术国家重点实验室,武汉,430074

【正文语种】中文

【中图分类】工业技术

基于 FPGA的高速数字峰值保持器设计易先军1,2 叶春生 1( 1 华中科技大学塑性成形模拟与模具技术国家重点实验室,武汉 430074 2 武汉工程大学电气信息学院,武汉 430073 )摘要分析了模拟峰值保持器的特点,介绍了一种基于现场可编程逻辑器件 FPGA 与高速 A/D 转换器的数字式峰值保持电路,并给出了该电路的峰值采集仿真结果。关键词峰值保持; FPGA;VHDL; 高速 A/D 转换

全数字锁相环毕业设计终稿

安徽大学 本科毕业论文(设计、创作) 题目:全数字锁相环的研究与设计 学生姓名:郑义强学号:P3******* 院(系):电子信息工程学院专业:微电子 入学时间:2011年9月 导师姓名:吴秀龙职称/学位:教授/博士 导师所在单位:安徽大学电子信息工程学院 完成时间:2015 年5月

全数字锁相环的研究与设计 摘要 锁相环路的设计和应用是当今反馈控制技术领域关注的热点,它的结构五花八门,但捕获时间短,抗干扰能力强一直是衡量锁相环性能好坏的一个标准。本文是在阅读了大量国内外关于全数字锁相环的技术文献的基础上,总结了锁相环的发展现状与技术水平,深入分析了全数字锁相环的基本结构与基本原理,利用VHDL语言,采用自上而下的设计方法,设计了一款全数字锁相环.本文主要描述了一种设计一阶全数字锁相环的方法,首先分析了课题研究的意义、锁相环的发展历程研究现状,然后描述了全数字锁相环的各个组成部件,并且详细分析了锁相环鉴相器、变模可逆计数器、加减脉冲电路、除H计数器和除N计数器各个模块的工作原理。接着我们使用了VHDL语句来完成了鉴相器、数字滤波器和数字振荡器的设计,并且分别使用仿真工具MAX+plus II逐个验证各个模块的功能。最后,将各个模块整合起来,建立了一个一阶全数字锁相环的电路,利用仿真工具MAX+plus II 验证了它的功能的能否实现,仿真结果与理论分析基本符合。 关键词:全数字锁相环;数字滤波器;数字振荡器;锁定时间

Design and research of ALL Digital Phase-Locked Loop Abstract The design and application of phase-locked loop is the focus of attention in the field of feedback control technology today, phase- locked loop has played a very important and unique role in variety of applications. such as the radar, measurement,communications, etc. All-digital phase-locked loop has its unique advantages. Its structure is varied, but short capture time, small synchronization error, excellent anti-interference ability is the standard measure of performance of a phase-locked loop. On the basis of reading a lot of DPLL technology literature of domestic and abroad, this article summed up the present situation and the development level of phase-locked loop technology, analysis the basic structure and principle of all-digital phase-locked loop in-depth, designed a quick all-digital phase-locked loop by using VHDL language and top-down design approach. In this brief, we presented a way of designing a first-order ALL Digital Phase-Locked Loop (ADPLL) first analyzes the significance of research, the development course of phase-locked loop current research status, and then describes the component parts of all digital phase-locked loop, and detailed analysis of the phase lock loop phase discriminator, reversible counter change mould, add and subtract pulse circuit, in addition to H counter and divide N working principle of each module. Then we use the VHDL statements to complete the phase discriminator, digital filter and the design of the digital oscillator, and using the simulation tool of MAX + plus II one by one to verify the function of each module. Finally, the various modules together, established a first-order digital phase-locked loop circuit, using the simulation tool of MAX + plus II verify the realization of its function, the simulation results and principle Keywords: All Digital Phase-Locked Loop; Digital filter; Digital oscillator, Locking time

基于FPGA的数字时钟的设计1

基于FPGA的数字时钟的设计课题: 基于FPGA的数字时钟的设计 学院: 电气信息工程学院 专业: 测量控制与仪器 班级 : 08测控(2)班 姓名 : 潘志东 学号 : 08314239 合作者姓名: 颜志林 2010 年12 月12 日

综述 近年来随着数字技术的迅速发展,各种中、大规模集成电路在数字系统、控制系统、信号处理等方面都得到了广泛的应用。这就迫切要求理工科大学生熟悉与掌握常用中、大规模集成电路功能及其在实际中的应用方法,除通过实验教学培养数字电路的基本实验方法、分析问题与故障检查方法以及双踪示波器等常用仪器使用方法等基本电路的基本实验技能外,还必须培养大学生工程设计与组织实验能力。 本次课程设计的目的在于培养学生对基本电路的应用与掌握,使学生在实验原理的指导下,初步具备基本电路的分析与设计能力,并掌握其应用方法;自行拟定实验步骤,检查与排除故障、分析与处理实验结果及撰写实验报告的能力。综合实验的设计目的就是培养学生初步掌握小型数字系统的设计能力,包括选择设计方案,进行电路设计、安装、调试等环节,运用所学知识进行工程设计、提高实验技能的实践。数字电子钟就是一种计时装置,它具有时、分、秒计时功能与显示时间功能;具有整点报时功能。 本次设计我查阅了大量的文献资料,学到了很多关于数字电路方面的知识,并且更加巩固与掌握了课堂上所学的课本知识,使自己对数字电子技术有了更进一步的认识与了解。

1、课题要求 1、1课程设计的性质与任务 本课程就是电子与信息类专业的专业的专业基础必修课——“数字电路”的配套实验课程。目的在于培养学生的理论联系实际,分析与解决问题的能力。通过本课程设计,使学生在理论设计、计算机仿真、指标调测、故障排除等方面得到进一步的训练,加强学生的实践能力。学生通过设计、仿真、调试、撰写设计报告等过程,培养学生的动手能力与严谨的工作作风。 1、2课程设计的基本技术要求 1)根据课题要求,复习巩固数字电路有关专业基础知识; 2)掌握数字电路的设计方法,特别就是熟悉模块化的设计思想; 3) 掌握QUARTUS-2软件的使用方法; 4) 熟练掌握EDA工具的使用,特别就是原理图输入,波形仿真,能对仿真波形进行分析; 5) 具备EDA技术基础,能够熟练使用VHDL语言进行编程,掌握层次化设计方法; 6) 掌握多功能数字钟的工作原理,学会不同进制计数器及时钟控制电路的设计方法; 7) 能根据设计要求对设计电路进行仿真与测试; 8) 掌握将所设计软件下载到FPGA芯片的下载步骤等等。 9) 将硬件与软件连接起来,调试电路的功能。 1、3课程设计的功能要求 基本功能:能进行正常的时、分、秒计时功能,分别由6个数码管显示24小时,60分钟,60秒钟的计数器显示。 附加功能:1)能利用硬件部分按键实现“校时”“校分”“清零”功能; 2)能利用蜂鸣器做整点报时:当计时到达59’59’’时开始报时, 鸣叫时间1秒钟; 3)定时闹铃:本设计中设置的就是在七点时进行闹钟功能,鸣叫 过程中,能够进行中断闹铃工作。 本人工作:负责软件的编程与波形的仿真分析。 2、方案设计与分析

基于FPGA的数字钟设计

摘要 伴随着集成电路技术的发展, 电子设计自动化(EDA)技术逐渐成为数字电路设计的重要手段。基于FPGA的EDA技术的发展和应用领域的扩大与深入,使得EDA技术在电子信息,通信,自动控制,计算机等领域的重要性日益突出。 本设计给出了一种基于FPGA的多功能数字钟方法,采用EDA作为开发工具,VHDL语言和图形输入为硬件描述语言,QuartusII作为运行程序的平台,编写的程序经过调试运行,波形仿真验证,下载到EDA实验箱的FPGA芯片,实现了设计目标。 系统主芯片采用CycloneII系列EP2C35F672C8。采用自顶向下的设计思想,将系统分为五个模块:分频模块、计时模块、报时模块、显示模块、顶层模块。用VHDL语言实现各个功能模块, 图形输入法生成顶层模块. 最后用QuartusII 软件进行功能仿真, 验证数字钟设计的正确性。 测试结果表明本设计实现了一个多功能的数字钟功能,具有时、分、秒计时显示功能,以24小时循环计时;具有校正小时和分钟的功能;以及清零,整点报时功能。 关键词:EDA技术;FPGA;数字钟;VHDL语言;自顶向下

Abstract Accompanied by the development of integrated circuit technology, electro nic design automation (EDA) technology is becoming an important means of digital circuit design. FPGA EDA technology development and expansion of a pplication fields and in-depth, the importance of EDA technology in the field of electronic information, communication, automatic control, computer, etc. hav e become increasingly prominent. This design gives a FPGA-based multifunctional digital clock using ED A as a development tool, VHDL language and graphical input hardware descri ption language, the QuartusII as a platform for running the program, written procedures debugging and running, the waveform simulation downloaded to th e FPGA chip to achieve the design goals. The main system chip CycloneII series EP2C35F672C8. Adopted a topdw n design ideas, the system is divided into five modules: frequency module, ti ming module, timer module, display module, the top-level module. With VHD L various functional modules, graphical input method to generate the top-level module. Last QuartusII under simulation, to verify the correctness of the digi tal clock design. The test results show that the design of a multifunctional digital clock, with seconds time display, 24-hour cycle timing; has a school, cleared, and th e whole point timekeeping functions. Key words: EDA technology; FPGA; VHDL language; top-down; digital cloc k

基于FPGA的计数器的程序的设计方案

基于FPGA的计数器的程序设计方案 1.1 FPGA简介 FPGA(Field-Progrmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了 原有可编程器件门电路数有限的缺点。 自1985 年Xilinx 公司推出第一片中大规模现场可编程逻辑器件(FP2GA) 至 今,FPGA 已经历了十几年的历。在这十几年的过程中,可编程器件有了惊人的发展: 从最初的1200 个可利用门,到今天的25 万可利用门,规模增大了200 多倍; FPGA 供应商也从Xilinx 的一枝独秀,到今天近20 个厂商的分庭抗争;FPGA 从单一的基于SRAM结构到今天各种结构类型的出现,都充分体现了可编程器件这一巨大市场的吸引力。FPGA 不仅可以解决电子系统小型化、低功耗、高可靠性等问题,而且其开 发周期短、开发软件投入少、芯片价格 不断降低。由于目前电子产品生命周期相对缩短,相近功能产品的派生设计增多 等特点,促使FPGA 越来越多地取代了ASIC 的市场,特别是对国内众多的科研单位来说,小批量、多品种的产品需求,使得FPGA 成为首选。 1.2 硬件描述语言VHDL特点 功能强大、设计灵活。VHDL具有功能强大的语言结构,可以用简洁明确的源代码来描述复杂的逻辑控制。它具有多层次的设计描述功能,层层细化,最后可直接生成电路级描述。VHDL支持同步电路、异步电路和随机电路的设计,这是其他硬件描述语言所不能比拟的。VHDL还支持各种设计方法,既支持自底向上的设计,又支持自顶向下的设计;既支持模块化设计,又支持层次化设计。支持广泛、易于修改。由于VHDL已经成为IEEE标准所规范的硬件描述语言,目前大多数EDA工具几乎都支持VHDL,这为VHDL的进一步推广和广泛应用奠定了基础。在硬件电路设计过程中,主要的设计文件是用VHDL编写的源代码,因为VHDL易读和结构化,所以易于修改设计。强大的系统硬件描述能力。VHDL具有多层次的设计描述功能,既可以描

FPGACPLD数字电路设计经验

FPGA/CPLD数字电路设计经验分享 摘要:在数字电路的设计中,时序设计是一个系统性能的主要标志,在高层次设计方法中,对时序控制的抽象度也相应提高,因此在设计中较难把握,但在理解RTL电路时序模型的基础上,采用合理的设计方法在设计复杂数字系统是行之有效的,通过许多设计实例证明采用这种方式可以使电路的后仿真通过率大大提高,并且系统的工作频率可以达到一个较高水平。 关键词:FPGA数字电路时序时延路径建立时间保持时间 1 数字电路设计中的几个基本概念: 1.1 建立时间和保持时间: 建立时间(setup time)是指在触发器的时钟信号上升沿到来以前,数据稳定不变的时间,如果建立时间不够,数据将不能在这个时钟上升沿被打入触发器;保持时间(hold time)是指在触发器的时钟信号上升沿到来以后,数据稳定不变的时间,如果保持时间不够,数据同样不能被打入触发器。数据稳定传输必须满足建立和保持时间的要求,当然在一些情况下,建立时间和保持时间的值可以为零。PLD/FPGA开发软件可以自动计算两个相关输入的建立和保持时间 注:在考虑建立保持时间时,应该考虑时钟树向后偏斜的情况,在考虑建立时间时应该考虑时钟树向前偏斜的情况。在进行后仿真时,最大延迟用来检查建立时间,最小延时用来检查保持时间。 建立时间的约束和时钟周期有关,当系统在高频时钟下无法工作时,降低时钟频率就可以使系统完成工作。保持时间是一个和时钟周期无关的参数,如果设计不合理,使得布局布线工具无法布出高质量的时钟树,那么无论如何调整时钟频率也无法达到要求,只有对所设计系统作较大改动才有可能正常工作,导致设计效率大大降低。因此合理的设计系统的时序是提高设计质量的关键。在可编程器件中,时钟树的偏斜几乎可以不考虑,因此保持时间通常都是满足的。

全数字锁相环的设计

全数字锁相环的设计 锁相环()技术在众多领域得到了广泛的应用。如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。传统的锁相环由模拟电路实现,而全数字锁相环()与传统的模拟电路实现的相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需及转换。随着通讯技术、集成电路技术的飞速发展和系统芯片()的深入研究,必然会在其中得到更为广泛的应用。 这里介绍一种采用硬件描述语言设计的方案。 结构及工作原理 一阶的基本结构如图所示。主要由鉴相器、变模可逆计数器、脉冲加减电路和除计数器四部分构成。变模计数器和脉冲加减电路的时钟分别为和。这里是环路中心频率,一般情况下和都是的整数幂。本设计中两个时钟使用相同的系统时钟信号。 图数字锁相环基本结构图 鉴相器 常用的鉴相器有两种类型:异或门()鉴相器和边沿控制鉴相器(),本设计中采用异或门()鉴相器。异或门鉴相器比较输入信号相位和输出信号相位之间的相位差ФФФ,并输出误差信号作为变模可逆计数器的计数方向信号。环路锁定时,为一占空比的方波,此时的绝对相为差为°。因此异或门鉴相器相位差极限为±°。异或门鉴相器工作波形如图所示。

图异或门鉴相器在环路锁定及极限相位差下的波形 变模可逆计数器 变模可逆计数器消除了鉴相器输出的相位差信号中的高频成分,保证环路的性能稳定。变模可逆计数器根据相差信号来进行加减运算。当为低电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号给脉冲加减电路;当为高电平时,计数器进行减运算,如果结果为零,则输出一个借位脉冲信号给脉冲加减电路。 脉冲加减电路 脉冲加减电路实现了对输入信号频率和相位的跟踪和调整,最终使输出信号锁定在输入信号的频率和信号上,工作波形如图所示。 图脉冲加减电路工作波形 除计数器

fpga数字钟课程设计报告

f p g a数字钟课程设计报告 Prepared on 24 November 2020

课程设计报告 设计题目:基于FPGA的数字钟设计 班级:电子信息工程1301 姓名:王一丁 指导教师:李世平 设计时间:2016年1月 摘要 EDA(Electronic Design Automation)电子设计自动化,是以大规模可编程器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,通过相关的软件,自动完成软件方式设计得电子系统到硬件系统,最终形成集成电子系统或专用集成芯片。本次课程设计利用Quartus II 为设计软件,VHDL为硬件描述语言,结合所学知识设计一个多功能时钟,具有显示年、月、日、时、分、秒显示,计时,整点报时,设定时间等功能。利用硬件描述语言VHDL 对设计系统的各个子模块进行逻辑描述,采用模块化的思想完成顶层模块的设计,通过软件编译、逻辑化简、逻辑综合优化、逻辑仿真、最终完成本次课程设计的任务。 关键词:EDA VHDL语言数字钟 目录 摘要 1 课程设计目的 2 课程设计内容及要求

设计任务 设计要求 3 VHDL程序设计 方案论证 系统结构框图 设计思路与方法 状态控制模块 时分秒模块 年月日模块 显示模块 扬声器与闹钟模块 RTL整体电路 4 系统仿真与分析 5 课程设计总结,包括.收获、体会和建议 6 参考文献 1 课程设计目的 (1)通过设计数字钟熟练掌握EDA软件(QUARTUS II)的使用方法,熟练进行设计、编译,为以后实际工程问题打下设计基础。 (2)熟悉VHDL 硬件描述语言,提升分析、寻找和排除电子设计中常见故障的能力。 (3)通过课程设计,锻炼书写有理论根据的、实事求是的、文理通顺的课程设计报告。

全数字锁相环的设计

全数字锁相环的设计 锁相环(PLL)技术在众多领域得到了广泛的应用。如信号处理,调制解调,时钟同步,倍频,频率综合等都应用到了锁相环技术。传统的锁相环由模拟电路实现,而全数字锁相环(DPLL)与传统的模拟电路实现的PLL相比,具有精度高且不受温度和电压影响,环路带宽和中心频率编程可调,易于构建高阶锁相环等优点,并且应用在数字系统中时,不需A/D及D/A转换。随着通讯技术、集成电路技术的飞速发展和系统芯片(SoC)的深入研究,DPLL必然会在其中得到更为广泛的应用。 这里介绍一种采用VERILOG硬件描述语言设计DPLL的方案。 DPLL结构及工作原理 一阶DPLL的基本结构如图1所示。主要由鉴相器、K变模可逆计数器、脉冲加减电路和除N计数器四部分构成。K变模计数器和脉冲加减电路的时钟分别为Mfc和2Nfc。这里fc是环路中心频率,一般情况下M和N都是2的整数幂。本设计中两个时钟使用相同的系统时钟信号。 图1 数字锁相环基本结构图 鉴相器 常用的鉴相器有两种类型:异或门(XOR)鉴相器和边沿控制鉴相器(ECPD),本设计中采用异或门(XOR)鉴相器。异或门鉴相器比较输入信号Fin相位和输出信号Fout相位之间的相位差Фe=Фin-Фout,并输出误差信号Se作为K变模可逆计数器的计数方向信号。环路锁定时,Se为一占空比50%的方波,此时的绝对相为差为90°。因此异或门鉴相器相位差极限为±90°。异或门鉴相器工作波形如图2所示。

图2 异或门鉴相器在环路锁定及极限相位差下的波形 K变模可逆计数器 K变模可逆计数器消除了鉴相器输出的相位差信号Se中的高频成分,保证环路的性能稳定。K变模可逆计数器根据相差信号Se来进行加减运算。当Se 为低电平时,计数器进行加运算,如果相加的结果达到预设的模值,则输出一个进位脉冲信号CARRY给脉冲加减电路;当Se为高电平时,计数器进行减运算,如果结果为零,则输出一个借位脉冲信号BORROW给脉冲加减电路。 脉冲加减电路 脉冲加减电路实现了对输入信号频率和相位的跟踪和调整,最终使输出信号锁定在输入信号的频率和信号上,工作波形如图3所示。 图3 脉冲加减电路工作波形 除N计数器

FPGA实训报告——简易数字钟

桂林电子科技大学职业技术学院 课题:FPGA实训 专业:电子信息工程技术 学号: 姓名:

目录 关键词: (1) 引言: (1) 设计要求: (1) EDA技术介绍: (1) Verilog HDL简介: (1) 方案实现: (2) 工作原理: (2) 总结: (3) 结语: (3) 程序设计: (4)

数字钟 关键词:EDA、Verilog HDL、数字钟 引言: 硬件描述语言HDL(Hardware Des-cription Language)是一种用形式化方法来描述数字电路和系统的语言。目前,电子系统向集成化、大规模和高速等方向发展,以硬件描述语言和逻辑综合为基础的自顶向下的电路设计发放在业界得到迅猛发展,HDL在硬件设计领域的地位将与C和C++在软件设计领域的地位一样,在大规模数字系统的设计中它将逐步取代传统的逻辑状态表和逻辑电路图等硬件描述方法,而成为主要的硬件描述工具。 Verilog HDL是工业和学术界的硬件设计者所使用的两种主要的HDL之一,另外一种是VHDL。现在它们都已经成为IEEE标准。两者各有特点,但Verilog HDL拥有更悠久的历史、更广泛的设计群体,资源也远比VHDL丰富,且非常容易学习掌握。 此次以Verilog HDL语言为手段,设计了多功能数字钟,其代码具有良好的可读性和易理解性。 设计要求: 数字钟模块、动态显示模块、调时模块、到点报时模块等;必须有键防抖动功能。可自行设计8位共阴数码管显示;亦可用FPGA实验平台EDK-3SAISE上的4位数管,但必须有秒指导灯。 EDA技术介绍: 20世纪90年代,国际上电子和计算机技术较先进的国家,一直在积极探索新的电子电路设计方法,并在设计方法、工具等方面进行了彻底的变革,取得了巨大成功。在电子技术设计领域,可编程逻辑器件(如CPLD、FPGA)的应用,已得到广泛的普及,这些器件为数字系统的设计带来了极大的灵活性。这些器件可以通过软件编程而对其硬件结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷。这一切极大地改变了传统的数字系统设计方法、设计过程和设计观念,促进了EDA技术的迅速发展。 EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。EDA技术就是以计算机为工具,设计者在EDA软件平台上,用硬件描述语言HDL完成设计文件,然后由计算机自动地完成逻辑编译、化简、分割、综合、优化、布局、布线和仿真,直至对于特定目标芯片的适配编译、逻辑映射和编程下载等工作。EDA技术的出现,极大地提高了电路设计的效率和可操作性,减轻了设计者的劳动强度。 这些器件可以通过软件编程而对其硬件结构和工作方式进行重构,从而使得硬件的设计可以如同软件设计那样方便快捷。这一切极大地改变了传统的数字系统设计方法、设计过程和设计观念,促进了EDA技术的迅速发展。 Verilog HDL简介: 硬件描述语言Verilog是Philip R.Moorby于1983年在英格兰阿克顿市的Gateway Design Automation硬件描述语言公司设计出来的,用于从开关级到算法级的多个抽象设

基于FPGA的Verilog HDL数字钟设计 -

基于FPGA的Verilog HDL数字钟设计 专业班级姓名学号 一、实验目的 1.掌握可编程逻辑器件的应用开发技术——设计输入、编译、仿真和器件编程; 2.熟悉一种EDA软件使用; 3.掌握Verilog设计方法; 4.掌握分模块分层次的设计方法; 5.用Verilog完成一个多功能数字钟设计; 6.学会FPGA的仿真。 二、实验要求 ?功能要求: 利用实验板设计实现一个能显示时分秒的多功能电子钟,基本功能: 1)准确计时,以数字形式显示时、分、秒,可通过按键选择当前显示时间范围模式; 2)计时时间范围00:00:00-23:59:59 3)可实现校正时间功能; 4)可通过实现时钟复位功能:00:00:00 扩展功能: 5)定时报:时间自定(不要求改变),闹1分钟(1kHz)---利用板上LED或外接电路实现。 6)仿广播电台正点报时:XX:59:[51,53,55,57(500Hz);59(1kHz)] ---用板上LED或外接 7)报整点时数:XX:00:[00.5-XX.5](1kHz),自动、手动---用板上LED或外接 8)手动输入校时; 9)手动输入定时闹钟; 10)万年历; 11)其他扩展功能; ?设计步骤与要求: 1)计算并说明采用Basys2实验板时钟50MHz实现系统功能的基本原理。 2)在Xilinx ISE13.1 软件中,利用层次化方法,设计实现模一百计数及显示的电路系 统,设计模块间的连接调用关系,编写并输入所设计的源程序文件。 3)对源程序进行编译及仿真分析(注意合理设置,以便能够在验证逻辑的基础上尽快 得出仿真结果)。 4)输入管脚约束文件,对设计项目进行编译与逻辑综合,生成下载所需.bit文件。 5)在Basys2实验板上下载所生成的.bit文件,观察验证所设计的电路功能。

推荐-基于FPGA的计数器的程序设设计 精品

郑州轻工业学院 电子技术课程设计 题目 _基于FPGA的计数器设计___ _________________________ 学生姓名 _ XXX_________________ 专业班级 _电子信息工程10-01班____ 学号 _5401001030XXX__________ 院(系)电气信息工程学院___ ____ 指导教师 _杜海明耿鑫____________ 完成时间20XX年06月22日_______

郑州轻工业学院 课程设计任务书 题目基于FPGA的计数器的程序设设计_______________ 专业、班级电子信息工程学号姓名 _____ 主要内容、基本要求、主要参考资料等: 主要内容: 要求学生使用硬件描述语言(Verilog 或者VHDL)设计基于FPGA的计数器的 源程序。实现如下功能:显示1个0-9999的四位计数器;四位七段数码管的译码与 显示。理解数码管的译码原理,同时需要做一个分频器,理解时钟分频的原理及意 义。 基本要求: 1、学会quartusII的使用,掌握FPGA 的程序设计方法。 2、掌握硬件描述语言语法。 3、程序设计完成后要求在quartusII中实现功能仿真。 主要参考资料: 1、. [M]..20XX,4 2、陈怀琛.MATLAB及在电子信息课程中的应用[M].北京:电子工业出版 社.20XX,1 完成期限:20XX.6.21—20XX.6.25 指导教师签名: ________________ 课程负责人签名: ___________________ 20XX年6月18日

目录

基于FPGA的计数器的程序设设计 摘要 本文介绍了一种基于FPGA的,由顶层到底层设计的数字频率计。本文主要包括该频率计的设计基础和实现方法以及译码与显示等内容,描述了它的设计平台、工作原理和软硬件实现。本设计主要有分频器、四位计数器、16位锁存器以及数码管显示电路。计数器设计采用VHDL硬件描述语言编程,极大地减少了硬件资源的占用,仿真与分析结果表明,该数字频率计性能优异,软件设计语言灵活,硬件简单,速度快。 关键词FPGA 计数器 VHDL

基于FPGA的数字锁相环的设计

目录 第一章绪论..................................... 错误!未定义书签。 1.1锁相环技术的发展及研究现状................................................ 错误!未定义书签。 1.2课题研究意义 ........................................................................... 错误!未定义书签。 1.3本课题的设计内容.................................................................... 错误!未定义书签。第二章 FPGA的设计基础............................ 错误!未定义书签。 2.1硬件设计语言-Verilog HDL.................................................. 错误!未定义书签。 2.2 FPGA的设计流程 ...................................................................... 错误!未定义书签。第三章锁相环的原理. (2) 3.1全数字锁相环基本结构 (3) 3.2全数字锁相环的工作原理 (4) 第四章数字锁相环的设计 (5) 4.1基于FPGA的数字锁相环总体设计方案 (5) 4.2数字鉴相器的设计 (6) 4.3 K变模可逆计数器的设计 (7) 4.4脉冲加减器的设计 (10) 4.5 N分频器的设计 (12) 第五章实验仿真与调试 (14) 5.1数字锁相环的仿真 (14) 5.2数字锁相环的系统实验 (15) 结束语 (19) 参考文献 (20) 附录 (21)

Verilog HDL数字时钟课程设计

课程设计报告 课程设计名称:EDA课程设计课程名称:数字时钟 二级学院:信息工程学院 专业:通信工程 班级:12通信1班 学号:1200304126 姓名:@#$% 成绩: 指导老师:方振汉 年月日

目录 第一部分 EDA技术的仿真 (3) 1奇偶校验器 (3) 1.1奇偶校验器的基本要求 (3) 1.2奇偶校验器的原理 (3) 1.3奇偶校验器的源代码及其仿真波形 (3) 28选1数据选择器 (4) 2.18选1数据选择器的基本要求 (4) 2.28选1数据选择器的原理 (4) 2.38选1数据选择器的源代码及其仿真波形 (5) 34位数值比较器 (6) 3.14位数值比较器的基本要求 (6) 3.24位数值比较器的原理 (6) 3.34位数值比较器的源代码及其仿真波形 (7) 第二部分 EDA技术的综合设计与仿真(数字时钟) (8) 1概述 (8) 2数字时钟的基本要求 (9) 3数字时钟的设计思路 (9) 3.1数字时钟的理论原理 (9) 3.2数字时钟的原理框图 (10) 4模块各功能的设计 (10) 4.1分频模块 (10) 4.2计数模块(分秒/小时) (11) 4.3数码管及显示模块 (13) 5系统仿真设计及波形图........................... 错误!未定义书签。5 5.1芯片引脚图.................................... 错误!未定义书签。5 5.2数字时钟仿真及验证结果 (16) 5.3数字时钟完整主程序 (17) 6课程设计小结 (23) 7心得与体会 (23) 参考文献 (24)

基于FPGA的数字钟设计

南昌大学实验报告 学生姓名:邓儒超学号:6100210045 专业班级:卓越通信101 实验类型:□验证□综合□√设计□创新实验日期:2012.10.28 实验成绩: 实验三数字钟设计 一、实验目的 (1)掌握数字钟的设计 二、实验内容与要求 (1)设计一个数字钟,要求具有调时功能和24/12进制转换功能 (2)进行波形仿真,并分析仿真波形图; (3)下载测试是否正确; 三、设计思路/原理图 本次数字钟的设计采用了自顶向下分模块的设计。底层是实现各功能的模块,各模块由vhdl语言编程实现:顶层采用原理图形式调用。其中底层模块包括秒、分、时三个计数器模块、按键去抖动模块、按键控制模块、时钟分频模块、数码管显示模块,其中,时计数器模块又包括24进制计数模块、12进制计数模块、24/12进制转换模块。设计框图如下: 由图可以清晰的看到数字钟系统设计中各功能模块间连接关系。系统时钟1KHZ经过分频后产生1秒的时钟信号,1秒的时钟信号作为秒计数模块的输入信号,秒计数模块产生的进位信号作为分计数模块的输入信号,分计数模块的进位信号作为时计数模块的输入信号。秒计数模块、分计数模块、时计数模块的计数输出分别送到显示模块。由于设计中要使用按键进行调节时间,而按键的动作过程中存在产生得脉冲的不稳定问题,所以就牵扯到按键去抖动的问题,对此系统中设置了按键去抖动模块,按键去抖动模块产生稳定的脉冲信号送入按键控制模块,按键控制模块根据按键的动作对秒、分、时进行调节。 原理图如下:

四、实验程序(程序来源:参考实验室里的和百度文库的稍加改动,还有自己写的) 1、分频模块 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY fenpin IS PORT(CLK:IN STD_LOGIC; CLK1:OUT STD_LOGIC); END fenpin; ARCHITECTURE behav OF fenpin IS SIGNAL X,CNT:STD_LOGIC_VECTOR(11 DOWNTO 0); BEGIN P1:PROCESS(CLK) BEGIN X<="001111101000";--1000分频 IF CLK'EVENT AND CLK = '1' THEN CNT<=CNT+1; IF CNT=X-1 THEN CLK1<='1';CNT<="000000000000"; ELSE CLK1<='0'; END IF; END IF; END PROCESS; END behav; 2、60进制计数器(秒、分计数器)模块 LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY count60 IS PORT(EN,RST,CLK1: IN STD_LOGIC; Q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0); COUT: OUT STD_LOGIC); END count60;

基于fpga的计数器的程序设计

基于FPGA的计数器的程序设计 摘要 本文介绍了一种基于FPGA的,由顶层到底层设计的数字计数器。本文主要包括该计数器的设计基础和实现方法以及译码与显示等内容,描述了它的设计平台、工作原理和软硬件实现。本设计主要有分频器、四位计数器、16位锁存器以及数码管显示电路四个模块组成。计数器各模块设计采用VHDL硬件描述语言编程,极大地减少了硬件资源的占用,仿真与分析结果表明,该数字计数器性能优异,软件设计语言灵活,硬件简单,速度快。 关键词FPGA计数器VHDL分频器

目录 基于FPGA的计数器的程序设计 (1) 摘要 (1) 1 绪论 (3) 1.1 FPGA简介 (3) 1.2硬件描述语言VHDL简介 (3) 1.3开发工具Quartus II简介 (4) 2整体设计方案 (4) 3各功能模块设计及仿真 (5) 3.1分频器的设计 (5) 3.1.1分频器设计原理 (5) 3.1.2源程序及波形仿真 (6) 3.1.3分频器RTL 电路图 (7) 3.2计数器的设计 (7) 3.2.1分频器设计原理 (7) 3.2.2源程序及波形仿真 (8) 3.2.3 RTL 电路图 (11) 3.3锁存器的设计 (11) 3.3.1锁存器设计原理 (11) 3.3.2锁存器源程序及波形仿真 (12) 3.3.3锁存器RTL电路图 (13) 3.4显示部分的设计 (13) 3.4.1七段数码管显示原理 (13) 3.4.2七段数码管显示源程序及波形仿真 (15) 3.4.3七段数码管显示RTL 电路图 (16) 4系统顶层设计 (17) 4.1.1自顶向下的设计方法 (17) 4.1.2 顶层设计源程序及其仿真波形 (17) 4.1.3系统顶层RTL 电路图 (20) 5总结 (21) 参考文献 (22)

FPGA的数字电路设计综述

封面

作者:PanHongliang 仅供个人学习 1 数字电子基础4 1.1 导读4 1.2 数字电路概述4 1.2.1 数字信号与数字电路4 1.2逻辑函数及其表示方法5 1.2.1逻辑代数5

1.2.2逻辑函数的表示方法及相互转换5 1.3逻辑函数的公式化简法6 1.3.1逻辑函数的不同表达方式6 1.3.2逻辑函数的公式化简法6 1.4逻辑函数的卡诺图化简法7 1.4.1逻辑函数的最小项及其表达式7 1.4.2逻辑函数的卡诺图表示法7 1.4.3用卡诺图化简逻辑函数8 2逻辑门电路8 2.1 导读8 2.1逻辑门电路9 2.1.1三种基本门电路9 2.1.2 DTL与非门10 2.2 TTL逻辑门电路10 2.2.1 TTL与非门的电路结构10 2.2.2 TTL与非门的工作原理10 2.3 其他类型的TTL门电路11 2.3.1集电极开路与非门(OC门)11 2.3.2三态门(TSL门)11 2.4多余输入端的处理12 3组合逻辑13 3.1 导读13 3.2组合逻辑电路基础13 3.2.1组合逻辑电路的基本概念13 3.2.2组合逻辑电路的分析方法14 3.2.3组合逻辑电路的设计方法14 3.3常用组合逻辑建模14 3.3.1编码器14 3.3.2 译码器和数据分配器16 3.3.3数据选择器18 3.3.4数值比较器19 3.3.5加法器(减法器)20 3.3.6乘法器22 3.3.7除法器24 4触发器24 4.1导读24 4.2触发器的电路结构及工作原理24 4.2.1基本RS触发器(异步)24 4.2.2同步RS触发器25 4.2.3主从触发器和边沿触发器26 4.3触发器的功能分类及相互转换27 4.3.1触发器的功能分类27 4.3.2不同类型时钟触发器的相互转换28 5时序逻辑电路29

基于Matlab的数字锁相环的仿真设计

基于Matlab的数字锁相环的仿真设计 摘要:锁相环是一个能够跟踪输入信号相位变化的闭环自动跟踪系统。它广泛应用于无线电的各个领域,并且,现在已成为通信、雷达、导航、电子仪器等设备中不可缺少的一部分。然而由于锁相环设计的复杂性,用SPICE对锁相环进行仿真,数据量大,仿真时间长,而且需进行多次仿真以提取设计参数,设计周期长。本文借助于Matlab中Simulink仿真软件的灵活性、直观性,在Simulink 中利用仿真模块搭建了全数字锁相环的仿真模型。先借助模拟锁相环直观形象、易于理解的特点,通过锁相环在频率合成方面的应用,先对模拟锁相环进行了仿真,对锁相环的工作原理进行了形象的说明。在模拟锁相环的基础上,重新利用仿真模块搭建了全数字锁相环的仿真模型,通过仿真达到了设计的目的,验证了此全数字锁相环完全能达到模拟锁相环的各项功能要求。 关键词:锁相环,压控振荡器,锁定,Simulink,频率合成,仿真模块 1引言 1932年法国的H.de Bellescize提出同步捡波的理论,首次公开发表了对锁相环路的描述。到1947年,锁相环路第一次应用于电视接收机的水平和垂直扫描的同步。到70年代,随着集成电路技术的发展,逐渐出现集成的环路部件、通用单片集成锁相环路以及多种专用集成锁相环路,锁相环路逐渐变成了一个成本低、使用简便的多功能组件,为锁相技术在更广泛的领域应用提供了条件。锁相环独特的优良性能使其得到了广泛的应用,其被普遍应用于调制解调、频率合成、电视机彩色副载波提取、FM立体声解码等。随着数字技术的发展,相应出现了各种数字锁相环,它们在数字信号传输的载波同步、位同步、相干解调等方面发挥了重要的作用。而Matlab强大的数据处理和图形显示功能以及简单易学的语言形式使Matlab在工程领域得到了非常广泛的应用,特别是在系统建模与仿真方面,Matlab已成为应用最广泛的动态系统仿真软件。利用MATLAB建模可以快速地对锁相环进行仿真进而缩短开发时间。 1.1选题背景与意义 Matlab是英文MATrix LABoratory(矩阵实验室)的缩写。1980年,时任美国新墨西哥大学计算机系主任的Cleve Moler教授在给学生讲授线性代数课程时,为使学生从繁重的数值计算中解放出来,用FORTRAN语言为学生编写了方便使用Linpack和Eispack的接口程序并命名为MATLAB,这便是MATLAB的雏形。经过几年的校际流

相关主题
文本预览
相关文档 最新文档