备战2018年高考数学解答题核心考点答题模板与模拟训练 专题1 三角函数与解三角形
- 格式:doc
- 大小:707.50 KB
- 文档页数:11
专题1.1 三角篇高考考纲对于解三角形的要求为:掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 综合近两年的高考试卷可以看出:三角形中的三角函数问题已成为近几年的高考热点.不仅选择题中时有出现,而且解答题也经常出现,故这部分知识应引起充分的重视.【3年高考试题回顾】1.【2015新课标2】ABC ∆中,D 是BC 上的点,AD 平分BAC ∠,ABD ∆面积是ADC ∆面积的2倍. (Ⅰ) 求sin sin BC∠∠;(Ⅱ)若1AD =,2DC =,求BD 和AC 的长.2.【2016新课标1】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ;(II )若c ABC △=的面积为2,求ABC △的周长.【答案】(I )πC 3=;(II )5. 【解析】试题分析:(I )利用正弦定理进行边角代换,化简即可求角C ;(II )根据1sin C 2ab =.及πC 3=可得6ab =.再利用余弦定理可得 ()225a b +=,从而可得ΑΒC △的周长为5. 试题解析:(I )由已知及正弦定理得()2cos sin cos sin cos sin C ΑΒΒΑC +=,由已知及余弦定理得,222cos 7a b ab C +-=. 故2213a b +=,从而()225a b +=.所以ΑΒC △的周长为5.【考点】正弦定理、余弦定理及三角形面积公式【名师点睛】三角形中的三角变换常用到诱导公式,()()sin sin ,cos cos ,A B C A B C +=+=-()tan tan A B C +=-,这是常用的结论,另外利用正弦定理或余弦定理处理条件中含有边或角的等式,常考虑对其实施“边化角”或“角化边”.3.【2017新课标1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【解析】(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=.3由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.4.【2017新课标2】ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin 2BA C +=. (1)求cosB ;(2)若6a c +=,ABC △的面积为2,求b . 【答案】(1)15cos 17B =;(2)2b =.“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.5.【2017新课标3】ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A +=,a ,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC,求△ABD 的面积.【答案】(1)4c = ;(2【解析】试题分析:(1)由题意首先求得2π3A =,然后利用余弦定理列方程,边长取方程的正实数根可得4c =; (2)利用题意首先求得ABD △的面积与ACD △的面积的比值,然后结合ABC △的面积可求得ABD △的.5【考点】余弦定理解三角形;三角形的面积公式【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【3年高考试题分析】正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查: 1.边和角的计算. 2.三角形形状的判断. 3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.【必备基础知识融合】1.正弦定理和余弦定理2.三角形中的常用公式及变式(1)三角形面积公式S =12bc sin A=12ac sin B =12ab sin C=abc 4R =12(a +b +c )r .其中R ,r 分别为三角形外接圆、内切圆半径.(2)A +B +C =π,则A =π-(B +C ),A 2=π2-B +C2,从而sin A =sin(B +C ),cos A =-cos(B +C ),tan A=-tan(B +C );sin A 2=cos B +C 2,cos A 2=sin B +C 2,tan A2=1tanB +C2.tan A +tan B +tan C =tan A tan B tan C .(3)若三角形三边a ,b ,c 成等差数列,则2b =a +c ⇔2sin B =sin A +sin C ⇔2sin B 2=cos A -C 2⇔2cosA +C2=cosA -C2⇔tan A 2tan C 2=13. (4)在△ABC 中,a =b cos C +c cos B ,b =a cos C +c cos A ,c =a cos B +b cos A .(此定理称作“射影定理”,亦称第一余弦定理)【解题方法规律技巧】典例1:在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos B cos C =-b2a +c .(1)求B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.【规律总结】7在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角的关系(注意应用A +B +C =π这个结论)或边的关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式一般不要约掉,而要移项提取公因式,否则有可能漏掉一种形状.同时一定要注意解是否唯一,并注重挖掘隐含条件.如: (1)A +B +C =π.(2)在三角形中大边对大角,反之亦然.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)在△ABC 中,A ,B ,C 成等差数列的充要条件是B =60°.典例2:在△ABC 中,A 、B 、C 是三角形的三个内角,a 、b 、c 是三个内角对应的三边,已知b 2+c 2=a 2+bc. ①求角A 的大小;②若sinBsinC =34,试判断△ABC 的形状,并说明理由.【规律总结】应用正、余弦定理解斜三角形应用题的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解; (4)检验:检验上述所求得的解是否符合实际,从而得出实际问题的解.典例3:设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sinBcosA =sinAcosC +cosAsinC.(1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长.【规律总结】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.典例4:已知a , b , c 分别为ABC 三个内角A , B , C 的对边, cos sin 0a C C b c +--=. (Ⅰ)求A 的大小;(Ⅱ)若ABC 为锐角三角形,且a =22b c +的取值范围.解析:(Ⅰ)由cos sin 0a C C b c --=,得: sin cos cos sin sin 0A C A C B C --=,9典例5:在ABC ∆, 3B π=, 2BC =(1)若3AC =,求AB 的长(2)若点D 在边AB 上, AD DC =, DE AC ⊥, E 为垂足,2ED =,求角A 的值.解:(1)设AB x =,则由余弦定理有: 2222cos AC AB AC AB AC B =+-⋅即2223222cos60x x =+-⋅︒【规律总结】(1)如果式子中含有角的余弦或边的二次式,要考虑用余弦定理.(2)如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理.(3)以上特征都不明显时,要考虑两个定理都有可能用到.(4)解题中一定要注意三角形内角和定理的应用及角的范围限制.(5)遇见中点时要想到与向量的加法运算结合;(6)遇见角平分线时要想到角平分线定理.(7)在三角形中,大边对大角,正线大则边大,自然角就大.(8)解三角形的实际应用问题的求解关键是把测量目标纳入到一个可解三角形中,然后利用正、余弦定理求解.典例6:某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20 n mile的A处,并以30 n mile/h的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v n mile/h的航行速度匀速行驶,经过t h与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30 n mile/h,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解法一:(1)设相遇时小艇航行的距离为S n mile,则11S =900t 2+400-2·30t ·20·cos(90°-30°)=900t 2-600t +400=900⎝ ⎛⎭⎪⎫t -132+300, 故当t =13时,S min =103,此时v =10313=30 3.即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小. (2)设小艇与轮船在B 处相遇,则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°),故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t≤0,解得t ≥23.又t =23时,v =30.故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20,故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.【规律总结】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也常用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.【归纳常用万能模板】【引例】(2016·全国Ⅰ卷)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.规范解答(1)由已知及正弦定理得132cos C (sin A ·cos B +sin B ·cos A )=sin C , 1分得分点①即2cos C ·sin(A +B )=sin C .3分得分点② 因为A +B +C =π,A ,B ,C ∈(0,π), 所以sin(A +B )=sin C >0,所以2cos C =1,cos C =12.5分得分点③所以C =π3.6分得分点④(2)由余弦定理及C =π3得7=a 2+b 2-2ab ·12,8分得分点⑤即(a +b )2-3ab =7,又S =12ab ·sin C =34ab =332,所以ab =6,10分得分点⑥所以(a +b )2-18=7,a +b =5,11分得分点⑦ 所以△ABC 的周长为a +b +c =5+7. 12分得分点⑧ 【解答细节突破】1.牢记公式,正确求解:在三角函数及解三角形类解答题中,通常涉及三角恒等变换公式、诱导公式及正弦定理和余弦定理,这些公式和定理是解决问题的关键,因此要牢记公式和定理.如本题第(2)问要应用到余弦定理及三角形的面积公式.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上求解.3.写全得分关键:在三角函数及解三角形类解答题中,应注意解题中的关键点,有则给分,无则不给分,所以在解答题时一定要写清得分关键点,如第(1)问中,没有将正弦定理表示出来的过程(即得分点①),则不得分;第(2)问中没有将面积表示出来则不得分,只有将面积转化为得分点⑦才得分. 【解题程序展示】第一步:利用正弦定理将已知的边角关系式转化为角的关系式; 第二步:利用三角恒等变换化简关系式; 第三步:求C 的余弦值,得角C 的值.第四步:利用三角形的面积为332,求出ab 的值;第五步:根据c =7,利用余弦定理列出a ,b 的关系式; 第六步:求(a +b )2的值,进而求△ABC 的周长.【易错易混温馨提醒】一、多解问题的取舍容易忽视:易错1:①如图C ∆AB 中,已知点D 在C B 边上,且D C 0A ⋅A =,sin C ∠BA =,AB =D B =(1)求D A 的长; (2)求cosC .(1)若的面积为,求;(2)若,求.15【答案】(1)(2)或.二、由22sincos 1(ααα+=为三角形内角),知sin α求cos α时的正负问题容易出错:易错2:如图,在ABC ∆中, 3B π∠=, D 为边BC 上的点, E 为AD 上的点,且8AE =,AC =4CED π∠=.(1)求CE 的长;(2)若5CD =,求cos DAB ∠的值.【答案】(1)CE =21(2)在CDE ∆中,由正弦定理得sin sin CE CDCDE CED=∠∠,5sin 4π=所以5sin 442CDE π∠===, 所以4sin 5CDE ∠=. 因为点D 在边BC 上,所以3CDE B π∠>∠=,而45<, 所以CDE ∠只能为钝角, 所以3cos 5CDE ∠=-,17所以cos cos cos cos sin sin 333DAB CDE CDE CDE πππ⎛⎫∠=∠-=∠+∠ ⎪⎝⎭314525=-⨯+=.三、已知内角为锐时,易知转化为余弦值大于0,但容易忽视小于1,钝角亦是如此,余弦应该是(-1,0).在中,角、、所对的边分别是、、,已知,且.(1)当,时,求、的值;(2)若角为锐角,求的取值范围【答案】(1)(2)∴,又由可得所以.四、注意求值平方后开方时取正负的问题:在ABC ∆中,角,,A B C 的对边分别为,,a b c,且4sin b A =.(1)求sin B 的值;(2)若,,a b c 成等差数列,且公差大于0,求cos cos A C -的值.【答案】(1)sin B =(2)cos cos A C -=.(Ⅱ)由已知和正弦定理以及(Ⅰ)得sin sin A C +=① 设cos cos A C x -=, ② ①2+②2,得2722cos()4A C x -+=+. ③ 7分 又a b c <<,A B C <<,所以00090B <<,cos cos A C >, 故3cos()cos 4A CB +=-=-. 10分 代入③式得274x =.因此cos cos A C -=. 五、锐角三角形内角范围的考虑要全面,需满足三个内角均为锐角:易错5:在ABC ∆ 中,角,,A B C 所对的边分别为,,a b c ,,且2222sin 2cos cos A cos B AsinB C ++=.(1)求角C 的值;(1)若ABC ∆为锐角三角形,且c =a b -的取值范围.19【答案】(1)3C π=(2)()1,1-(2)由(1)知 2233A B B A ππ+==-, 由sin sin sin a b cA B C==得, 2,2a sinA b sinB ==,22222)233a b sinA sinB sinA sin A sinA sin A ππ⎛⎫⎛⎫-=-=--=-=- ⎪ ⎪⎝⎭⎝⎭,∵ABC ∆为锐角三角形, 02B π<<,又∵23B A π=-, ∴,62A ππ⎛⎫∈⎪⎝⎭, ∴,366A πππ⎛⎫-∈- ⎪⎝⎭, ∴()2sin 1,13A π⎛⎫-∈- ⎪⎝⎭,即a b -的取值范围为()1,1-. 【新题好题提升能力】1.[2016·山西四校一联] 设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2-c 2)sin A =ab (sin C +2sin B ),a =1. (1)求角A 的大小;(2)求△ABC 的周长的取值范围.2. 在ABC ∆中,点D 在BC 边上,AD 平分,6,4BAC AB AD AC ∠===. (1)利用正弦定理证明: AB BDAC DC=; (2)求BC 的长.【答案】(1)证明见解析;(2)5BC =.213. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC 的最小值. 【解析】()I 由题意知 化简得()2sin cos sin cos sin sin A B B A A B +=+, 即()2sin sin sin A B A B +=+. 因为A B C π++=, 所以()()sin sin sin A B C C π+=-=. 从而sin sin =2sin A B C +. 由正弦定理得2a b c +=.()∏由()I 知所以当且仅当a b =时,等号成立.故 cos C 的最小值为 4.四边形ABCD C 互补,且AB =1,BC =3,CD =DA =2.(1)求角C 的大小和线段BD 的长度;(2)求四边形ABCD 的面积.5.(2017·贵州适应性考试)已知△ABC 的三内角A ,B ,C 所对的边分别是a ,b ,c ,向量m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n .(1)求角B 的大小;(2)若b =3,求a +c 的范围.解 (1)∵m =(cos B ,cos C ),n =(2a +c ,b ),且m ⊥n ,∴(2a +c )cos B +b cos C =0,∴cos B (2sin A +sin C )+sin B cos C =0,∴2cos B sin A +cos B sin C +sin B cos C =0.即2cos B sin A =-sin(B +C )=-sin A .∵A ∈(0,π),∴sin A ≠0,∴cos B =-12. ∵0<B <π,∴B =2π3. (2)由余弦定理得23b 2=a 2+c 2-2ac cos 23π=a 2+c 2+ac =(a +c )2-ac ≥(a +c )2-⎝ ⎛⎭⎪⎫a +c 22=34(a +c )2,当且仅当a =c 时取等号. ∴(a +c )2≤4,故a +c ≤2.又a +c >b =3,∴a +c ∈(3,2].即a +c 的取值范围是(3,2].6.在中,角所对的边分别为,且,. (Ⅰ)若,求角的正弦值及的面积; (Ⅱ)若在线段上,且,,求的长.【答案】(I ),面积为;(II ).即,解得,则,所以, 在直角中,.7.已知ABC ∆中,角,,A B C 所对的边分别为,,a b c,若5,402c b a A ==-=.(1)求a 的值;(2)若B A λ=,求λ的值.【答案】(1)32a =(2)2。
三角函数与平面向量1.【2018年理数全国卷II】在中,,,,则A. B. C. D.【答案】A点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【2018年理天津卷】将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【解析】分析:由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:.本题选择A选项. 点睛:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力.3.【2018年浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】 3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.4.【2018年理北京卷】设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.【答案】【解析】分析:根据题意取最大值,根据余弦函数取最大值条件解得ω,进而确定其最小值.详解:因为对任意的实数x都成立,所以取最大值,所以,因为,所以当时,ω取最小值为. 点睛:函数的性质(1).(2)周期(3)由求对称轴,最大值对应自变量满足,最小值对应自变量满足,(4)由求增区间; 由求减区间.5.【2018年全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。
典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2.(1)若f (α2)=-34,α∈(0,π2),求cos α的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算辅助角公式得f (x )――→对称性周期性求出ω()2f α−−−−和差公式cos α (2)y =f (x )―――→图象变换y =g (x )―――→整体思想g (x )的递增区间评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π3)时没有考虑范围扣1分;3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.典例2 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 1.第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.2.第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a b, (1)求B 的大小;(2)若a +c =57,b =7,求AB →·BC →的值. 解 (1)∵3cos C +sin C =3ab, 由正弦定理可得:3cos C +sin C =3sin Asin B, ∴3cos C sin B +sin B sin C =3sin A , 3cos C sin B +sin B sin C =3sin(B +C )3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0<B <π,∴B =π3.(2)由余弦定理可得:2ac cos B =a 2+c 2-b 2=(a +c )2-2ac -b 2, 整理得:3ac =(a +c )2-b 2, 即:3ac =175-49. ∴ac =42,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|·cos B =-ac ·cos B =-21.典例3 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图 数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征―――――→选定求和方法分组法及裂项法、公式法求和评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练3 已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n ·a n +1,n ∈N *,T n 为数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)a 21=S 1=a 1,∵a 1≠0,∴a 1=1. ∵a 22=S 3=a 1+a 2+a 3,∴(1+d )2=3+3d ,解得d =-1或2.当d =-1时,a 2=0不满足条件,舍去,∴d =2. ∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. ①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n +8)(2n +1)n =2n +8n +17恒成立即可.∵2n +8n≥8,等号在n =2时取得,∴λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n -8)(2n +1)n =2n -8n -15恒成立即可.∵2n -8n 是随n 的增大而增大,∴n =1时,2n -8n 取得最小值-6,∴λ<-21.综上①②可得λ的取值范围是(-∞,-21).典例4 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 中点M ―――――→考虑平行关系长度关系 平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面P AD (2)平面P AD ⊥平面ABCD P A ⊥AD ―――→面面垂直的性质P A ⊥平面ABCD ―→P A ⊥DE ――――――――→正方形ABCD 中E 、H 为AB 、BC 中点DE ⊥AH ――――→线面垂直的判定定理DE ⊥平面P AH ――――→面面垂直的判定定理平面P AH ⊥平面DEF评分细则 1.第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面P AD同样给分;2.第(2)问证明P A⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC中点得DE⊥AH不扣分;证明DE⊥平面P AH只要写出DE⊥AH,DE⊥P A,缺少条件不扣分.跟踪演练4(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB . 又OC ⊂平面MOC , 所以平面MOC ⊥平面VAB .(3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33.典例5 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)求证:DE⊥平面ACD;(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.审题路线图(1)(2)CA、CB、CD两两垂直―→建立空间直角坐标系―→写各点坐标―→求平面AED与平面ABE的法向量―→将所求二面角转化为两个向量的夹角评分细则 1.第(1)问中证明DC ⊥BC 和AC ⊥BC 各给1分;证明DE ∥BC 给1分;证明BC ⊥平面ACD 时缺少AC ∩DC =C ,AC ,DC ⊂平面ACD ,不扣分.2.第(2)问中建系给1分;两个法向量求出1个给2分;没有最后结论扣1分;法向量取其他形式同样给分.跟踪演练5 如图,在几何体ABCDQP 中,AD ⊥平面ABPQ ,AB ⊥AQ ,AB ∥CD ∥PQ ,CD =AD =AQ =PQ =12AB ,(1)证明:平面APD ⊥平面BDP ; (2)求二面角A —BP —C 的正弦值.方法一 (1)证明 设AQ =QP =1,则AB =2, 易求AP =BP =2, 由勾股定理可得BP ⊥AP ,而AD ⊥平面ABPQ ,所以BP ⊥DA , 又AP ∩AD =A ,故BP ⊥平面APD .而BP ⊂平面BDP ,所以平面APD ⊥平面BDP .(2)解 设M 、N 分别为AB 、PB 的中点,连接CM ,MN ,CN .易得CM ⊥平面APB ,MN ⊥PB , 故∠CNM 为二面角A —BP —C 的平面角. 结合(1)计算可得,CM ⊥MN ,CM =1, MN =22,CN =62, 于是在Rt △CMN 中,sin ∠CNM =63. 所以二面角A —BP —C 的正弦值为63. 方法二 (1)证明 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =2,依题意得A (0,0,0),B (0,2,0),C (0,1,1),D (0,0,1), Q (1,0,0), P (1,1,0),BP →=(1,-1,0),AP →=(1,1,0),AD →=(0,0,1),那么BP →·AP →=0,BP →·AD →=0,因此,BP ⊥AP ,BP ⊥AD .又AP ∩AD =A ,故BP ⊥平面APD , 而BP ⊂平面BDP , 所以平面APD ⊥平面BDP .(2)解 设平面CPB 的一个法向量为n =(x ,y ,z ), 而BC →=(0,-1,1),则BP →·n =0,BC →·n =0, 那么x -y =0,-y +z =0,令x =1可得n =(1,1,1). 又由题设,平面ABP 的一个法向量为m =(0,0,1). 所以,cos 〈m ,n 〉=m·n|m||n |=33, 可得sin 〈m ,n 〉=63. 所以二面角A —BP —C 的正弦值为63.典例6 (12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一块,其综合指标为m ,从长势等级不是一级的人工种植地中任取一块,其综合指标为n ,记随机变量X =m -n ,求X 的分布列及其均值. 审题路线图 (1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求均值评分细则 1.第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;2.第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率时每个式子给1分;分布列正确写出给1分.跟踪训练6(2016·课标全国乙)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元). 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元). 可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.典例7 (12分)(2015·山东)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.审题路线图 (1)椭圆C上点满足条件―→求出a 222e a b c =+已知离心率 基本量法求得椭圆C 方程(2)①P 在C 上,Q 在E 上――→P 、Q 共线设坐标代入方程―→求出|OQ ||QP |. ②直线y =kx +m 和椭圆E 方程联立――→通法研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB关系得S △ABQ 最大值评分细则 1.第(1)问中,求a 2-c 2=b 2关系式直接得b =1,扣1分;2.第(2)问中,求|OQ ||OP |时,给出P ,Q 坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.跟踪演练7 已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点(2,22).(1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b 2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2,故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,即m 2-4k 24(m 2-1)=k 2. 又m ≠0,所以k 2=14,即k =±12.由于直线OP ,OQ 的斜率存在,且Δ>0, 得0<m 2<2,且m 2≠1,设d 为点O 到直线l 的距离,则d =|2m |5,|PQ |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=5(2-m 2), 所以S =12|PQ |d =m 2(2-m 2)<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).典例8 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎨⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎪⎨⎪⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3, P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0. ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4,由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.典例9 (12分)(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.(2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g(a)=ln a+a-1给2分;(5)通过分类讨论得出a的范围,给2分.跟踪演练9已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a的取值范围;(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.解(1)由f(0)=1,f(1)=0,得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]e x,f′(x)=[ax2+(a-1)x-a]e x.依题意对任意x∈(0,1),有f′(x)<0.当a>0时,因为二次函数f(x)=ax2+(a-1)x-a的图象开口向上,而f′(0)=-a<0,所以有f′(1)=(a-1)e<0,即0<a<1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x .(ⅰ)当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.(ⅱ)当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x <0,g (x )在x =0处取得最大值g (0)=2, 在x =1取得最小值g (1)=0.(ⅲ)当0<a <1时,由g ′(x )=0得x =1-a2a>0.①若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.②若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值121()2e ,2aaa g a a--=在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.典例10 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)求出导数给1分;(2)讨论时漏掉m=0扣1分;两种情况只讨论正确一种给2分;(3)确定f′(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x=0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分.跟踪演练10已知函数f(x)=ln x+1x.(1)求函数f(x)的单调区间和极值;(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;(3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1) (n ∈N *,n ≥2).(1)解 f ′(x )=-ln xx2,由f ′(x )=0⇒x =1,列表如下:因此函数f (x )的增区间为(0,1),减区间为(1,+∞), 极大值f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ⇔ln (x -1)+1x -1≤k ⇔f (x -1)≤k ,所以f (x -1)max ≤k ,∴k ≥1,(3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1⇒ln x x ≤1-1x ,当且仅当x =1时取等号. 令x =n 2 (n ∈N *,n ≥2). 则ln n 2n 2<1-1n 2⇒ln n n 2<12(1-1n2)<12(1-1n (n +1))=12(1-1n +1n +1)(n ≥2), ln 222+ln 332+…+ln n n2 <12(1-12+13)+12(1-13+14)+…+12(1-1n +1n +1) =12(n -1+1n +1-12)=2n 2-n -14(n +1).。
高考三角函数重点题型解析及常见试题(附参考答案)三角函数的主要考点是:三角函数的概念和性质(单调性,周期性,奇偶性,最值),三角函数的图象,三角恒等变换(主要是求值),三角函数模型的应用,正余弦定理及其应用,平面向量的基本问题及其应用.题型1 三角函数的最值:最值是三角函数最为重要的内容之一,其主要方法是利用正余弦函数的有界性,通过三角换元或者是其它的三角恒等变换转化问题.例1 若x 是三角形的最小内角,则函数sin cos sin cos y x x x x =++的最大值是( ) A .1-BC.12-D.12+分析:三角形的最小内角是不大于3π的,而()2sin cos 12sin cos x x x x +=+,换元解决.解析:由03x π<≤,令sin cos sin(),4t x x x π=++而74412x πππ<+≤,得1t <≤又212sin cos t x x =+,得21sin cos 2t x x -=,得2211(1)122t y t t -=+=+-,有2111022y -+<≤=.选择答案D . 点评:涉及到sin cos x x ±与sin cos x x 的问题时,通常用换元解决.解法二:1sin cos sin cos sin 242y x x x x x x π⎛⎫=++=++ ⎪⎝⎭,当4x π=时,max 12y =+,选D 。
例2.已知函数2()2sin cos 2cos f x a x x b x =+.,且(0)8,()126f f π==.(1)求实数a ,b 的值;(2)求函数)(x f 的最大值及取得最大值时x 的值.分析:待定系数求a ,b ;然后用倍角公式和降幂公式转化问题. 解析:函数)(x f 可化为()sin 2cos 2f x a x b x b =++.(1)由(0)8f = ,()126f π=可得(0)28f b ==,3()12622f a b π=+= ,所以4b =,a =(2)()24cos 248sin(2)46f x x x x π=++=++,故当2262x k πππ+=+即()6x k k Z ππ=+∈时,函数()f x 取得最大值为12.点评:结论()sin cos a b θθθϕ+=+是三角函数中的一个重要公式,它在解决三角函数的图象、单调性、最值、周期以及化简求值恒等式的证明中有着广泛应用,是实现转化的工具,是联系三角函数问题间的一条纽带,是三角函数部分高考命题的重点内容.题型2 三角函数的图象:三角函数图象从“形”上反应了三角函数的性质,一直是高考所重点考查的问题之一.例3.(2009年福建省理科数学高考样卷第8题)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位分析:先统一函数名称,在根据平移的法则解决. 解析:函数π55cos 2sin 2sin 2sin 2332612y x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=++=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故要将函数sin 2y x =的图象向左平移5π12个长度单位,选择答案A .。
任课老师:关sir该题是必须要拿下分数的题目必须熟悉全部题型三角函数大题从题干分类可以分成以下几类最常出题型:题型一:已知函数&*@#$%)(=x f ,从会化简三角函数开始,近年高考出现频率不高,但同样的重视和掌握。
1、(本小题满分12分)(A02)已知函数23cos 3sin cos )(2+-=x x x x f . (1)求)(x f 的单调递增区间; (2)在ABC ∆中,A 为锐角且23)(=A f ,AD AC AB 3=+,3=AB ,2=AD ,求BAD ∠sin 的值.2、(本小题满分12分)(B09)已知函数21)3cos(cos 2)(--•=πx x x f .(1)求)(x f 的最小正周期;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若21)(=C f ,32=c ,且ABC ∆的面积为32,求ABC ∆的周长.(2C22)已知函数x x x x f sin 2sin 22cos )(2++=. (1)将)2(x f 的图像向右平移6π个单位长度得到函数)(x g 的图像,若]2,12[ππ∈x ,求函数)(x g 的值域;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且满足13)(+=A f ,)2,0(π∈A ,32=a ,2=b ,求ABC ∆的面积.4、(本小题满分12分)已知函数 (1)求最小正周期;(2)求在区间上的最大值和最小值.5、(本小题满分12分)已知13sin 322sin )(2++-=x x x f . (1)求)(x f 的最小正周期及其单调递增区间; (2)当]6,6[ππ-∈x 时,求)(x f 的值域.2()(sin cos )cos 2f x x x x =++()f x ()f x [0,]2π已知函数()2sin 2x f x x =-. (1)求()f x 的最小正周期;(2)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的最小值.7、(本小题满分12分) 已知函数2()cos(2)cos23f x x x π=--(x R ∈). (1)求函数()f x 的最小正周期及单调递增区间;(2) ∆ABC 内角A B C 、、的对边长分别为a b c 、、,若()1,2B f b == c =且,a b >试求角B 和角C.题型二:已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,从边角关系入手,通过正弦余弦定理化简,近年高考出现频率很高,必须重视和掌握。
专题01三角函数与解三角形核心考点一三角函数的图象与性质三角函数的图象与性质是高考的热点,尤其是三角函数的奇偶性、周期性与单调性及对称性等性质.在考查时经常与诱导公式、三角恒等变换等相结合,解题时要充分利用三角函数的图象及性质,利用数形结合、函数与方程思想等进行求解.【经典示例】 (1)求函数()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)个单位,得到函数()y g x =答题模板第一步,化简:三角函数式的化简,一般化成si (n )y A x h ωϕ++=的形式,即化为“一角、一次、一函数”的形式.第二步,整体代换:将x ωϕ+看作一个整体,利用sin ,cos y x y x ==的性质确定条件. 第三步,求解:利用x ωϕ+的范围求条件解得函数si (n )y A x h ωϕ++=的性质,写出结果. 第四步,反思:反思回顾,查看关键点、易错点,对结果进行估算,检查规范性.【满分答案】(1sin 2cos 22x x =-+所以()f x(2)由(1把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)【解题技巧】此类问题通常先通过三角恒等变换化简函数解析式为si (n )y A x B ωϕ++=的形式,再结合正弦函数sin y x =的性质研究其相关性质. (1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”; ②求形如sin()y A x ωϕ=+或cos()y A x ωϕ=+(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)函数图象的平移变换解题策略:①对函数sin y x =,sin()y A x ωϕ=+或cos()y A x ωϕ=+的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为x ωϕ±. ②注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.模拟训练1.已知函数23()cos cos 2f x x x x =++. (1)当[,]63x ππ∈-时,求函数()y f x =的值域;(2)已知0ω>,函数()()212xg x f ωπ=+,若函数()g x 在区间[,]362ππ-上是增函数,求ω的最大值.【答案】(1)3[,3]2;(2)1.(2)()()sin()22123xg x f x ωωππ=+=++,当[,]36x 2ππ∈-时,2[,]33363x ωωωπππππ+∈-++,∵()g x 在区间[,]362ππ-上是增函数,且0ω>, ∴2[,][2,2],336322k k k ωωππππππ-++⊆-+π+π∈Z , 即22,3322,632k k k k ωωπππ⎧-+≥-+π∈⎪⎪⎨πππ⎪+≤+π∈⎪⎩Z Z ,化简得53,4112,k k k k ωω⎧≤-∈⎪⎨⎪≤+∈⎩Z Z , ∵0ω>, ∴15,1212k k -<<∈Z , ∴0k =,解得1ω≤, 因此,ω的最大值为1.核心考点二解三角形解三角形是高考的热点,尤其是已知边角求其他边角,判断三角形的形状,求三角形的面积考查比较频繁,题目常常以文字加式子描述或以三角形图形为背景,结合所给平面图形的几何性质、正弦定理、余弦定理进行命题.解题时要掌握正、余弦定理及其三角恒等变换的灵活运用,注意函数与方程思想、转化与化归思想在解题中的应用.【经典示例】在ABC △中,,,a b c 分别是角,,A B C 的对边,()2cos cos 0b c A a C --=. (1)求角A 的大小;(2)若2a =,求ABC △的面积S 的最大值.答题模板第一步,定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向. 第二步,定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化. 第三步,求结果.第四步,再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形. 【满分答案】(1)因为()2cos cos 0b c A a C --=, 所以2cos cos cos 0b A c A a C --=,由正弦定理得2sin cos sin cos sin cos 0B A C A A C --=,即()2sin cos sin 0B A A C -+=, 又πA C B +=-, 所以()sin sin A C B +=, 所以()sin 2cos 10B A -=, 在ABC △中,sin 0B ≠, 所以2cos 10A -=,即1cos 2A =, 由()0,πA ∈得π3A =.(2)由1cos 2A =,得sin A =. 由余弦定理得:222222cos a b c bc A b c bc =+-=+-,∴42bc bc bc ≥-=,∴1sin 42S bc A ==≤=,当且仅当b c =时“=”成立,此时ABC △为等边三角形,∴ABC △的面积S【解题技巧】(1)利用正、余弦定理求边和角的方法:①根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.②选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.③在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (2)求三角形面积的方法:①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.模拟训练2.在锐角ABC △中,角,,A B C 的对边分别为,,a b c ,已知ππsin 2)cos()44B B B =+-. (1)求角B 的大小;(2)若1b =,ABC △的面积为2,求ABC △的周长.【答案】(1)π6B =;(2)3+因为cos 20B ≠,所以tan 2B = 因为π02B <<, 所以π6B =. (2)由余弦定理2222cos b a c ac B =+-,得2212cos a c ac B =+-,所以221a c =+,因为ABC △所以1πsin 26ac =,即ac =, 所以227a c +=,所以22()7(2a c +=+=,所以2a c +=所以3a b c ++=ABC △的周长为3核心考点三三角函数与解三角形的综合问题高考中常将解三角形与三角函数的图象与性质两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等,其中常涉及三角恒等变换、向量等,且以此为出发点考查三角函数的图象与性质或解三角形,也是解决三角函数与解三角形问题的基础,必须熟练掌握.【经典示例】已知向量()sin ,cos x x =u ,()6sin cos ,7sin 2cos x x x x =+-v ,设函数()f x =⋅u v .将函数()f x ()g x 的图象.(1()g x 的值域;(2)已知,,a b c 分别为ABC △中角,,A B C 的对边,且满足()2g A =a =2b =,求ABC △的面积.答题模板第一步,化条件:根据向量运算将向量式转化为三角式.第二步,化三角式:三角函数式的化简,一般化成si (n )y A x h ωϕ++=的形式,即化为“一角、一次、一函数”的形式.第三步,求解:利用x ωϕ+的范围及条件解得函数si (n )y A x h ωϕ++=的性质,写出结果. 第四步,代换:利用角的关系与三角函数式进行转化代换并化简结果. 第五步,选工具:根据条件和所求,合理选择正、余弦定理求出最终结果. 第六步,反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性.【满分答案】(1)由题意,得()f x =⋅u v ()sin 6sin cos x x x =++()cos 7sin 2cos x x x -226sin 2cos 8sin cos x x x x =-+4sin 24cos 22x x =-+所以()2,2g x ⎡⎤∈-⎣⎦,所以函数()g x 的值域为2⎡⎤-⎣⎦.(2)因为()2g A =,a =2b =,所以4c =.所以ABC △的面积【解题技巧】此类问题是将向量、三角恒等变换、三角函数的图象与性质、解三角形综合命题进行考查,解题时,只需从条件出发,由向量转化为三角函数,再转化为解三角形问题,其间只需熟练掌握向量的简单计算,三角函数的图象与性质的求解方法以及解三角形的相关知识即可顺利解决.模拟训练3.已知函数2()cos22sin 2sin f x x x x =++. (1)将函数(2)f x 的图象向右平移π6个单位可得到函数()g x 的图象,若ππ[,]122x ∈,求函数()g x 的值域;(2)已知,,a b c 分别为锐角ABC △中角,,A B C 的对边,且满足2,()12sin b f A b A ===,求ABC △的面积.【答案】(1)[0,3];(2.∴22[,]363x πππ-∈-, 当12x π=时,min ()0g x =;当512x =π时,max ()3g x =. ∴函数()g x 的值域为[0,3].(22sin b A =2sin sin A B A =.∴sin B =, ∵02B π<<, ∴π3B =,由()1f A =得sin 2A =,从而4A π=,由正弦定理得:a =∴11sin 222ABC S ab C ===△核心考点四三角函数与解三角形的实际应用三角函数与解三角形模型在实际中的应用体现在两个方面:一是已知函数模型,利用三角函数或解三角形的有关知识解决问题,其关键是准确理解自变量的意义及自变量与函数之间的对应法则,二是把实际问题抽象转化成数学问题,建立三角函数或解三角形模型,再利用三角函数或解三角形的有关知识解决问题,其关键是建模.【经典示例】如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角60︒,已知山高为.(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?答题模板第一步,分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);第二步,建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解三角形的数学模型;第三步,求解:利用正弦定理、余弦定理解三角形,求得数学模型的解; 第四步,检验:检验所求的解是否符合实际问题,从而得出实际问题的解.【满分答案】(1)在BCP △中,60,PBC PC ∠=︒=tan 2PCPBC BC BC∠=⇒=, 在ABC △中,2,15,18060120BC BAC ABC =∠=︒∠=︒-︒=︒,)21AB =,3=, 所以船的航行速度是每小时)61千米.(2)在BCD △中,11)1,60,26BD DBC BC =⨯=∠=︒=,在BCD △中,由正弦定理得:所以45CDB ∠=︒,即山顶位于D 处南偏东45︒.【解题技巧】解三角形应用题时,通常都要根据题意,从实际问题中抽象出一个或几个三角形,然后通过解三角形,得到实际问题的解,求解的关键是将实际问题转化为解三角形问题.模拟训练4.如图所示,某小区为美化环境,准备在小区内草坪的一侧修建一条直路OC ,另一侧修建一条休闲大道,它的前一段OD 是函数y =()0k >的一部分,后一段DBC 是函数()s i n y A x ωΦ=+(00A ω>>,,[]4,8x ∈时的图象,图象的最高点为B ⎛ ⎝,DF OC ⊥,垂足为F . (1)求函数()sin y A x ωΦ=+的解析式;(2)若在草坪内修建如图所示的矩形儿童游乐园PMFE ,问点P 落在曲线OD 上何处时,儿童游乐园的面积最大?【答案】(1(2)P 点的坐标为43⎛ ⎝⎭时,儿童游乐园的面积最大.(24x =,得()4,4D ,从而曲路OD 的方程为)04y x =≤≤,设点2,4t P t ⎛⎫ ⎪⎝⎭,则儿童游乐园(矩形)的面积()244t S t t ⎛⎫=- ⎪⎝⎭()04t ≤≤,则()()234044t S t t '=-≤≤,t ⎛∈ ⎝⎭时,()0S t '>,()S t 单调递增;4t ⎫∈⎪⎪⎝⎭时,()0S t '<,()S t 单调递减,所以3t =时儿童游乐园(矩形)的面积最大,此时P 点的坐标为43⎛ ⎝⎭.。
2018高考数学解题技巧 解答题模板2:三角函数高考中三角函数解答题是历年高考必考内容之一,成为6道解答题中的第一题,难度一般比较小,三角函数中,以公式多而著称.解题方法也较灵活,但并不是无法可寻,当然有它的规律性,近几年的高考中总能体现出其规律性.而对三角函数的考查解法,归纳起来主要有以下六种方法:能够做好这道题也成了决定高考成败的关键,从近几年高考来看,三角函数解答题有如下几种题型 二、典型例题 弦切互化例1.已知2tan =θ,求(1)θθθθsin cos sin cos -+;解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=-+θθθθθθθθθθ; 函数的定义域问题例2、求函数1sin 2+=x y 的定义域。
解:由题意知需01sin 2≥+x ,也即需21sin -≥x ①在一周期⎥⎦⎤⎢⎣⎡-23,2ππ上符合①的角为⎥⎦⎤⎢⎣⎡-67,6ππ,由此可得到函数的定义域为⎥⎦⎤⎢⎣⎡+-672,62ππππk k ()Z k ∈ 说明:确定三角函数的定义域的依据:(1)正、余弦函数、正切函数的定义域。
(2)若函数是分式函数,则分母不能为零。
(3)若函数是偶函数,则被开方式不能为负。
(4)若函数是形如()()1,0log ≠>=a a x f y a的函数,则其定义域由()x f 确定。
(5)当函数是有实际问题确定时,其定义域不仅要使解析式有意义同时还要使实际问题有意义。
函数值域及最大值,最小值 (1)求函数的值域一般函数的值域求法有:观察法,配方法判别式法等,而三角函数是函数的特殊形式,其一般方法也适用,只不过要结合三角函数本身的性质罢了。
例3、求下列函数的值域(1)x y 2sin 23-= (2)2sin 2cos 2-+=x y x 分析:利用1cos ≤x 与1sin ≤x 进行求解。
专题四 三角函数的图象和性质【正弦、余弦函数的图象与性质】(定义域、值域、单调性、奇偶性等) 正弦函数和余弦函数的图象:正弦函数y=sinx (x ∈R )和余弦函数y=cosx (x ∈R )的图象分别叫做正弦曲线和余弦曲线, 1.正弦函数2.余弦函数函数图像的性质正弦、余弦函数图象的性质:由上表知,正弦与余弦函数的定义域都是R ,值域都是[-1,1],对y=sinx,当时,y取最大值1,当时,y取最小值-1;对y=cosx,当x=2kπ(k∈Z)时,y取最大值1,当x=2kπ+π(k∈Z)时,y 取最小值-1。
【正切余切函数的图像与性质】正切函数的图像:余切函数的图像:正切函数的性质:(1)定义域:(2)值域是R,在上面定义域上无最大值也无最小值;(3)周期性:是周期函数且周期是π,它与直线y=a的两个相邻交点之间的距离是一个周期π;(4)奇偶性:是奇函数,对称中心是无对称轴;(5)单调性:正切函数在开区间内都是增函数。
但要注意在整个定义域上不具有单调性。
余切函数的性质:(1)定义域:{x|x≠kπ,k∈Z}(2)值域:实数集R;(3)周期性:是周期函数,周期为kπ(k∈Z且k≠0),最小正周期T=π(4)奇偶性:奇函数,图像关于(,0)(k∈z)对称,实际上所有的零点都是它的对称中心(5)单调性:在每一个开区间(kπ,(k+1)π),(k∈Z)上都是减函数,在整个定义域上不具有单调性【2017全国卷1文数8】函数sin21cos xy x=-的部分图像大致为A .B .C .D .【答案】C【考点】函数图像【点拨】函数图象问题首先关注定义域,从图象的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图象的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图象的走向趋势,分析函数的单调性、周期性等.答题思路【命题意图】考查函数()y Asin x ωϕ=+的图象变换、解析式中参数,ωϕ的求法,考查三角函数的奇偶性、周期性、单调性.考查函数式化简变形能力及数形结合思想.【命题规律】三角函数的图象与性质是三角函数的重要内容,高考中比较重视考查三角函数图象变换及三角函数的周期性、最值、奇偶性、单调性、对称性等,同时往往注重考查三角函数和差倍半公式的应用.从历年高考题目看,以选择题、填空题为主,少有解答题.【答题模板】(1)先平移后伸缩(2)先伸缩后平移【方法总结】1.一个区别——两种图像变换的区别由y=sin x的图像变换到y=Asin(ωx+φ)的图像,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位长度;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位长度。
1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x轴的交点等),理解正切函数在区间错误!内的单调性热点题型一三角函数的定义域及简单的三角不等式例1、(1)函数f(x)=-2tan错误!的定义域是()A。
错误!B。
错误!C.错误!D。
错误!(2)不等式错误!+2cos x≥0的解集是________.(3)函数f(x)=错误!+log2(2sin x-1)的定义域是________。
【答案】(1)D (2)错误!(3)错误!∪错误!∪错误!【解析】(1)由正切函数的定义域,得2x+错误!≠kπ+错误!,即x≠错误!+错误!(k∈Z),故选D.(2)由错误!+2cos x≥0,得cos x≥-错误!,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x≥-错误!的解集为错误!,故原不等式的解集为错误!。
【提分秘籍】1.三角函数定义域的求法(1)应用正切函数y=tan x的定义域求函数y=A tan(ωx+φ)的定义域。
(2)转化为求解简单的三角不等式求复杂函数的定义域。
2.简单三角不等式的解法(1)利用三角函数线求解。
(2)利用三角函数的图象求解.【举一反三】函数y=错误!的定义域为________。
【答案】错误!【解析】要使函数有意义,必须使sin x-cos x≥0。
利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x 的图象,如图所示。
在[0,2π]内,满足sin x=cos x的x为错误!,错误!,再结合正弦、余弦函数的周期是2π,所以定义域为错误!。
热点题型二三角函数的值域与最值例2、(1)函数y=-2sin x-1,x∈错误!的值域是() A.[-3,1] B.[-2,1]C.(-3,1] D.(-2,1](2)函数y=cos2x-2sin x的最大值与最小值分别为( )A.3,-1 B.3,-2C.2,-1 D.2,-2【答案】(1)D(2)D【提分秘籍】三角函数最值或值域的三种求法(1)直接法:利用sin x,cos x的值域。