系统抽样
- 格式:pdf
- 大小:259.51 KB
- 文档页数:10
一、知识概述1、系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.2、系统抽样的步骤:①采用随机的方式将总体中的个体编号.为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.②为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号.④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本).说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3、系统抽样与简单随机抽样的区别与联系系统抽样与简单随机抽样相比,有如下区别:(1)系统抽样比简单随机抽样更容易实施,可节约成本.(2)系统抽样所得到的样本的代表性和个体的编号有关;而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.如,如果学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取样本就可能会是全部为男生或全部为女生.(3)系统抽样比简单随机抽样的应用范围更广.联系是:(1)系统抽样适用于总体中的个体较多的情况,因为这时应用简单随机抽样就显得很不方便;(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;(3)与简单随机抽样一样,系统抽样也属于等概率抽样.二、例题讲解例1、在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位是68的号码为中奖号码,这是运用哪种抽样方式来确定号码的()A.抽签法B.系统抽样C.随机数表法D.其他抽样方法解:由题意可知抽出的号码分别为0068,0168,0268,……,9968,显然这是将10000个中奖号码平均分成100组,从第一组抽取了0068号,其余号码在此基础上加上100的倍数得到的,可见这是采用系统抽样法.答案:B例2、一个总体中有100个个体,随机编号0,1,2,……,99.依编号顺序平均分成10个小组,组号依次为1,2,3,……,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t,则在第k组中抽取的号码个位数字与t +k的个位数字相同,若t=7,则在第8组中抽取的号码应是________.答案:75例3、为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.解:假设抽取50名学生.适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例4、为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.解:(1)随机地将这1003个个体编号为1,2,3,…,1003.利用简单随机抽样,先从总体中剔除3个个体.(2)再按系统抽样的方法抽取.例5、某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案.若工厂规定每天共抽取980个进行检测呢?解:每天共生产易拉罐120000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出1个,再每隔100个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=36秒拿出1个易拉罐送检.若共要抽取980个进行检测,则要分980组,但980不能整除120000,则先计算出120000除以980的整数部分是122,所以先要剔除120000-980×122=440个,剩下119560个平均分为980组,每组122个,然后采用简单随机抽样法从001~122中随机选出1个编号,例如选出的是108号,可以从第108个易拉罐开始,每隔122个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=43.92秒拿出一个易拉罐送检.例6、下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:;确定随机数字,取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。
系统抽样
适用学科高中数学适用年级高一
适用区域人教A版课时时长(分
45
钟)
知识点 1. 正确理解系统抽样的概念;
2. 掌握系统抽样的一般步骤;
3. 正确理解系统抽样与简单随机抽样的关系;
教学目标 1. 通过对实际问题的探究,归纳应用数学知识解决
实际问题的方法,理解分类讨论的数学方法,
2. 通过数学活动,感受数学对实际生活的需要,体
会现实世界和数学知识的联系。
教学重点1. 正确理解系统抽样的概念,
教学难点1. 能够灵活应用系统抽样的方法解决统计问题。
二、知识讲解
考点1
系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=[].
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号。
考点2
系统抽样的一般步骤。
(1)采用随机抽样的方法将总体中的N个个编号。
(2)将整体按编号进行分段,确定分段间隔k(k∈N,L≤k).
(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+K,再加上K得到第3个个体编号L+2K,这样继续下去,直到获取整个样本。
【说明】从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分块解决,从而把复杂问题简单化,体现了数学转化思想。
三、课堂精讲
【例题1】
【题干】某商场想通过检查发票及销售记录的2%来快速估计每月的销售金额,采用如下方法:从某本发票的存根中随机抽一张如15号,然后按顺序往后将65号,115号,116号,……发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )
A.抽签法 B.随机数表法 C.系统抽样法 D.其他的抽样法 【答案】C
解析:选C.上述抽样方法是将发票平均分成若干组,每组50张,从第一组中抽出了15号,以后各组抽15+50n(n为自然数)号,符合系统抽样的特点. 4、解析:因在第7组抽取的号码个位数字应是3,所以抽取的号码是63. 答案:63 【解析】按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1段的编号。
【例题2】
【题干】现用系统抽样抽取了一个容量为30的样本,其总体中含有300个个体,则总体中的个体编号后所抽取的两个相邻号码之差可定为( )
A.300 B.30 C.10 D.不确定
【答案】C
【解析】.根据系统抽样的步骤知所抽取的两个相邻号码之差为300 30=10.
【例题3】
【题干】从1008名学生中抽取20人参加义务劳动,规定采用下列方法选取:先用简单随机抽样从1008人中剔除8人,剩下1000人再按系统抽样的方法抽取,那么在1008人中每个人入选的概率( )
A.都相等且等于150 B.都相等且等于5 252 C.不全相等 D.均不相等
【答案】B
【解析】从1008名学生中抽取20人参加义务劳动,每人入选的概率相
等且等于201008=5 252 ,故选B.
三、课堂运用
1、1.中央电视台某节目为了对热心观众给予奖励,要从已确定编号的一万名观众中抽出十名幸运观众.现采用系统抽样的方法抽取,其组容量为( )
A.10 B.100 C.1000 D.10000 2. 总体容量为203,若采用系统抽样法抽样,当抽样间距为多少时不需要剔除个体( )
A.4 B.5 C.6 D.7
【巩固】
3.120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样法从中抽取容量为20的样本,则每个个体被抽取的可能性占总体的( )
A.124
B.136
C.160
D.16
4. 有20位同学,编号从1至20,现在从中抽取4人作问卷调查,若用系统抽样方法,则所抽的编号可能为( )
A.5,10,15,20 B.2,6,10,14 C.2,4,6,8 D.5,8,9,14
【拔高】
5. 下列抽样问题中,最适合用系统抽样的是( )
A. 从全班48名学生中随机抽取8人参加一项活动
B.一个城市有210家百货商店,其中有大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本
C.从参加考试的1200名考生中随机抽取100人分析试题作答情况D.从参加模拟考试的1200名高中生中随机抽取10人了解情况
6. 将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营
区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) A.26,16,8 B.25,17,8 C.25,16,9 D.24,17,9
4、 课程小结
1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样的步骤为:
(1)采用随机的方法将总体中个体编号;
(2)将整体编号进行分段,确定分段间隔k(k∈N);
(3)在第一段内采用简单随机抽样的方法确定起始个体编号L;
(4)按照事先预定的规则抽取样本。
2、在确定分段间隔k时应注意:分段间隔k为整数,当不是整数时,应采用等可能剔除的方剔除部分个体,以获得整数间隔k。
五、课后作业
【基础】
1、 一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.
2、五一”国际劳动节期间,某超市举办了一次有奖购物促销活动.期
间准备了一些有机会中奖的号码(编号为001~999),在公证部门的监督下按照随机抽样方法进行抽取,确 定后两位为88的号码为本次的中奖号码.则这些中奖号码为:________.。