系统抽样方法
- 格式:docx
- 大小:21.93 KB
- 文档页数:2
初中数学什么是系统抽样如何进行系统抽样初中数学什么是系统抽样如何进行系统抽样在统计学中,系统抽样是一种常用的抽样方法,它是按照一定的规律从总体中选择样本的过程。
系统抽样的特点是按照固定的间隔从总体中选取样本,从而保证样本的均匀性和代表性。
本文将介绍系统抽样的概念,并阐述如何进行系统抽样。
系统抽样是一种基于间隔的抽样方法,它是按照一定的规律从总体中选择样本的方法。
系统抽样的特点是固定的间隔选取个体作为样本,这样可以尽量保持样本的均匀性和代表性。
进行系统抽样的步骤如下:1. 确定总体:首先需要明确研究的总体是什么,总体可以是人口、产品、动物群体等不同类型的个体或事物。
2. 确定样本量:确定需要抽取的样本数量,样本量应根据研究目的和总体的特点来确定。
样本量的大小对于研究结果的准确性和可靠性有重要影响。
3. 编制抽样框架:抽样框架是指包含总体中所有个体的清单或者群体的划分,它是进行系统抽样的基础。
根据总体的特点,可以将抽样框架编制为清单或者群体划分。
4. 确定抽样间隔:抽样间隔是指从总体中选取样本的间隔。
例如,可以根据总体的大小和样本量来确定抽样间隔。
抽样间隔应该使得样本能够均匀地覆盖总体,从而保证样本的代表性。
5. 随机起点:通过随机数表、随机数发生器或者抽签等方式生成一个随机数,作为抽样的起点。
起点的选择应该具有随机性和均匀性,以确保样本的代表性。
6. 抽取样本:从确定的起点开始,按照抽样间隔的规则,选择个体或者群体作为样本。
例如,可以按照固定的间隔选择每隔k个个体或者群体作为样本。
7. 记录样本数据:将被选中的个体或者群体记录下来,并收集相关的数据信息。
样本数据应准确、完整地反映个体或者群体的特征。
需要注意的是,系统抽样需要保证抽样间隔的均匀性和代表性,以确保样本的代表性和可靠性。
在实际操作过程中,可以结合使用随机数表、随机数发生器或者抽签等方式来生成随机起点,并按照固定的间隔选择样本。
总之,系统抽样是一种常用的抽样方法,它通过固定的间隔从总体中选择样本。
系统抽样法系统抽样法,在统计学中是一种常用的抽样方法。
它是指根据一定的规则,从总体中随机选择具有代表性的样本,以便对总体进行统计推断。
系统抽样法不仅能保证样本的随机性,还能提高调查的效率和准确性。
下面将介绍系统抽样法的基本原理、应用场景以及优缺点。
系统抽样法的原理是通过预先设定的规则来选择样本。
首先,需要确定样本容量,即要从总体中选取多少个样本点。
然后,确定一个起始点,这个起始点是通过随机抽取总体中的一个个体来确定的。
接下来,按照一定的间隔(这个间隔可以是固定的数字,也可以是总体的大小除以样本容量得到的比例),在总体中选取样本。
直到选取到规定的样本容量为止。
这样,样本就具有代表性,能够对总体进行推断。
系统抽样法常见的应用场景是社会调查、市场研究、医学实验等。
在社会调查中,比如对某个城市的居民进行调查,我们可以先确定样本容量,然后选取一个起始点,按照一定的间隔,从不同区域或人口群体中选取样本。
这样,我们可以通过这些样本来了解整个城市的人口特征、生活习惯等信息。
在市场研究中,通过对一部分消费者进行调查,可以推断出整个市场的需求、偏好等情况。
在医学实验中,可以通过对一部分病人进行治疗或观察,来推断出某种治疗方法的有效性或某种药物的副作用。
系统抽样法具有一定的优点和缺点。
其优点之一是样本选择随机性好,能够较好地代表总体。
其次,系统抽样法也较为简单,实施起来相对容易。
此外,它还能提高调查的效率,通过合理的样本容量和间隔选择,能够最大程度地获取有用的信息。
然而,系统抽样法也存在一些缺点。
首先,它对总体的要求较高,需要清楚地了解总体的特点和组成,才能选择合适的起始点和间隔。
其次,如果选择的起始点过于倾斜,可能会导致样本选择的偏差,影响结果的准确性。
此外,系统抽样法也对调查过程的随机性和外界干扰较为敏感,需要注意控制环境和调查过程中的误差。
总之,系统抽样法是一种常用的抽样方法,通过预先设定的规则,从总体中随机选择具有代表性的样本。
系统抽样方法为了对不同样本的总体进行比较,可以采用不同的抽样方法。
下面介绍三种常用的抽样方法:系统抽样方法是指从整个调查总体中按照一定的标准和方法抽取样本单位进行调查研究的方法。
系统抽样有两种基本类型:偶遇抽样和等距抽样。
偶遇抽样是随机地从总体中抽取样本单位的方法;等距抽样是在被调查单位内部根据某种标志排列的顺序,每次从中抽取一个单位进行调查的方法。
在实际调查工作中,我们一般采用系统抽样方法。
为了回答上面提出的问题,需要先回答什么是抽样框。
所谓抽样框,是指从调查总体中确定抽取样本单位的范围,它包括总体、子总体和样本三个要素。
在具体运用抽样方法时,都是先抽取一个总体,再抽取若干个子总体,最后抽取样本。
抽样框就是由此形成的,用来表明抽样方案的大小,明确抽样单位之间的界限,也说明应该从哪些单位中选择样本单位的框架性说明。
根据调查研究目的的不同,我们把总体划分为若干个不同的组群,称为子总体。
例如,学校一年级学生有400人,如果分别用A、 B、 C表示子总体,则三个子总体可以构成四个不同的组群,也就是四个抽样框。
抽样框是有规格的,调查的目的和任务决定了抽样框的大小和多少。
这里必须要注意的是,虽然总体是无限的,但是,任何一个抽样框都只能代表一个子总体,而不能代表其他的子总体。
比如,要调查一年级学生的身高情况,应当在A、 B、 C三个子总体中抽取,而不能再去抽取乙、丙、丁三个子总体。
一个样本与它所属的抽样框是密切相关的。
一般说来,样本越大,则抽样框的规模就越大;反之,抽样框的规模就越小。
比如,要调查全班40名同学的视力情况,由于子总体的数目很多,可以画在纸上,将每个同学看到的数字记录下来,那么这些记录数据的纸条就是样本,即一个样本。
样本的数目多少,完全取决于总体的大小和数量。
比如,要对一批机器零件的质量进行检查,总共可以划分成100个组,每组20个,由于机器零件数量太多,不可能逐个地进行检查,因此,必须按组为单位,并按统计控制标准抽样方法随机地抽取10个样本。
系统抽样法系统抽样法是一种常用的统计抽样方法,可以有效的代表总体,用于对总体进行推断和估计。
系统抽样法是在总体中按照一定规则选择一部分样本作为代表,从而得到可靠的总体估计。
系统抽样法的步骤如下:1. 确定总体:首先需要明确研究对象或感兴趣的总体,例如某产品的用户群体。
2. 确定样本量:根据所设定的误差容限和置信水平,计算得到所需的样本量。
3. 确定抽样间隔:抽样间隔是指从总体中选择样本的规则,比如每隔5个元素选择一个样本。
4. 确定起始点:从总体中任意选择一个起始点作为第一个样本。
5. 依次选择样本:按照设定的抽样间隔,从起始点开始,依次选择样本,直到达到所需的样本量为止。
6. 数据收集和分析:对所选择的样本进行数据收集和分析,可以获得关于总体的一些统计特征。
7. 总体估计:基于对样本数据的分析,对总体的特征进行估计,如总体均值、总体比例等。
系统抽样法的优点包括:1. 相对于随机抽样,系统抽样具有较高的效率,能够达到相同的估计效果,样本量较少时,所需的抽样量较少。
2. 系统抽样相对于方便抽样和判断抽样,具有较高的代表性,能够更好地反映总体的特征。
3. 系统抽样法适用范围广,可以应用于各种类型的总体,如人群、产品、地域等。
然而,系统抽样法也存在一些局限性:1. 当总体的分布不规律时,系统抽样可能导致样本选择出现一定的偏差,因此在使用系统抽样方法之前,需要确保总体具有较好的规律性。
总之,系统抽样法是一种常用的统计抽样方法,可以帮助研究者从总体中选择出具有代表性的样本,从而对总体进行推断和估计。
在实际应用中,研究者需要根据具体情况选择合适的抽样方法,并确保抽样过程的准确性和可靠性。
2.1.2 系统抽样一、教学目标:知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
二、教学重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
三、教学过程:(一)创设情境,引入课题:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(二)研探新知:1、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
2、系统抽样的特证:(1)适用于个体较多时,但均衡的总体。
(2)在整个抽样的过程中,每个个体被抽取到的可能性相等。
练习:优化方案(学生用书的33页)做一做(1)。
(加深对概念的的理解)3、系统抽样的步骤:假设要从容量为N的总体中抽取容量为n的样本,步骤为;(1)编号:先将总体的N个个体编号,有时可直接利用个体自身所带的号码如学号、准考证号、门牌号等。
N(n是样本容量)是整数时,(2)分段:确定分段间隔k,对编号进行分段,当nN去k=n(3)确定初始的编号:在第一段用简单随机抽样确定第一个个体编号L(L≤k)(4)抽取样本:按照一定的规则抽取样本,通常是将L加上间隔k得到第二个个体编号(L+k),再加k得到第三个个体编号(L+2k),依次进行下去,直到获取整个样本。
4、抽取样本的规则:通常是将L加上间隔k得到第二个个体编号(L+k),再加k得到第三个个体编号(L+2k),依次进行下去,直到获取整个样本。
采用系统抽样的方法
系统抽样是一种抽样方法,它是按照预先确定的规则从总体中选择样本的一种方法。
在进行系统抽样时,首先需要确定一个抽样框架,即总体中的每个个体都有一个唯一的编号。
然后,从总体中按照一定的间隔选取样本。
以下是系统抽样的步骤:
1. 定义总体:确定需要进行抽样的总体,例如某公司的员工总数。
2. 指定抽样框架:为总体中的每个个体分配一个编号,确保每个个体都有唯一的标识符。
3. 确定抽样大小:确定需要选取的样本数量。
4. 计算抽样间隔:将总体大小除以样本大小,得到抽样间隔。
例如,如果总体大小为100,样本大小为10,则抽样间隔为10。
5. 随机选择起始点:从抽样框架中随机选择一个起始点,即确定从总体中的哪个个体开始选择样本。
6. 选择样本:从起始点开始,每隔抽样间隔选择一个样本个体。
重复该步骤,直到达到所需的样本大小为止。
通过系统抽样方法,可以获得较好的样本代表性,并节省了时间和成本。
系统抽样方法1.系统抽样方法【知识点的认识】1.定义:一般地,要从容量为N 的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.系统抽样的特征:(1)当总体容量N 较大时,适宜采用系统抽样;(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此系统抽样又称等距抽样,这里的푁间隔一般为k =[푛](3)在第一部分的抽样采用简单随机抽样;(4)每个个体被抽到的可能性相等3.系统抽样与简单随机抽样的关系:(1)系统抽样是建立在简单随机抽样的基础之上的,当将总体均分后对每一部分进行抽样时,采用的是简单随机抽样;(2)系统抽样和简单随机抽样都是等概率抽样,它是公平的.4.系统抽样与简单随机抽样的优缺点:(1)当总体的个体数较大时,用系统抽样比用简单随机抽样更易实施,更节约成本;(2)系统抽样比简单随机抽样应用范围更广;(3)系统抽样所得到的样本的代表性和个体的编号有关,而简单随机抽样所得到的样本的代表性与编号无关,如果编号的特征随编号的变化呈一定的周期性,可能造成系统抽样的代表性很差.【解题方法点拨】系统抽样的一般步骤:(1)编号:采用随机的方式将总体中的个体编号;(2)分段:确定分段间隔k,对编号进行分段(N 为总体个数,n 为样本容量):푁①当푛∈푍时,k =푁푛,1/ 3푁②当푛∉푍时,通过从总体中剔除一些个体,使剩下的总体中的个体数N′能被n 整除,这时k =푁′푛(注意这时要重新编号 1﹣N′后,才能再分段)(3)确定起始编号:在第一段用简单随机抽样确定起始的个体编号l(l∈N,l≤k);(4)抽样:按事先确定的规则抽取样本,即l,l+k,l+2k,…,l+(n﹣1)k.【命题方向】1.考查系统抽样的定义例:某小礼堂有 25 排座位,每排有 20 个座位.一次心理讲座时礼堂中坐满了学生,讲座后为了了解有关情况,留下了座位号是 15 的 25 名学生进行测试,这里运用的抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法分析:由题意可得,从第一排起,每隔 20 人抽取一个,所抽取的样本的间隔距相等,符合系统抽样的定义.解答:由题意可得,从第一排起,每隔 20 人抽取一个,所抽取的样本的间隔距相等,故属于系统抽样,故选C.点评:本题考查系统抽样的定义和方法,属于容易题.2.考查系统抽样的应用例:将参加夏令营的 100 名学生编号为 001,002,…,100.先采用系统抽样方法抽取一个容量为 20 的样本,若随机抽得的号码为 003,那么从 048 号到 081 号被抽中的人数是分析:根据系统抽样的定义,即可得到结论.解答:∵样本容量为 20,首个号码为 003,∴样本组距为 100÷20=5∴对应的号码数为 3+5(x﹣1)=5x﹣2,由 48≤5x﹣2≤81,得 10≤x≤16.6,即x=10,11,12,13,14,15,16,共 7 个,故答案为:7.点评:本题主要考查系统抽样的应用,利用系统抽样的定义建立号码关系是解决本题的关键,比较基础.2/ 33/ 3。
系统抽样(Systematic sampling)一、概述1、什么系统抽样设计总体中的N 个单元按某种顺序(通常是依照有关标志排队,即按某个在比估计和回归速记中提到的辅助变量的顺序排列,但也可以是依照无关标志排列,即按不完全满足辅助变量定义的某个已知变量排列,这种排列近似于随机排列),编号为1,2,…,N 。
抽取程序是首先抽取一个或一组起始单元的编号,然后按某种确定的规则(例如等距抽样:按照固定的间隔选取)选取其他单元的编号,直到满n 个为止,则这种抽样称为系统随机抽样,简称系统抽样。
2、直线等距抽样假设总体单元数为N ,样本容量为n ,N=nk,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。
抽取程序是先从头k 个单元编号中随机抽出一个单元编号,然后每隔k 个单元编号抽取一个单元编号,直到抽出n 个单元编号为止,则这种等距抽样称为直线等距抽样。
3、圆形等距抽样假设总体单元数为N ,样本容量为n ,N ≠nk ,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。
如将这些编号看成首尾相接的一个环,并从1到N 中按简单随机抽取方式抽取一个单元编号作为随机起点r ,然后每隔k 抽取一个单元编号,直到抽满n 个单元为止,则这种等距抽样称为圆形等距抽样。
4、直线等距抽样的实施方法 (1)首先计算抽样间接k=N/n ;(2)将N 个单元按某种顺序依次编号为1,2,…,N ;(3)从1~k 个单元编号中随机抽取一个单元编号,假设为r ; (4)每隔k 个单元编号抽出一个单元编号,直到抽出n 个单元。
例如:随机起点,k i i ≤≤1,,入选单元,,....2,,k i k i i ++i k 2k 3k (n-1)k nk 5、圆形等距抽样的实施方法编号不是直线排列而是环状(圆形)排列,是随机起点的选择范围由1到k 扩展到1到N 。
入样编号可以表示为:),,2,1(0)1(0)1(},)1(,)1(min{,)1(n j N k j r N k j r N k j r k j r i k j r i =⎩⎨⎧>--+≤--+--+-+=-+=当当二、不等概率系统抽样对总体N 个初级单元的某种确定排列顺序,设第i 个初级单元所包含的次级或基本单元数为i M ,令∑==Ni i M M 10表示总体所包含的全部级或基本单元数。
系统抽样法系统抽样法是一种常用的抽样方法,可以帮助研究者从一个大的总体中抽取一部分样本,以便进行研究和分析。
在很多实际问题中,我们不可能对整个总体进行研究,而是通过对样本的研究,得出对总体的结论。
系统抽样法能够保证样本具有代表性,且能够有效减少抽样误差。
系统抽样法的基本原理是按照一定的顺序从总体中选取样本。
首先,需要确定总体中的个体数目N,然后确定所需样本的大小n。
接下来,计算抽样间隔k,即总体中每隔k个个体选择一个样本单位。
然后,随机确定一个起始个体,从起始个体开始,每隔k个个体选择一个样本单位,直到累计选择n个样本单位为止。
使用系统抽样法进行抽样有以下几个优点:1. 方便快捷:系统抽样法不需要列出总体的名单或分层,仅需要确定总体的大小和样本的大小,便可进行抽样。
这大大减少了工作量和时间。
2. 代表性:由于采用了间隔抽样原则,系统抽样法可以有效地保证样本具有代表性,从而可以得出对总体的准确推断。
3. 统计效果好:与简单随机抽样相比,系统抽样法具有更好的统计效果。
通过合理地选择起始个体,可以避免产生类似于序列效应和群体集中效应等系统偏差。
4. 可估抽样误差:在使用系统抽样法时,我们可以通过计算抽样误差来进行精确的估计。
这样在数据分析和结论得出时,会更加可靠和准确。
然而,系统抽样法也存在一些限制和注意事项:1. 依赖性问题:由于抽样间隔k是事先设定的,因此如果总体中存在某种周期性或重复性,可能会导致样本选择的不够随机,造成样本的偏倚。
2. 初始选择问题:抽样过程需要从一个起始个体开始,如果起始个体不具有代表性,可能会影响最终的样本结果。
因此,在选择起始个体时需要特别注意。
3. 总体规模影响:对于总体规模较小的情况,系统抽样法可能造成样本选择的不充分,影响样本的代表性。
此时,建议使用其他抽样方法。
4. 返回抽样问题:系统抽样法在一轮抽样中,可能会重复选择到之前已经被选入样本的个体。
这会导致样本的重复性,影响结果的可靠性。
卫生统计学:四种基本的抽样方法
1.单纯随机抽样:单纯随机抽样是在总体中以完全随机的方法抽取一部分观察单位组成样本(即每个观察单位有同等的概率被选入样本)。
常用的办法是先对总体中全部观察单位编号,然后用抽签、随机数字表或计算机产生随机数字等方法从中抽取一部分观察单位组成样本。
其优点是简单直观,均数(或率)及其标准误的计算简便;缺点是当总体较大时,难以对总体中的个体一一进行编号,且抽到的样本分散,不易组织调查。
2.系统抽样:系统抽样又称等距抽样或机械抽样,即先将总体中的全部个体按与研究现象无关的特征排序编号;然后根据样本含量大小,规定抽样间隔k;随机选定第i(i<k)号个体开始,每隔一个k,抽取一个个体,组成样本。
系统抽样的优点是:易于理解,简便易行;容易得到一个在总体中分布均匀的样本,其抽样误差小于单纯随机抽样。
缺点是:抽到的样本较分散,不易组织调查;当总体中观察单位按顺序有周期趋势或单调增加(减小)趋势时,容易产生偏倚。
3.整群抽样:整群抽样是先将总体划分为K个“群”,每个群包含若干个观察单位,再随机抽取k个群(k<K),由抽中的各群的全部观察单位组成样本。
整群抽样的优点是便于组织调查,节省经费,容易控制调查质量;缺点是当样本含量一定时,抽样误差大于单纯随机抽样。
4.分层抽样:分层抽样是先将总体中全部个体按对主要研究指标影响较大的某种特征分成若干“层”,再从每一层内随机抽取一定数量的观察单位组成样本。
分层随机抽样的优点是样本具有较好的代表性,抽样误差较小,分层后可根据具体情况对不同的层采用不同的抽样方法。
四种抽样方法的抽样误差大小一般是:整群抽样≥单纯随机抽样≥系统抽样≥分层抽样。
2.1.2 系统抽样
一、教学目标:
知识与技能:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,
情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。
二、教学重点与难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
三、教学过程:
(一)创设情境,引入课题:
某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取
50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?(二)研探新知:
1、系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。
2、系统抽样的特证:
(1)适用于个体较多时,但均衡的总体。
(2)在整个抽样的过程中,每个个体被抽取到的可能性相等。
练习:优化方案(学生用书的33页)做一做(1)。
(加深对概念的的理解)
3、系统抽样的步骤:
假设要从容量为N的总体中抽取容量为n的样本,步骤为;
(1)编号:先将总体的N个个体编号,有时可直接利用个体自身所带的号码如学号、准考证号、门牌号等。
N(n是样本容量)是整数时,(2)分段:确定分段间隔k,对编号进行分段,当
n
N
去k=n
(3)确定初始的编号:在第一段用简单随机抽样确定第一个个体编号L(L≤k)(4)抽取样本:按照一定的规则抽取样本,通常是将L加上间隔k得到第二个个体编号(L+k),再加k得到第三个个体编号(L+2k),依次进行下去,直到
获取整个样本。
4、抽取样本的规则:
通常是将L加上间隔k得到第二个个体编号(L+k),再加k得到第三个个体编号(L+2k),依次进行下去,直到获取整个样本。
练习:优化方案学生用书的33页做一做(2)。
(加深对系统抽样的步骤以及规则)(四)课堂练习:
优化方案(学生用书34页~35页)的备选例题1、2
(五)课堂小结:
1、在抽样过程中,当总体中个体较多时,可采用系统抽样的方法进行抽样,系统抽样
的步骤为:
(1)编号:先将总体的N个个体编号,有时可直接利用个体自身所带的号码如学号、准考证号、门牌号等。
(2)分段:确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,去k=
(3)确定初始的编号:在第一段用简单随机抽样确定第一个个体编号L( L≤k)(4)抽取样本:按照一定的规则抽取样本,通常是将L加上间隔k得到第二个个体编号(L+k),再加k得到第三个个体编号(L+2k),依次进行下去,直到获取整个
样本。
2、在确定分段间隔k时应注意:分段间隔k为整数,当不是整数时,应采用等可能剔
除的方剔除部分个体,以获得整数间隔k。
(六)课后作业:
优化方案(学生用书35页)随堂自测1、2、3、4
八、课后反思:。