SPSS软件单个样本样品、两个独立样本样品和两个配对样本样品T检验的应用
- 格式:pdf
- 大小:1.17 MB
- 文档页数:15
t检验使用条件及在SPSS中的应用t检验是对均值的检验,有三种用途,分别对应不同的应用场景:1)单样本t检验(One Sample T Test):对一组样本,检验相应总体均值是否等于某个值;2)相互独立样本t检验(Independent-Sample T Test):利用来自某两个总体的独立样本,推断两个总体的均值是否存在显著性差异;3)配对样本t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。
下文将分别介绍三种t检验的使用条件以及在SPSS中的实现。
一、单样本t检验1.1简介1)单样本t检验的目的利用来自某总体的样本数据,推断该总体的均值是否与指定的检验值之间存在显著性差异,它是对总体均值的检验。
2)单样本t检验的前提样本来自的总体应服从和近似服从正态分布,且只涉及一个总体。
如果样本不符合正态分布或不清楚总体分布的形状,就不能用单样本t检验,而要改用单样本的非参数检验。
3)单样本t检验的步骤a)提出假设单样本t检验需要检验总体的均值是否与指定的检验值之间存在显著性差异,为此,,提出假设:给定检验值μH0:μ = μ(原假设,null hypothesis)H1:μ≠μ(备择假设,alternative hypothesis,)b)选择检验统计量属于总体均值和方差都未知的检验采用t统计量:t =X ̅−μ0S ̂√n⁄,其中,X ̅和S ̂分别为样本均值和方差,t 的自由度为n-1SPSS 中还将显示均值标准误差,计算公式为S ̂√n ⁄,即t 统计量的分母部分。
c) 计算统计量的观测值和概率将样本均值、样本方差、μ0带入t 统计量,得到t 统计量的观测值,查t 分布界值表计算出概率P 值。
d) 给出显著性水平α,作出统计判断给出显著性水平α,与检验统计量的概率P 值作比较。
当检验统计量的概率值小于显著性水平时,则拒绝原假设,认为总体均值与检验值μ0之间有显著性差异;反之,如果检验统计量的概率值大于显著性水平,则接受原假设,认为总体均值与检验值μ0之间没有显著性差异。
S P S S中T检验的应用本文指在简述SPSS中的T检验,主要说明了T检验的原理和应用,及使用范围。
和SPSS中的基本操作。
T检验是检验样本的均值和给定的均值是否存在显著性差异。
T检验分为3类:单样本T检验、两独立样本T检验和两配对样本T检验。
关键词:T检验、SPSS、显著性水平、统计量、概率P-值、自由度、线性相关、置信区间、零假设。
目录一、单样本T检验 (3)1.单样本T检验的目的。
(3)2.单样本T检验的基本步骤。
(3)3.单样本T检验的应用举例 (4)三、两独立样本T检验 (5)1.两独立样本T检验的目的 (5)2.两独立样本T检验的基本步骤。
(5)3.两独立样本T检验的应用举例 (7)三.两配对样本T检验 (9)1.两配对样本T检验的目的 (9)2.两配对样本T检验的基本步骤。
(9)3.两配对样本T检验的应用举例。
(9)四、参考文献。
(12)一、单样本T 检验1.单样本T 检验的目的。
单样本t 检验的目的是利用来自某总体的样本数据,推断该总体的均值是否与制定的检验值之间存在显著性差异。
它是对总体均值的假设检验。
2.单样本T 检验的基本步骤。
⑴.提出原假设。
单样本T 检验的原假设0H 为:总体均值与检验值之间不存在显著差异,表述为0H :0μμ=。
μ为总体均值,0μ为检验值。
⑵.选择检验统计量。
当总体分布为正态分布),(2σμN 时,样本均值的抽样分布仍为正态分布,该正态分布的均值为μ,方差为2σ/n ,即),(~2nN X σμ式中,μ为总体均值,当原假设成立时,0μμ=;2σ为总体方差;n 为样本数。
总体分布近似服从正态分布时。
通常总体方差是未知的,此时可以用样本方差2S 替代,得到的检验统计量为t 统计量,数学定义为:nS X t 2μ-=①式中,t 统计量服从n-1自由度为t 分布。
单样本t 检验的检验统计量即为t 统计量。
当认为原假设成立时μ用0μ代入。
⑶计算检验统计量观测值和概率P-值该步目的是甲酸检验统计量的观测值和相应的概率P-值。
在SPSS中的输出结果保留3位或4位小数,如果经过四舍五入后前3位或前4位为0,则显示为.000或.0000,其实真正的结果并不为0。
如果你想知道P值到底是多少,可以双击表格,然后双击数字。
如下图,真正的P值为3.2038*exp(-61)。
目录一、单样本T检验 (4)1.单样本T检验的目的 (4)2.单样本T检验的基本步骤 (4)3.单样本T检验的应用举例 (5)三、两独立样本T检验 (6)1.两独立样本T检验的目的 (6)2.两独立样本T检验的基本步骤 (6)3.两独立样本T检验的应用举例 (8)三、两配对样本T检验 (10)1.两配对样本T检验的目的 (10)2.两配对样本T检验的基本步骤 (10)3.两配对样本T检验的应用举例 (10)四、参考文献 (12)一、单样本T 检验1.单样本T 检验的目的。
单样本检验的目的是利用来自某总体的样本数据,推断该总体的均值是否与制定的t 检验值之间存在显著性差异。
它是对总体均值的假设检验。
2.单样本T 检验的基本步骤。
⑴.提出原假设。
单样本T 检验的原假设为:总体均值与检验值之间不存在显著差异,表述为:0H 0H 。
为总体均值,为检验值。
0μμ=μ0μ⑵.选择检验统计量。
当总体分布为正态分布时,样本均值的抽样分布仍为正态分布,该正态分),(2σμN 布的均值为,方差为/,即μ2σn),(~2nN X σμ式中,为总体均值,当原假设成立时,;为总体方差;为样本数。
总μ0μμ=2σn 体分布近似服从正态分布时。
通常总体方差是未知的,此时可以用样本方差替代,得到2S 的检验统计量为统计量,数学定义为:t①nS X t 2μ-=式中,统计量服从n-1自由度为分布。
单样本检验的检验统计量即为统计量。
当t t t t 认为原假设成立时用代入。
μ0μ⑶计算检验统计量观测值和概率P-值该步目的是甲酸检验统计量的观测值和相应的概率P-值。
SPSS 将自动将样本均值、、样本方差、样本数代入式①中,计算出统计量的观测值和对应的概率P-值。
SPSS知识3t检验(两个总体均数比较)t检验前言:一、t检验有3种:单样本t检验、配对样本t检验、两组独立样本t检验。
二、t检验条件:数据资料服从正态或近似正态分布。
两组独立样本t检验还要求两组方差齐(不齐则要进行校正)。
正文:一、单样本t检验理论:单样本t检验是检验样本均数X和总体均数μ【已知的理论值(如脉搏72)、标准值或公认值】的比较。
T=(样本均数-总体均数)/样本均数的标准误Spss操作:前提:建立数据库(一列变量)第一步:正态性检验Analyze→Npar tests→1-sample K-S→数据调入右框(test variable list),选中Test Distribution中的normal→OK。
第二步:看output,判断数据资料正态性与否。
看统计量Z 和P值。
P>0.05,资料正态分布。
第三步:t检验。
正态性,则进行样本均数与总体均数的比较,即单样本t检验。
Analyze→compare means→one-sample T test→将数据调入右框(test variable),在右框下的Test Value右边框中输入总体均数μ→OK第四步:看output中的P值,判断差异是否有统计学意义。
P>0.05,差异无统计学意义。
二、配对样本t检验理论:配对设计有3种情况:1、同一样本分为2份,用2种不同的方法测定;2、自身比较,同一样本处理前后的比较(处理前后的过程中,应保持其他非处理因素的齐同性,并且处理周期不宜太长;3、将某些因素相同的样本组成配伍组,随即分为两组。
T=每一配对的测量值之差的均数/每一配对的测量值之差的均数的标准误。
(各自公式见理论)Spss操作:前提:建立数据库(两列:如before和after)第一步:两组数据做正态性检验Analyze→Npar tests→1-sample K-S→两组数据皆调入右框(test variable list),选中Test Distribution中的normal →OK。
SAS学习笔记25t检验(单个样本t检验、配对样本t检验、两个独⽴样本t检验及⽅差不齐时的t检验)根据研究设计和资料的性质有单个样本t检验、配对样本t检验、两个独⽴样本t检验以及在⽅差不齐时的t'检验单样本t检验单样本t检验(one-sample t-test)⼜称单样本均数t检验,适⽤于样本均数$\overline{X}$与已知总体均数$\mu_{0}$的⽐较,其⽐较⽬的是检验样本均数所代表的总体均数µ是否与已知总体均数$\mu_{0}$有差别已知总体均数$\mu_{0}$, ⼀般为标准值、理论值或经⼤量观察得到的较稳定的指标值单样本t检验⽤于总体标准差σ未知的资料,其统计值t其中S为样本标准差,n为样本含量配对样本t检验配对样本均数t检验简称配对t检验(paired t test), ⼜称⾮独⽴两样本均数t检验,适⽤于配对设计计量资料均数的⽐较,其⽐较⽬的是检验两相关样本均数所代表的未知总体均数是否有差别。
配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对⼦,每对中的两个个体随机地给予两种处理。
进⾏配对t检验时,⾸选应计算各对数据间的差值d, 将d作为变量计算均数。
其检验统计量为式中d为每对数据的差值,$\overline{d}$为差值样本的均数,$S_{d}$为差值样本的标准差,$S_\overline{d}$为差值样本均数的标准差,即差值样本的标准误,n为配对样本的对⼦数,⾃由度=n-1两独⽴样本t检验两独⽴样本t检验(two-sample t-test), ⼜称成组t检验,它适⽤于完全随机设计的两样本均数的⽐较,其⽬的是检验两样本所来⾃总体的均数是否相等。
两独⽴样本t检验要求两样本所代表的总体服从正态分布,且两总体⽅差相等,即⽅差齐性(homogeneity of variance)。
若两者总体⽅差不齐,可采⽤t'检验、变量变换或⽤秩和检验⽅法处理。
你的分析结果有T值,有sig值,说明你是在进行平均值的比较。
也就是你在比较两组数据之间的平均值有没有差异。
从具有t值来看,你是在进行T检验。
T检验是平均值的比较方法。
T检验分为三种方法:1. 单一样本t检验(One-sample t test)是用来比较一组数据的平均值和一个数值有无差异。
例如,你选取了5个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于1.70m,就需要用这个检验方法。
2. 配对样本t检验(paired-samples t test)是用来看一组样本在处理前后的平均值有无差异。
比如,你选取了5个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个t检验。
注意,配对样本t检验要求严格配对,也就是说,每一个人的饭前体重和饭后体重构成一对。
3. 独立样本t检验(independent t test)是用来看两组数据的平均值有无差异。
比如,你选取了5男5女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。
总之,选取哪种t检验方法是由你的数据特点和你的结果要求来决定的。
t检验会计算出一个统计量来,这个统计量就是t值,spss根据这个t值来计算sig值。
因此,你可以认为t值是一个中间过程产生的数据,不必理他,你只需要看sig值就可以了。
sig值是一个最终值,也是t检验的最重要的值。
sig值的意思就是显著性(significance),它的意思是说,平均值是在百分之几的几率上相等的。
一般将这个sig值与0.05相比较,如果它大于0.05,说明平均值在大于5%的几率上是相等的,而在小于95%的几率上不相等。
我们认为平均值相等的几率还是比较大的,说明差异是不显著的,从而认为两组数据之间平均值是相等的。
如果它小于0.05,说明平均值在小于5%的几率上是相等的,而在大于95%的几率上不相等。
我们认为平均值相等的几率还是比较小的,说明差异是显著的,从而认为两组数据之间平均值是不相等的。