spss操作独立样本T检验模板
- 格式:docx
- 大小:9.59 KB
- 文档页数:3
一、被调查学生对“云窗的打分值”总体平均值的推断:1、以71个被调查学生为样本做T 检验由表a 可知,71个观测的平均值为71.21,标准差为15,120,均值标准误为1.794。
表b 中,第二列是t 统计量的观测值为0.675,第三列是自由度n-1=70,第四列是t 统计量观测值的双尾概率p 值,第五列是样本均值与检验值的差(1.211),即t 统计量的分子部分,他除以表a 的均值标准误(1.794)后得到t 统计量的观测值0.675,第六列和第七列是总体均值与检验值差的95%的置信区间,为(67.63,74.79)。
对于研究的问题应采用双尾检验,因此比较2α和2p,即比较α和p 。
由于p 大于α(0.05),因此不能拒绝零假设,认为被调查学生对“云窗的打分值”总体平均值没有显著差异。
有95%的把握认为总体均值在 67.63~74.79 分之间。
70分包含在置信区间内,也证实了上述推断。
2、被调查学生对“云窗的打分值”的重抽样自举表cBootstrap 指定采样方法简单箱图样本数1000置信区间度95.0%置信区间类型百分位由表c可知,自举过程执行1000次,随机数种子指定为默认值2000000,采样方法为简单箱图。
中均值的重抽样自举均值与实际样本均值的差为-0.12,1000个均值的标准差为1.82,由此得到的均值95%的置信区间为(67.18,74.46)表e中没有给出双尾检验的概率p值,但是从检验的结果可知有95%的把握认为总体均值在67.184~74.463之间。
70包含在置信区间内。
用更大的样本量再一次说明了被调查学生对“云窗的打分值”总体平均值没有显著差异。
例题
比较两批电子器材的电阻,随机抽取的样本测量电阻如题表2所示,试比较两批电子器材的电阻是否相同?(提示:需考虑方差齐性问题)
分析步骤:
单击工具栏“分析”——>单击“比较均值”——>单击“单因素ANOVA检验”——>因变量列表置为电阻——>因子置为类别——>选项——>选中方差齐性检验
图1 单因素ANOVA检验
图2 统计
单击工具栏“分析”——>单击“比较均值”——>单击“独立样本T检验”——>检验变量置为电阻——>单击定义组——>填入A批、B批——>单击“确定”
图3 独立样本T检验结果展示:
表4:独立样本检验
结果分析:
假设A,B两批电阻相互独立且均服从正态分布。
H0:u1-u2=0,两批电阻器材的电阻相同
H1:u1-u2≠0,两批电阻器材的电阻不相同
1、查看表4莱文方差等同性检验(levene),假定等方差(显著性为0.435>0.05,代表方差是齐性的),我们看第一行数据。
t检验结果显示,t=1.648,v=12,P=0.125>0.05,按照检验水准,接受H0,拒绝H1,故两批电阻器材的电阻相同。
2、查看表4莱文方差等同性检验(levene),不假定等方差,我们看第二行数据。
t’检验结果显示,t=1.648,v=10.671,P=0.129>0.05,按照检验水准,接受H0,拒绝H1,故两批电阻器材的电阻相同。
独立样本T检验SPSS操作
例如:男生和女生之间的学业自我效能感有没有统计学意义上的差异
第一步:点击分析→比较均值→独立样本T检验
第二步:出现如下界面,将“学业自我效能感”选入检验变量,将“性别”选入分组变量。
第三步:点击“定义组”,在“使用指定值”下“组1”文本框中填入“1”,“组2”文本框中填入
“2”(因为数据中“1”代表男生,“2”代表女生),然后点击“继续”。
第四步:点击“确定”,出现得到T检验的结果。
第五步:分析结果。
第一张表的名字叫组统计量,实际上这个性别就是男性组和女性组,即按照不同的组别进行分组。
统计出男性组和女性组每一组的均值和标准差。
一列数据是可以选择用均值和标准差来表示的,均值表示的是这一组的学业自我效能感分数的一个均衡状态,标准差反映的就是同学们得分与这个均衡状态的这个偏离程度。
男性和女性在均值上的差异是否具有统计学意义,我们还需要继续考察独立样本T检验的表。
假设方差相等,看F和F对应的显著性水平,要看显著性水平是不是小于0.05,判断方差是否齐性。
若这个数小于0.05,说明假设方差相等的可能性小
于0.05,小概率事件发生,拒绝原假设,即假设方
差不相等,看第二行的数据t和t对应的显著性水平。
如果方差齐性,也就是sig值大于0.05,就看第一
行的数据。
例题:对某地区的山地和平原土壤中的磷含量的背景值各取了10个样品,数据如下所示:-6山地424 490 439 430 482 420 520 405 430 415 平原433 420 422 414 430 431 455 410 440 4161、本题中自变量个数等于2,且不是来自于同一组样本,故采用独立样本T检验2、打开spss 22.0,在变量视图内定义变量,由题目可知,磷含量为“计量资料”,归类为“度量变量”,地形为计数资料,归类为“名义变量”,并对地形进行赋值,如图输入:3、在数据视图内如下图输入数据:4、独立样本T检验进行的假设:(1)数据必须为连续性数据;(2)方差齐性(可偏不齐,即σ12/σ22<3);(3)每组数据均服从正态分布5、进行验证:(1)由题目可以看出,数据为连续型数据,满足;(2)此检验可于结果中查看;(3)首先,新建spss视图,重新输入变量进行探索队列,如下图所示:将“山地”“平原”选入因变量列表,并于“绘图(T)”中勾选“带检验的正态图”,操作步骤如下图所示:根据正态性检验表的“K-S检验”结果,由于样本内数据数量<30,故看Shapiro-Wilk结果,由于两者的sig均大于0.05,故满足正态分布正态性检验Kolmogorov-Smirnov(K)a Shapiro-Wilk统计df 显著性统计df 显著性山地.268 10 .041 .856 10 .069平原.146 10 .200*.945 10 .608*. 这是真正显著性的下限。
a. Lilliefors 显著性校正6、进行独立样本T检验:(1)依次点击“分析”-“比较平均值”-“独立样本T检验”,调出独立样本T检验对话框:(2)将“磷含量”选入检验变量(T),将“地形”选入分组变量,然后定义组,于主页面中点击“确定”,输出结果:组统计地形数字平均值(E) 标准偏差标准误差平均值磷含量山地10 445.50 38.106 12.050 平原10 427.10 13.609 4.304独立样本检验列文方差相等性检验平均值相等性的t 检验F 显著性t自由度显著性(双尾)平均差标准误差差值差值的95%置信区间下限上限磷含量已假设方差齐性9.559 .006 1.438 18 .168 18.400 12.796 -8.482 45.282未假设方差齐性1.438 11.259 .178 18.400 12.796 -9.684 46.484根据独立样本检验表的方差方程的Levene检验,F统计量的sig值0.006<0.05,否认方差相等的假设,认为方差不齐性,故参考第二行的t检验结果;第二行t检验的双侧sig=0.178>0.05,即可认为在0.05的显著性水平上,山地与平原土壤中磷含量是否没有有显著性差异。
SPSS独立单样本t检验方法(independent-samples t Test)又叫两样本t检验,
要将两组独立的数据进行差异性比较,这属于两样本t检验,这是实验中常用的一种检验方法,下面是基本操作方法。
以低浓度组与对照组比较为例进行说明:
操作步骤:
1.输入独立样本数据(变量1和变量2都可以做数据项)
2.选用程序
从菜单选择Analysize——Compare Mean——Independent-samples t Test,打开对话框,分别将数据变量组和组别变量组对应的var转入右边对应的空白框中,数据变量组转到Test Variable(s),组别变量组转到Grouping Variable
转入后,在定义组别,
点击Difine Groups…按钮,出现如下对话框,然后输入对应的组别号,在这个例子中,group1是用1来表示的,group2使用2表示的。
因此,分别输入1和2,再点击Continue按钮。
点击continue按钮后出现如下对话框,再点击OK,这样独立样本T检验程序定义完成。
3.结果分析
在第二步最后点击OK后,软件的分析结果就会出现,如下图,红框里就是要的数据。
经Levene’s方差齐性检验,F=4.655,而P=0.045<0.5,认为两组总体方差是齐的,就看两样本t检验的第一横列的值(也就是跟F同列的值):t=1.353,P=0.193,按P=0.05水准,P>0.05,则两样本物显著性差异,P<0.05,有显著性差异,P<0.01时,两样本有极大差异。
如果F的P>0.5,则认为两样本总体方差不齐,则看第二横列的值,t检验的P值分析同上。
两独立样本T检验-SPSS操作详解为了解某一新药降血压的效果,将28名高血压患者随机分为实验组和对照组,实验组采用新药,对照组采用常规药,测得治疗前后的血压变化,问新药是否优于常规药?编号 1 2 3 4 5 6 7 8 9 10 11 新药前102 100 92 98 118 100 100 92 126 117 109 后90 90 85 90 114 95 86 88 102 92 98编号 1 2 3 4 5 6 7 8 9 10 11 常规前98 110 109 94 110 92 95 90 108 90 110 药后100 103 105 98 109 95 94 88 104 85 110变量1设置:name-group , decimals-0 , label-分组, value-(1=新药,2=常规药) 变量2设置:name-value , decimals-0 , label-血压下降值2 输入数据---血压差=用药前血压-用药后血压3 单击菜单栏analyze/compare means/independent-samples t test4 将血压下降值调入test variables下矩形框5 将分组(group)调入grouping variable 下矩形框6单击define groups…定义分组group1为1 定义group2为2 单击continue7 options选项默认8 bootstrap选项默认9 单击OK 输出结果10 结果界面11 结果解释表1表示两独立样本t检验基本统计量-group statistics表2表示两独立样本t检验结果,方差方程的levene检验(Levene’s Test forEquality of Variances 方差齐性检验)F=3.115,P=0.93,认为两样本来自的总体方差齐。
T检验中t=3.18,P=0.005。
在统计学中,我们往往从样本的特性推知随机变量总体的特性。
但由于总体中个体之间存在差异,样本的统计量和总体的参数之间往往会有误差。
因此,均值不相等的样本未必来自不同分布的总体,而均值相等的样本未必来自有相同分布的总体。
也就是说,如何从样本均值的差异推知总体的差异,这就是均值比较的内容。
SPSS提供了均值比较过程,在主菜单栏单击“Analyze”菜单下的“Compare Means”项,该项下有5个过程,如图4-1。
平均数比较Means过程用于统计分组变量的的基本统计量。
这些基本统计量包括:均值(Mean)、标准差(Standard Deviation)、观察量数目(Number of Cases)、方差(Variance)。
Means过程还可以列出方差表和线性检验结果。
[例子]调查了棉铃虫百株卵量在暴雨前后的数量变化,统计暴雨前和暴雨后的统计量,其数据如下:暴雨前 110 115 133 133 128 108 110 110 140 104 160 120 120暴雨后 90 116 101 131 110 88 92 104 126 86 114 88 112该数据保存在“DATA4-1.SAV”文件中。
1)准备分析数据在数据编辑窗口输入分析的数据,如图4-2所示。
或者打开需要分析的数据文件“DATA4-1.SAV”。
图4-2 数据窗口2)启动分析过程在SPSS主菜单中依次选择“Analyze→Compare Means→Means”。
出现对话框如图4-3。
图4-3 Means设置窗口3)设置分析变量从左边的变量列表中选中“百株卵量”变量后,点击变量选择右拉按钮,该变量就进入到因子变量列表“Dependent List:”框里,用户可以从左边变量列表里选择一个或多个变量进行统计。
从左边的变量列表中选中“调查时候”变量,点击“Independent List”框左边的右拉按钮,该变量就进入分组变量“IndependentList”框里,用户可以从左边变量列表里选择一个或多个分组变量。
独立样本T检验下面我们要用SPSS来做成组设计两样本均数比较的t检验,选择Analyze==>Compare Means==>Independent-Samples T test,系统弹出两样本t检验对话框如下:将变量X选入test框内,变量group选入grouping框内,注意这时下面的Define Groups按钮变黑,表示该按钮可用,单击它,系统弹出比较组定义对话框如右图所示:该对话框用于定义是哪两组相比,在两个group框内分别输入1和2,表明是变量group取值为1和2的两组相比。
然后单击Continue按钮,再单击OK按钮,系统经过计算后会弹出结果浏览窗口,首先给出的是两组的基本情况描述,如样本量、均数等(糟糕,刚才的半天工夫白费了),然后是t检验的结果如下:Levene's TestforEqualityofVariancest-test for Equality of MeansFSig.tdfSig.(2-tailed)MeanDifferenceStd.ErrorDifference95%ConfidenceInterval ofthe Difference体方差是否齐,这里的戒严结果为F = ,p = ,可见在本例中方差是齐的;第二部分则分别给出两组所在总体方差齐和方差不齐时的t检验结果,由于前面的方差齐性检验结果为方差齐,第二部分就应选用方差齐时的t检验结果,即上面一行列出的t= ,ν=22,p=。
从而最终的统计结论为按α=水准,拒绝H0,认为克山病患者与健康人的血磷值不同,从样本均数来看,可认为克山病患者的血磷值较高。
SPSS统计分析示例
例二:
将20名某病患者随机分为两组,分别用甲乙两药治疗,测得治疗前后的血沉(mm/小时)如下表:
试分甲乙两药是否有疗效?两药疗效是否有差异?并用图或表对数据和结果进行描述。
1.对两种药物治疗效果比较的统计分析
(以下结果均使用SPSS统计软件获得)
(1)对甲药疗效做配对t检验:
治疗前后血沉值的差值的配对检验SPSS结果显示:t=5.237(df=9),单侧检验P=0.001x2<0.01,结论甲药疗效极显著。
(2)对乙药疗效做配对t检验:
治疗前后血沉值的差值的配对检验SPSS结果显示:t=5.303(df=9),单侧检验P<<0.01,结论乙药疗效极显著。
(3)对甲药、乙药的疗效做独立双样本的t-检验
由SPSS输出表可知:甲药、乙药给药后血沉差值样本数据满足方差齐性要求,t=-1.602(df=18),双侧检验P=0.127>0.05,则两种药的疗效无显著差异。
汇总表
服药前服药后差值t
甲药mm/h (M±SD) 8.7±2.4 5.5±3.1 3.2±1.9 5.237**
乙药mm/h (M±SD) 9.6±1.8 4.6±2.0 5.0±3.0 5.303**
甲药与乙药比较 1.602 **:P<0.01。
独立样本T检验
可见该结果分为两大部分:第一部分为Levene's方差齐性检验,用丁判断两总体方差是否齐,这里的戒严结果为 F = 0.032 , p = 0.860 ,可见在本例中方差是齐的;第二部分则分别给出两组所在总体方差齐和方差不齐时的t检验结果,由丁前面的方差齐性检验结果
为方差齐,第二部分就应选用方差齐时的t检验结果,即上面一行列出的t= 2.524 , v =22,
p=0.019。
从而最终的统计结论为按a =0.05水准,拒绝H0,认为克山病患者与健康人的血磷值不同,从样本均数来看,可认为克山病患者的血磷值较高。
spss操作独立样本T检验模板.doc一、独立样本T检验的基本概念独立样本T检验是指用于比较两个独立样本平均数是否有显著差异的统计方法。
其中,独立样本是指两组样本各自独立,互不干扰,不相关的情况。
例如,对于两组人员,第一组接受了药物治疗,第二组未接受药物治疗,比较两组人员的体重是否有差异。
在这个例子中,两组人员是独立的。
二、SPSS独立样本T检验的操作步骤(一)数据收集导入在进行独立样本T检验之前,需要先确定要对比的两组数据,并将数据收集起来。
将数据按不相同的组别(如服用药物和未服用药物)分别输入到SPSS中,分别为组别A和组别B。
(二)前期处理在开始分析之前,需要先做一些数据预处理工作,包括数据清洗、离群值检查和变量分布及可视化统计分析等。
(三)执行独立样本T检验1. 打开SPSS,依次选择"分析"-"比较均值"-"独立样本T检验"。
2. 将需要检验的变量(如体重)拖到"测试变量列表中"栏位中。
3. 选择独立样本的两个组别(如A组和B组),将其拖到独立样本列表("样本1"和"样本2")中。
4. 选择置信度(Confidence Interval)和显著性水平(Significance Level)。
5. 点击"OK",等待SPSS自动为我们生成结果。
(四)检验结果解释SPSS生成的独立样本T检验结果包括了三个表格,分别是"平均数和标准误"、"独立样本T检验"和"效应大小"。
1. "平均数和标准误"表格:这个表格显示了每一组别数据的均值(Mean)和标准误(Standard Error),同时还包括组别的样本量(N)和方差(Variance)等信息。
2. "独立样本T检验"表格:这个表格包含了检验结果的详细信息,包括了统计学指标(如t值和P值)、置信区间(Confidence Interval)和自由度(Degrees of Freedom)等信息。
一、问题与数据某班级老师拟比较该班级本次考试中,男生和女生的考试成绩是否有差异,该班级男生和女生各有20名同学,变量名记录为gender,分别赋值为1和2,考试成绩变量名记录为score,部分数据如图1。
图1 部分数据二、对问题分析研究者拟分析两组数据均值是否有差异,即判断男生和女生的成绩是否有差异。
针对这种情况,我们可以使用独立样本t检验,但需要先满足6项假设:假设1:观测变量为连续变量,如本研究中的成绩为连续变量。
假设2:观测变量可分为2组,如本研究中分为男生和女生。
假设3:观测值之间相互独立,如本研究中各位研究对象的信息都是独立的,不存在相互干扰。
假设4:观测变量不存在显著的异常值。
假设5:观测变量在各组内接近正态分布。
假设6:两组的观测变量的方差相等。
假设1-3取决于研究设计和数据类型,本研究数据符合假设1-3。
那么应该如何检验假设4-6,并进行独立样本t检验呢?三、SPSS操作假设4和假设5可通过以下方式检验。
假设6的检验结果可在结果解释部分查看。
3.1 检验假设4:观测变量不存在显著的异常值在主界面点击Analyze→Descriptive Statistics→Explore,弹出Explore对话框,如图2。
在对话框中将score变量放入Dependent List栏,并将gender变量放入 Factor List栏。
图2 Explore点击Plots,取消对Descriptive栏内 Stem-and-leaf选项的选择,并点击Normality plots with tests选项,点击Continue→OK。
如图3。
图3 Explore: Plots 经上述操作,SPSS输出箱式图。
如图4。
图4 箱式图SPSS中,数据点与箱子边缘的距离大于1.5倍箱身长度,则定义为异常值,以圆点(°)表示;与箱子边缘的距离大于3倍箱身长度,则定义为极端值,以星号(*)表示。
圆点或星号附近的数值是SPSS系统的自动编码(Data View窗口中最左侧蓝色一列中的编码)。
SPSS-比较均值-独立样本T检验案例解析2011-08-26 14:55在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数学期望和标准方差,即:N(p, Q)如果你的样本数非常少,一般需要进行正太分布检验,检验的方法网上很多,我就不说了下面以“雄性老鼠和雌性老鼠分别注射了某种毒素,经过观察分析,进行随机取样,查看最终老鼠是否活着。
问题:很多人认为,雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多?我们将通过进行统计分析来认证这个假设是否成立。
下面进行参数设置:a 代表:雄性老鼠b代表:雌性老鼠tim 代表:生存时间,即指经过多长时间后,去查看结果0 代表:结果死亡1 代表:结果活着随机抽取的样本,如下所示:打开SPSS- 分析---检验均值---独立样本T检验,如下图所示:将你要分析的变量,移入右边的框内,再将你要进行分组的变量移入“分组变量”框内,“组别group()里面的两个参数,不能够随意设置,必须要跟样本里面的数字一致点击确定后,分析结果,如下所示:从组统计量可以看出,雄性老鼠的存活下来的均值为0.73,但是雌性老鼠存活下来的均值为1.00,很明显,雌性老是存活下来的个数明显比雄性老鼠多,但是一般我们不看这个结果,为什么?因为样本不够大,如果将样本升至10000个?也许这个均值将会发生变化,不具备统计学意义,我们一般只看独立样本检验的结果。
独立样本检验,提供了两种方法:levene检验和均值T检验两种方法Levene检验主要用来检验原假设条件是否成立,(即:假设方差相等和方差不相等两种情况)如果SIG>0.05,证明假设成立,不能够拒绝原假设,如果SIG<0.05,证明假设不成立,拒绝原假设。
进行levene检验结果判断是第一步,从上图,可以看出 sig<0.05 方差相等的假设不成立,所以看第二行,方差不相等的情况sig=0.082>0.05 即说明 P 值大于显著性水平,不应该拒绝原假设:即指:雌性老鼠和雄性老鼠在注射毒液后,存活下来的个数没有显著的差异本次分析的结果,不支持,很多人认为的:雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多的结论。
SPSS-比较均值-独立样本T检验案例解析2011-08-26 14:55在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数学期望和标准方差,即:N(p, Q)如果你的样本数非常少,一般需要进行正太分布检验,检验的方法网上很多,我就不说了下面以“雄性老鼠和雌性老鼠分别注射了某种毒素,经过观察分析,进行随机取样,查看最终老鼠是否活着。
问题:很多人认为,雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多?我们将通过进行统计分析来认证这个假设是否成立。
下面进行参数设置:a 代表:雄性老鼠b代表:雌性老鼠tim 代表:生存时间,即指经过多长时间后,去查看结果0 代表:结果死亡1 代表:结果活着随机抽取的样本,如下所示:打开SPSS- 分析---检验均值---独立样本T检验,如下图所示:将你要分析的变量,移入右边的框内,再将你要进行分组的变量移入“分组变量”框内,“组别group()里面的两个参数,不能够随意设置,必须要跟样本里面的数字一致点击确定后,分析结果,如下所示:从组统计量可以看出,雄性老鼠的存活下来的均值为0.73,但是雌性老鼠存活下来的均值为1.00,很明显,雌性老是存活下来的个数明显比雄性老鼠多,但是一般我们不看这个结果,为什么?因为样本不够大,如果将样本升至10000个?也许这个均值将会发生变化,不具备统计学意义,我们一般只看独立样本检验的结果。
独立样本检验,提供了两种方法:levene检验和均值T检验两种方法Levene检验主要用来检验原假设条件是否成立,(即:假设方差相等和方差不相等两种情况)如果SIG>0.05,证明假设成立,不能够拒绝原假设,如果SIG<0.05,证明假设不成立,拒绝原假设。
进行levene检验结果判断是第一步,从上图,可以看出 sig<0.05 方差相等的假设不成立,所以看第二行,方差不相等的情况sig=0.082>0.05 即说明 P 值大于显著性水平,不应该拒绝原假设:即指:雌性老鼠和雄性老鼠在注射毒液后,存活下来的个数没有显著的差异本次分析的结果,不支持,很多人认为的:雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老鼠多的结论。
例题:对某地区的山地和平原土壤中的磷含量的背景值各取了10个样品,数据如下所示:
(单位:10-6),问山地与平原土壤中磷含量是否有显著性差异。
( 25分)
1、本题中自变量个数等于2,且不是来自于同一组样本,故采用独立样本T检验
2、打开spss,在变量视图内定义变量,由题目可知,磷含量为“计量资料”,归类为“度量变量”,地形为计数资料,归类为“名义变量”,并对地形进行赋值,如图输入:
3、在数据视图内如下图输入数据:
4、独立样本T检验进行的假设:
(1)数据必须为连续性数据;
2 2
⑵方差齐性(可偏不齐,即(T 1 / (T 2 <3);
(3)每组数据均服从正态分布
5、进行验证:
(1)由题目可以看出,数据为连续型数据,满足;
(2)此检验可于结果中查看;
(3)首先,新建spss视图,重新输入变量进行探索队列,如下图所示:
将“山地”“平原”选入因变量列表,并于“绘图(T) ”中勾选“带检验的正态图”,操作步骤如下图所示:
根据正态性检验表的“ K-S检验”结果,由于样本内数据数量<30,故看Shapiro-Wilk 结果, 由于两者的sig均大于,故满足正态分布
*.
a. Lilliefors 显著性校正
6、进行独立样本T检验: (1)依次点击“分析”-“比较平均值”-“独立样本T检验”,调出独立样本T检验对话框:
⑵将“磷含量”选入检验变量(T),将“地形”选入分组变量,然后定义组,于主页面中点
击“确定”,输出结果:
7、结果分析:
根据独立样本检验表的方差方程的Levene检验,F统计量的sig值<,否认方差相等的假设,认为方差不齐性,故参考第二行的t检验结果;
第二行t检验的双侧sig=>,即可认为在的显著性水平上,山地与平原土壤中磷含量。