电磁场中的矩阵理论Chapter 4__A
- 格式:pptx
- 大小:982.94 KB
- 文档页数:29
矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。
为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。
一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。
答案:矩阵的转置是将其行和列互换得到的新矩阵。
所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。
2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。
答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。
3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。
答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。
计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。
解特征多项式得到特征值λ1 = 5,λ2 = -1。
然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。
对于λ2 = -1,解得特征向量v2 = [1, -1]。
所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。
二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。
答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。
计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。
然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。
接下来,求解对称矩阵的特征值和特征向量。
将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。
最后,计算D^T和U的乘积D^TU,得到正交矩阵V。
§7 矩阵函数的性质及其应用一、矩阵函数的性质:设 n n C B A ×∈.1.A e Ae e dtd At At At⋅== proof : 由 ()∑∑⋅==∞=m m m m AtA t m At m e !1!1对任何收敛。
因而可以逐项求导。
t ()∑∞=−−=∴01!11m mm At A t m e dt d ()()⎟⎟⎠⎞⎜⎜⎝⎛−⋅=∑∞=−11!11m m At m A ()⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑k At k A !1At e A ⋅= ()()()A e A At m A A t m At m m m m m ⋅=⋅⎟⎟⎠⎞⎜⎜⎝⎛−=⋅−=∑∑∞=∞=−−−01111!11!11 可见,A 与使可以交换的,由此可得到如下几个性质 At e 2.设,则BA AB =①. At At Be B e =⋅②.B A A B B A e e e e e +=⋅=⋅③.()()AA A AA AB A B A B A BA B A B A BA cos sin 22sin sin cos 2cos sin cos cos sin sin sin sin cos cos cos 22=−=⇒+=+−=+= proof :①,由m m BA B A BA AB =⇒=而∑∑∞=∞==⎟⎠⎞⎜⎝⎛=00!1!1m m m m m m AtB A t m B t A m B e()∑∑∞=∞=⋅==00!1!1m mm m m At m B BA t mAt e B ⋅=② 令 ()()A B t At B C t e e e +−−t =⋅⋅ 由于()0=t C dtd)(t C ∴为常数矩阵 因而E e e e C C t C =−⋅===000)0()1()(当时, …………………. (@) 1=t E e e e B A B A =⋅⋅−−+特别地 A B −= 有E e e e A A =⋅⋅−0∴ 有 ()A A e e −−=1∴同理有()B B e e −−=1代入(@)式 因而有 B A B A e e e ⋅=+3.利用绝对收敛级数的性质,可得①A i A e iA sin cos +=()()iA iAiA iAe e iA e e A −−−=+=⇒21sin 21cos ②()()A A A A sin sin cos cos −=−=−4.E A A =+22cos sin ()()A E A AE A cos 2cos sin 2sin ππ+=+A E i A e e =+π2二、矩阵函数在微分方程组中的应用—常用于线性监测系统中 1. 一阶线性常系数齐次方程组的通解AX dtdX= 其中()Tn n n x x x X C A ,,,21"=∈×则有 ()K e t X At ⋅=其中()T n k k k K ,,,21"=1eg解方程:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+−=+−=313212211234xx dtdx x x dtdxx x dt dx解:原方程变为矩阵形式AX dt dX =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=201034011A ()T x x x X 321,,=由()(212−−=−λλλA E ) 得⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=→100110002J A 1200000−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=∴P e e e e P e t tt tAt⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=∴−321120000)(k k k P e e e e P t X t tt t2. 一阶线性常系数微分方程组的定解问题:1Th :一阶线性常数微分方程组的定解问题:()()⎪⎩⎪⎨⎧==Tn x x x X AXdt dX)0(,),0(),0(210" 有唯一解)0(X e X At ⋅=proof :实际上,由AX dtdX=的通解为 K e t X At ⋅=)(将初值代入,得)0(X )0(X k =)0(X e X At =∴由可的定解问题1Th ()⎪⎩⎪⎨⎧==Tn t x t x t x t X AX dt dX)(,),(),()(002010" 的唯一解为()()00)(t X e t X t t A ⋅=−2eg 求定解问题:()()⎪⎩⎪⎨⎧==Tx Axdt dx1,00,的解⎟⎟⎠⎞⎜⎜⎝⎛−−=1221A 解:由 0=−A E λ 得i x 32,1±=对应的特征向量记为:Ti ⎟⎟⎠⎞⎜⎜⎝⎛+=231,1α ⎟⎟⎠⎞⎜⎜⎝⎛−=231,1i β 则,于是矩阵:⎟⎟⎠⎞⎜⎜⎝⎛−+=23123111i i P 13300−−⋅⎟⎟⎠⎞⎜⎜⎝⎛⋅=∴P e e P eit itAt⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+=⎟⎟⎠⎞⎜⎜⎝⎛=t t t e t X At 3sin 313cos 3sin 3210)( 练习:求微分方程组1132123313383625dx x x dt dx x x x dt dx x x dt ⎧=+⎪⎪⎪=−+⎨⎪⎪=−−⎪⎩满足初始条件的解。
2007-2008《电磁场理论》4-A 定D1.2. ( )两磁介质边界Γ两侧的磁位分别为()1|m rφΓ和()2|m r φΓ,磁导率分别为1μ和2μ,磁位的边界条件为 。
A .()()1122||m m rr μφμφΓΓ= B .1221||m m n n φφμμΓΓ∂∂=∂∂C .()()2112||m m rrμφμφΓΓ=D .1212||m m n n φφμμΓΓ∂∂=∂∂3. ( )磁矢位与磁感应强度的方向的关系互相 。
A .方向相反B .互相平行C .互相垂直D .方向相同4. ( ) 下面式子中, __________表明恒定磁场是非保守场。
A . 0=⋅⎰l d H cB . 0=⋅⎰s d B sC . S d J l d H sc⋅=⋅⎰⎰ D . ⎰⎰⎰⋅∂∂+⋅=⋅SSCS d tD l d BS J d 5. ( )非磁性良导体的复介电常数c jσεεω=-,满足1σωε>>,其中σ、ε、ω分别为电导率、介电常数和角频率,该良导体的电阻SR 为_______。
A.2ωμσB.)012j ωμσ+ C. )012j ωμσ- D. 02ωμσ6. ( )坡印亭定理的复数表示形式为__________。
A. ()()****E H j H B E D E J ω-∇⋅⨯=⋅-⋅+⋅B. ()()****E H j H B E D E J ω-∇⋅⨯=⋅-⋅+⋅ C. ()()****E H j H B E D E J ω-∇⋅⨯=⋅-⋅+⋅D. ()()****E H j H B E D E J ω-∇⋅⨯=⋅-⋅+⋅7. ( )电介质极化后,其内部存在 。
A .自由正电荷B .自由负电荷C .自由正负电荷D .电偶极子8. ( )在理想电介质中_____, (传导电流密度:c J ;自由电荷体密度:ρ)c c c c A. =0, =0 B. 0, =0C. 0, 0 D. =0, 0J J J J ρρρρ≠≠≠≠9. ( )导电媒质中电磁波的传播速度_______光速。
电磁矩阵的原理和应用论文摘要本文介绍了电磁矩阵的原理和应用。
首先,我们对电磁矩阵的基本概念进行了解释,包括电磁矩阵的定义、性质和表示方法。
然后,我们介绍了电磁矩阵在电磁学、物理学和工程学中的应用,包括电磁场计算、电磁波传播和电磁辐射。
最后,我们讨论了电磁矩阵的未来发展方向和应用前景。
1. 引言电磁矩阵是描述电磁性质的数学工具,它在电磁学中具有重要的地位。
电磁矩阵可以描述电流、电荷和磁场之间的相互作用,可以用于计算电磁场分布和电磁波传播,也可以用于分析电磁波辐射和散射。
电磁矩阵的应用范围广泛,包括通信、雷达、微波技术、天线设计等领域。
2. 电磁矩阵的基本概念• 2.1 定义电磁矩阵是一个方阵,其元素表示在不同电磁场之间的相互作用。
电磁矩阵可以是复数矩阵,也可以是实数矩阵。
• 2.2 性质电磁矩阵具有多种性质,例如对称性、正定性、可逆性等。
这些性质使得电磁矩阵在电磁学中得到广泛应用。
• 2.3 表示方法电磁矩阵可以用不同的表示方法进行描述,例如矢量形式、矩阵形式、张量形式等。
每种表示方法都有其特点和适用范围。
3. 电磁矩阵的应用• 3.1 电磁场计算电磁矩阵可以用于计算复杂电磁场的分布情况。
通过求解电磁矩阵的特征值和特征向量,可以得到电磁场的模式和电场的分布。
• 3.2 电磁波传播电磁矩阵可以用于描述电磁波在不同介质中的传播规律。
通过求解电磁矩阵的本征值问题,可以得到电磁波的传播速度和传播方向。
• 3.3 电磁辐射电磁矩阵可以用于分析电磁波的辐射特性。
通过求解电磁矩阵的散射问题,可以得到电磁波的散射模式和散射截面。
• 3.4 其他应用除了上述应用外,电磁矩阵还可以用于天线设计、微波技术、通信系统等领域。
在这些领域中,电磁矩阵可以用于优化系统性能、提高通信速度和增强信号质量。
4. 电磁矩阵的未来发展和应用前景• 4.1 全波分析方法随着计算机技术的不断发展,全波分析方法在电磁学领域中得到了广泛应用。
电磁矩阵作为一种重要的数学工具,将继续在全波分析方法中发挥重要作用。