=3 2 × 1 × -
1
2
-1 =-6.
(3)设 a,b 的夹角为 θ.∵|a|=1,|b|= 2,且 a⊥(a-b),
2
∴a·
(a-b)=a2-a·
b=1-1× 2×cos θ=0,∴cos θ= ,
2
2
∴向量 a 在向量 b 方向上的投影为|a|cos θ= .
2
-24考点1
考点2
考点3
考点 2
但对于向量a,b却有|a·b|≤|a|·|b|;若a·b=a·c(a≠0),则b=c不一定成立,
原因是a·b=|a||b|cos θ,当cos θ=0时,b与c不一定相等.
4.向量数量积的运算不满足乘法结合律,即(a·b)·c不一定等于
a·(b·c),这是由于(a·b)·c表示一个与c共线的向量,而a·(b·c)表示一
当 α=2kπ,k∈Z 时,2cos α+4 取得最大值,最大值为 6.
故 ·的最大值为 6.
(方法 2)设 P(x,y),x2+y2=1,-1≤x≤1,=(2,0),
=(x+2,y), ·=2x+4,故 ·的最大值为 6.
-20考点1
考点2
考点3
解题心得1.求两个向量的数量积有三种方法:
(2)已知点 P 在圆 x2+y2=1 上,点 A 的坐标为(-2,0),O 为原点,则 ·
6
的最大值为
.
思考求向量数量积的运算有几种形式?
-17考点1
考点2
考点3
解析:(1)法一(基向量法):
如图所示,选取, 为基底,则 = + + = +
1
1
1