平面向量数量积及其应用
- 格式:ppt
- 大小:966.00 KB
- 文档页数:21
第三节 平面向量的数量积及平面向量应用举例预习设计 基础备考知识梳理1.平面向量的数量积 若两个 向量a 与b ,它们的夹角为θ,则数量 叫做a 与b 的数量积(或内积),记作规定:零向量与任一向量的数量积为两个非零向量a 与b 垂直的充要条件是 ,两个非零向量a 与b 平行的充要条件是2.平面向量数量积的几何意义数量积a ·b 等于a 的长度∣a ∣与b 在a 方向上的投影 的乘积.3.平面向量数量积的重要性质=⋅=⋅e a a e )1((2)非零向量⇔⊥b a b a ,,(3)当a 与b 同向时,=⋅b a当a 与b 反向时,=⋅b a =⋅a a , =||a=θcos )4(||)5(b a ⋅.|||b a4.平面向量数量积满足的运算律=⋅b a )1( (交换律);=⋅=⋅)())(2(b a b a λλ (A 为实数);=+c b a ).)(3(5.平面向量数量积有关性质的坐标表示设向量),,(),,(2211y x b y x a ==则=⋅b a 由此得到:(1)若),,(y x a =则=2||a ,或=||a(2)设),,(),,(2211y x B y x A 则A ,B 两点间的距离=||AB =||(3)设),,(),,(2211y x b y x a ==则⇔⊥b a典题热身1.下列四个命题中真命题的个数为 ( )①若,0=⋅b a 则;b a ⊥②若,c b b a ⋅=⋅且,0=/b 则⋅=c a);().(C b a c b a ⋅⋅=⋅③.)(222b a b a ⋅=⋅④4.A 2.B 0.c 3.D答案:C2.在△ABC 中,,10,2,3===BC AC AB 则=⋅. ( )23.-A 32.-B 32.c 23.D 答案:D3.已知平面向量b a b a +-=-=λ),2,4(),3,1(与a 垂直,则=λ( )1.-A 1.B2.-c 2.D答案:A4.已知),7,4(),3,2(-==b a 则a 在b 上的投影为( )13.A 513.B 565.c 65.D答案:C5.已知,2)(,6||,1||=-⋅==a b a b a 则向量a 与b 的夹角是( )6π⋅A 4π⋅B 3π⋅c 2π⋅D 答案:C课堂设计 方法备考题型一 平面向量的数量积运算和向量的模【例1】已知向量),2sin ,2(cos ),23sin ,23(cos x x b x x a -==且⋅-∈]4,3[ππx (1)求b a ⋅及|;|b a +(2)若|,|)(b a b a x f +-⋅=求)(x f 的最大值和最小值,题型二 利用向量的数量积求其夹角【例2】已知,21)()(,21,1||=+⋅-=⋅=b a b a b a a 求 (l)a 与b 的夹角;(2)a-b 与a+b 的夹角的余弦值.题型三 利用向量的数量积解决平行与垂直问题【例3】设向量,(cos ),cos 4,(sin ),sin ,cos 4(βββαα===c b a ).sin 4β-(1)若a 与b-2c 垂直,求)tan(βα+的值;(2)求||c b +的最大值;(3)若,16tan tan =βα求证:.//b a题型四 平面向量数量积的应用【例4】已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量),,(b a m =),sin ,(sin A B n = ).2,2(--=a b p(1)若,//n m 求证:△ABC 为等腰三角形;(2)若,p m ⊥边长,2=c 角,3π⋅=C 求△ABC 的面积.技法巧点1.向量数量积性质的应用 向量数量积的性质⇔=⋅⋅=⋅=0,||||cos ,||b a b a b a a a a θ,b a ⊥因此,用平面向量数量积可以解决有关长度、角度、垂直的问题.2.证明直线平行、直线、线段相等等问题的基本方法(1)要证,CD AB =可转化证明22CD =或.||||=(2)要证两线段,//CD AB 只要证存在一实数,0=/λ使等式λ=成立即可.(3)要证两线段,CD AB ⊥只需证.0..= 失误防范1.数量积a ·b 中间的符号“.”不能省略,也不能用“×”来替代.0.2=⋅b a 不能推出0=a ,或.0=b 因为0=⋅b a 时,有可能.b a ⊥)0(.3=/⋅=⋅a c a b a 不能推出.c b =4.一般地,,).()(a c b c b a =/⋅即乘法的结合律不成立.因b a ⋅是一个数量,所以c b a )(⋅表示一个与c 共线的向量,同理右边a c b )(⋅表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下.)()(a C b c b a ⋅=/⋅5.向量夹角的概念要领会,比如正三角形ABC 中,><,应为,120 而不是.60随堂反馈1.(2011.清远调研)在△ABC 中,已知a ,b ,c 成等比数列,且,43cos ,3==+B c a 则⋅等于 ( ) 23.A 23.-B 3.c 3.-D答案:B2.(2011,台州一模)已知向量a ,b 的夹角为,1||,120=a ,5||=b 则|3|b a -等于( )7.A 6.B 5.C 4.D答案:A3.(2011.湖北高考)若向量),1,1(),2,1(-==b a 则b a +2与b a -的夹角等于( )4.π-A 6π⋅B 4π⋅c 43.πD 答案:C4.(2011.全国卷)设向量a ,b 满足=⋅==b a b a ,1||||,21-则=+|2|b a ( ) 2.A 3.B 5.c 7.D答案:B5.(2011.江苏高考)已知21,e e 是夹角为32π的两个单位向量,⋅+=-=2121,2e ke b e e a 若,0=⋅b a 则实数k 的值为 答案:45 高效作业 技能备考一、选择题1.(2010.安徽高考)若向量),21,21(),0,1(==b a 则下列结论中正确的是( ) ||||.b a A = 22.=⋅b a B b a c -.与b 垂直 b a D //. 答案:C2.(2010.重庆高考)若向量a ,b 满足===⋅||,1||,0b a b a ,2则=-|2|b a ( )0.A 22.B 4.C 8.D答案:B3.(2010.四川高考)设点M 是线段BC 的中点,点A 在直线BC 外,如果BC -=+=162那么||等于 ( ) 8.A 4.B 2.C 1.D答案:C4.(2010.辽宁高考)平面上O ,A ,B 三点不共线,若,a =,b =则△OAB 的面积等于( )222)(|.|.b a b a A ⋅- |222)(|.b a b a B ⋅+⋅222)(||||21.b a b a c ⋅-⋅ 222)(21.b a b a D ⋅+⋅ 答案:C5.(2010.杭州质检)向量.2),1,(),2,1(b a c x b a +===,2b a d -=若,//d c 则实数x 的值等于( )21.A 21.-B 61.c 61.-D 答案:A6.(2011.汕头模拟)如图所示,在△ABC 中,=∠==ABC BC AB ,4,30 AD 是边BC 上的高,则. 的值等于( )0.A 4.B 8.c 4.-D答案:B二、填空题7.(2011.天津高考)已知直线梯形ABCD 中,,//BC AD ,90 =∠ADC ,2=AD P BC ,1=是腰DC 上的动点,则|3|+的最小值为答案:58.(2010.浙江高考)若平面向量),0(,b a a b a =/=/满足=||b ,1且a 与b-a 的夹角为,120则||a 的取值范围是答案:)332,0(9.(2011.浙江高考)若平面向量βα、满足,1||,1||≤=βα且以向量βα、为邻边的平行四边形的面积为,21则βα和的夹角θ的取值范围是 答案:]65,6[ππ三、解答题10.(2010.江苏高考)在平面直角坐标系xOy 中,已知点).1,2(),3,2()2,1(----C rB A(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足,0)(=⋅-t 求t 的值.11.(2011.湖南高考)已知向量).2,1(),sin 2cos ,(sin =-=b a θθθ(1)若a∥b,求θtan 的值;(2)若,00|,|||π<<=b a 求θ的值.12.(2011.江苏高考)已知向量]).0,[)(sin ,(cos πααα-∈=OA 向量),5,0(),1,2(-==n m 且).(n OA m -⊥(1)求向量;(2)若,0,102)cos(πβπβ<<=-求).2cos(βα-。
平面向量的数量积及应用复习一、知识要点: 1.向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角,当θ=0时,a ,b 同向,当θ=π时,a ,b 反向,当θ=2π时,a ,b 垂直。
2.平面向量的数量积:定义:已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ 叫作a 与b的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,规定零向量与任一向量的数量积为0,即0·a =0. 3.向量的数量积的性质:①设两个非零向量a ,b ,其夹角为θ,则: 0a b a b ⊥⇔•=; ②当a ,b 同向时,a •b =a b ,特别地,222,a a a a a a =•==; 当a 与b 反向时,a •b =-a b ;当θ为锐角时,a •b >0,且 a b 、不同向,0a b ⋅>是θ为锐角的必要非充分条件;当θ为钝角时,a •b <0,且 a b 、不反向,0a b ⋅<是θ为钝角的必要非充分条件;③非零向量a ,b 夹角θ的计算公式:cos a b a bθ•=;④||||||a b a b •≤。
⑤e ·a =a ·e =︱a ︱cos θ (e 为单位向量); 4.平面向量数量积的坐标表示:设向量a =(x 1,y 1),b =(x 2,y 2),θ为向量a ,b 的夹角.(1)数量积:a ·b =|a ||b |cos θ=x 1x 2+y 1y 2. (2)模:|a |=2a =x 21+y 21.(3)夹角:cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.(4)两非零向量a ⊥b 的充要条件:a ·b =0⇔x 1x 2+y 1y 2=0. (5)| a ·b |≤|a ||b |(当且仅当a ∥b 时等号成立)⇔|x 1x 2+y 1y 2|≤ x 21+y 21·x 22+y 22.5.平面向量数量积的运算律:(1) a ·b =b ·a (交换律). (2)λa ·b =λ(a b b )=a ·(λb )(结合律). (3)( a +b )·c =a ·c +b ·c (分配律). 6.重要结论:①向量垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别地()()AB AC AB AC ABACABAC+⊥-。
突破点(一) 平面向量的数量积1.向量的夹角;21.第一步,根据共线、垂直等条件计算出这两个向量的坐标,求解过程要注意方程思想的应用; 第二步,根据数量积的坐标公式进行运算即可.2.根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解.[典例] (1)设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12(2)在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°.点E 和F 分别在线段BC 和DC 上,且u u u r BE =23u u u r BC ,u u u r DF =16u u u r DC ,则u u u r AE ·u u u r AF 的值为________. [解析] (1)a +2b =(-1,2)+2(m,1)=(-1+2m,4),2a -b =2(-1,2)-(m,1)=(-2-m,3),由题意得3(-1+2m )-4(-2-m )=0,则m =-12,所以b =⎝ ⎛⎭⎪⎫-12,1,所以a ·b =-1×⎝ ⎛⎭⎪⎫-12+2×1=52. (2)取u u u r BA ,u u u r BC 为一组基底,则u u u r AE =u u u r BE -u u u r BA =23u u u r BC -u u u r BA ,u u u r AF =u u u r AB +u u u r BC +u u u r CF =-u u u r BA +u u u r BC +512u u u r BA =-712u u u r BA +u u u r BC ,∴u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫23 u u u r BC -u u u r BA ·⎝ ⎛⎭⎪⎫-712 u u u r BA +u u u r BC =712|u u u r BA |2-2518u u u r BA ·u u u r BC +23|u u u r BC |2=712×4-2518×2×1×12+23=2918. [答案] (1)D (2)2918[易错提醒](1)解决涉及几何图形的向量数量积运算问题时,一定要注意向量的夹角与已知平面角的关系是相等还是互补.(2)两向量a ,b 的数量积a ·b 与代数中a ,b 的乘积写法不同,不能漏掉其中的“·”.突破点(二) 平面向量数量积的应用 的关系1.第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数. [例1] (1)△ABC 是边长为2的等边三角形,已知向量a ,b 满足u u u r AB =2a ,u u u r AC =2a +b ,则下列结论正确的是( ) A .|b |=1 B .a ⊥b C .a ·b =1 D .(4a +b )⊥u u u r BC (2)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92B .0C .3 [解析] (1)在△ABC 中,由u u u r BC =u u u r AC -u u u r AB =2a +b -2a =b ,得|b |=2,A 错误.又u u u r AB =2a 且|u u u r AB |=2,所以|a |=1,所以a ·b =|a ||b |cos 120°=-1,B ,C 错误.所以(4a +b )·u u u r BC =(4a +b )·b =4a ·b +|b |2=4×(-1)+4=0,所以(4a +b )⊥u u u r BC ,D 正确,故选D.(2)∵(2a -3b )⊥c ,∴(2a -3b )·c =0.∵a =(k,3),b =(1,4),c =(2,1),∴2a -3b =(2k -3,-6).∴(2k -3,-6)·(2,1)=0,即(2k -3)×2-6=0.∴k =3.[答案] (1)D (2)C[易错提醒]x 1y 2-x 2y 1=0与x 1x 2+y 1y 2=0不同,前者是两向量a =(x 1,y 1),b =(x 2,y 2)共线的充要条件,后者是它们垂直的充要条件.平面向量模的相关问题利用数量积求解长度问题是数量积的重要应用,要掌握此类问题的处理方法:(1)a 2=a ·a =|a |2; (2)|a ±b |=a ±b 2=a 2±2a ·b +b 2.[例2] (1)(2017·衡水模拟)已知|a |=1,|b |=2,a 与b 的夹角为π3,那么|4a -b |=( ) A .2 B .6 C .2 3 D .12(2)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b |=________. [解析] (1)|4a -b |2=16a 2+b 2-8a ·b =16×1+4-8×1×2×cos π3=12.∴|4a -b |=2 3. (2)∵e 1·e 2=12,∴|e 1||e 2|cos e 1,e 2=12,∴e 1,e 2=60°.又∵b ·e 1=b ·e 2=1>0,∴b ,e 1=b ,e 2=30°.由b ·e 1=1,得|b ||e 1|cos 30°=1,∴|b |=132=233.[答案] (1)C (2)233 [方法技巧] 求向量模的常用方法(1)若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.(2)若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.平面向量的夹角问题第一步 由坐标运算或定义计算出这两个向量的数量积第二步 分别求出这两个向量的模第三步 根据公式cos 〈a ,b 〉=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求解出这两个向量夹角的余弦值 第四步 根据两个向量夹角的范围是[0,π]及其夹角的余弦值,求出这两个向量的夹角[例3] (1)若非零向量a ,b 满足|a |=22|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) D .π(2)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.[解析] (1)由(a -b )⊥(3a +2b ),得(a -b )·(3a +2b )=0,即3a 2-a ·b -2b 2=0.又∵|a |=223|b |,设〈a ,b 〉=θ,即3|a |2-|a ||b |cos θ-2|b |2=0, ∴83|b |2-223|b |2·cos θ-2|b |2=0.∴cos θ=22.又∵0≤θ≤π,∴θ=π4. (2)∵a 2=(3e 1-2e 2)2=9+4-2×3×2×13=9,b 2=(3e 1-e 2)2=9+1-2×3×1×13=8, a ·b =(3e 1-2e 2)·(3e 1-e 2)=9+2-9×1×1×13=8,∴cos β=a ·b |a ||b |=83×22=223.[易错提醒](1)向量a ,b 的夹角为锐角⇔a ·b >0且向量a ,b 不共线.(2)向量a ,b 的夹角为钝角⇔a ·b <0且向量a ,b 不共线.突破点(三) 平面向量与其他知识的综合问题平面向量集数与形于一体,是沟通代数、几何与三角函数的一种非常重要的工具.在高考中,常将它与三角函数问题、解三角形问题、几何问题等结合起来考查.[例1] 已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R.(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值.[解] (1)f (x )=a ·b =2cos 2x -3sin 2x =1+cos 2x -3sin 2x =1+2cos ⎝⎛⎭⎪⎫2x +π3, 令2k π≤2x +π3≤2k π+π(k ∈Z),解得k π-π6≤x ≤k π+π3(k ∈Z), 所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z). (2)∵f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,∴cos ⎝⎛⎭⎪⎫2A +π3=-1. 又0<A <π,故π3<2A +π3<7π3,∴2A +π3=π,即A =π3. ∵a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sin C .由正弦定理得2b =3c ,②由①②,可得b =3,c =2. [方法技巧]平面向量与三角函数综合问题的类型及求解思路(1)向量平行(共线)、垂直与三角函数的综合:此类题型的解答一般是利用向量平行(共线)、垂直关系得到三角函数式,再利用三角恒等变换对三角函数式进行化简,结合三角函数的图象与性质进行求解.(2)向量的模与三角函数综合:此类题型主要是利用向量模的性质|a |2=a 2,如果涉及向量的坐标,解答时可利用两种方法:一是先进行向量的运算,再代入向量的坐标进行求解;二是先将向量的坐标代入,再利用向量的坐标运算求解.此类题型主要表现为两种形式:①利用三角函数与向量的数量积直接联系;②利用三角函数与向量的夹角交汇,达到与数量积的综合.[例2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若u u u r AC ·u u u r BE =1, 则AB的长为________.(2)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF .若u u u r AE ·u u u r AF =1,则 λ的值为________. [解析] (1)设|u u u r AB |=x ,x >0,则u u u r AB ·u u u r AD =12x .又u u u r AC ·u u u r BE =(u u u r AD +u u u r AB )·(u u u r AD -12u u u r AB )=1-12x 2+14x =1,解得x =12,即AB 的长为12. (2)由题意可得u u u r AB ·u u u r AD =|u u u r AB |·|u u u r AD |cos 120°=2×2×⎝ ⎛⎭⎪⎫-12=-2, 在菱形ABCD 中,易知u u u r AB =u u u r DC ,u u u r AD =u u u r BC , 所以u u u r AE =u u u r AB +u u u r BE =u u u r AB +13u u u r AD ,u u u r AF =u u u r AD +u u u r DF =1λu u u r AB +u u u r AD , u u u r AE ·u u u r AF =⎝ ⎛⎭⎪⎫u u u r AB +13 u u u r AD ·⎝ ⎛⎭⎪⎫1λ u u u r AB +u u u r AD =4λ+43-2⎝ ⎛⎭⎪⎫1+13λ=1,解得λ=2.[答案](1)12 (2)2 [方法技巧]平面向量与几何综合问题的求解方法(1)坐标法:把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法:适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程来进行求解.[检验高考能力]一、选择题1.已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )A .-3B .-2C .1D .-1解析:选A 因为a +2b 与c 垂直,所以(a +2b )·c =0,即a ·c +2b ·c =0,所以3k +3+23=0,解得k =-3. 2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,u u u r AB =(1,-2),u u u r AD =(2,1),则u u u r AD ·u u u r AC =( )A .5B .4C .3D .2 解析:选A 由四边形ABCD 是平行四边形,知u u u r AC =u u u r AB +u u u r AD =(1,-2)+(2,1)=(3,-1),故u u u r AD ·u u u r AC =(2,1)·(3,-1)=2×3+1×(-1)=5.3.若平面向量a =(-1,2)与b 的夹角是180°,且|b |=35,则b 的坐标为( )A .(3,-6)B .(-3,6)C .(6,-3)D .(-6,3)解析:选A 由题意设b =λa =(-λ,2λ)(λ<0),而|b |=35,则-λ2+2λ2=35,所以λ=-3,b =(3,-6),故选A.4.(2016·山东高考)已知非零向量m ,n 满足4|m|=3|n|,cos 〈m ,n 〉=13,若n⊥(t m +n ),则实数t 的值为( )A .4B .-4 C.94 D .-94 解析:选B ∵n⊥(t m +n ),∴n·(t m +n )=0,即t m·n +|n |2=0,∴t|m||n|cos 〈m ,n 〉+|n |2=0.又4|m |=3|n |,∴t ×34|n|2×13+|n |2=0,解得t =-4.故选B. 5.(2016·天津高考)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则u u u r AF ·u u u r BC 的值为( )A .-58 解析:选B 如图所示,u u u r AF =u u u r AD +u u u r DF .又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以u u u r AD =12u u u r AB ,u u u r DF =12u u u r AC +14u u u r AC =34u u u r AC ,所以u u u r AF =12u u u r AB +34u u u r AC .又u u u r BC =u u u r AC -u u u r AB ,则u u u r AF ·u u u r BC =12u u u r AB +34u u u r AC ·(u u u r AC -u u u r AB )=12u u u r AB ·u u u r AC -12u u u r AB 2+34u u u r AC 2-34u u u r AC ·u u u r AB =34u u u r AC 2-12u u u r AB 2-14u u u r AC ·u u u r AB .又|u u u r AB |=|u u u r AC |=1,∠BAC =60°,故u u u r AF ·u u u r BC =34-12-14×1×1×12=18.故选B. 6.已知△ABC 为等边三角形,AB =2,设点P ,Q 满足u u u r AP =λu u u r AB ,uuu r AQ =(1-λ)u u u r AC ,λ∈R ,若uuu r BQ ·uuu r CP =-32,则λ=( )解析:选 A ∵uuu r BQ =uuu r AQ -u u u r AB =(1-λ)u u u r AC -u u u r AB ,uuu r CP =u u u r AP -u u u r AC =λu u u r AB -u u u r AC ,又uuu r BQ ·uuu r CP =-32,|u u u r AB |=|u u u r AC |=2,A =60°,u u u r AB ·u u u r AC =|u u u r AB |·|u u u r AC |cos 60°=2,∴[(1-λ)u u u r AC -u u u r AB ]·(λu u u r AB -u u u r AC )=-32,即λ|u u u r AB |2+(λ2-λ-1)u u u r AB ·u u u r AC +(1-λ)|u u u r AC |2=32,所以4λ+2(λ2-λ-1)+4(1-λ)=32,解得λ=12. 二、填空题7.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )·b ,则|c |=________.解析:由题意可得a ·b =2×1+4×(-2)=-6,∴c =a -(a ·b )·b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+-82=8 2.答案:828.已知向量a ,b 满足(2a -b )·(a +b )=6,且|a |=2,|b |=1,则a 与b 的夹角为________.解析:∵(2a -b )·(a +b )=6,∴2a 2+a ·b -b 2=6,又|a |=2,|b |=1,∴a ·b =-1,∴cos 〈a ,b 〉=a ·b |a ||b |=-12,又〈a ,b 〉∈[0,π],∴a 与b 的夹角为2π3.答案:2π39.已知a =(λ,2λ),b =(3λ,2),如果a 与b 的夹角为锐角,则λ的取值范围是________.解析:a 与b 的夹角为锐角,则a ·b >0且a 与b 不共线,则⎩⎪⎨⎪⎧3λ2+4λ>0,2λ-6λ2≠0,解得λ<-43或0<λ<13或λ>13,所以λ的取值范围是⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞.答案:⎝ ⎛⎭⎪⎫-∞,-43∪⎝ ⎛⎭⎪⎫0,13∪⎝ ⎛⎭⎪⎫13,+∞ 10.如图,菱形ABCD 的边长为2,∠BAD =60°,M 为DC 的中点,若N 为菱形内任意一点(含边界),则u u u u r AM ·u u u u r AN 的最大值为________. 解析:设u u u u r AN =λu u u r AB +μu u u r AD ,因为N 在菱形ABCD 内,所以0≤λ≤1,0≤μ≤1.u u u u r AM =u u u r AD +12u u u r DC =12u u u r AB +u u u r AD .所以u u u u r AM ·u u u u r AN =⎝ ⎛⎭⎪⎫12 u u u r AB +u u u r AD ·(λu u u r AB +μu u u r AD )=λ2u u u r AB 2+⎝ ⎛⎭⎪⎫λ+μ2u u u r AB ·u u u r AD +μu u u r AD 2=λ2×4+⎝ ⎛⎭⎪⎫λ+μ2×2×2×12+4μ=4λ+5μ.所以0≤u u u u r AM ·u u u u r AN ≤9,所以当λ=μ=1时,u u u u r AM ·u u u u r AN 有最大值9,此时,N 位于C 点.答案:9三、解答题11.在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝ ⎛⎭⎪⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解:(1)若m ⊥n ,则m ·n =0.由向量数量积的坐标公式得22sin x -22cos x =0,∴tan x =1. (2)∵m 与n 的夹角为π3,∴m ·n =|m ||n |cos π3=1×1×12=12,即22sin x -22cos x =12, ∴sin ⎝ ⎛⎭⎪⎫x -π4=12.又∵x ∈⎝⎛⎭⎪⎫0,π2,∴x -π4∈⎝ ⎛⎭⎪⎫-π4,π4,∴x -π4=π6,即x =5π12. 12.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m ·n =sin 2C .(1)求角C 的大小; (2)若sin A ,sin C ,sin B 成等差数列,且u u u r CA ·(u u u r AB -u u u r AC )=18,求边c 的长.解:(1)m ·n =sin A ·cos B +sin B ·cos A =sin(A +B ),对于△ABC ,A +B =π-C,0<C <π,∴sin(A +B )=sin C ,∴m ·n =sin C ,又m ·n =sin 2C ,∴sin 2C =sin C ,cos C =12,C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b . ∵u u u r CA ·(u u u r AB -u u u r AC )=18,∴u u u r CA ·uuu r CB =18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab ,∴c 2=4c 2-3×36,c 2=36,∴c =6.。
平面向量数量积(讲案)一、平面向量数量积【知识点】1. 向量的夹角:已知两个非零向量,a b ,记,OA a OB b ==,则(0180)AOB θθ∠=︒≤≤︒叫做a 与b 的夹角。
2. 数量积的定义:已知两个非零向量,a b ,它们的夹角为θ,则||||cos a b θ叫做a 与b 的数量积,记作a b ⋅,即||||cos a b a b θ⋅=。
3. 数量积的几何意义:数量积a b ⋅等于a 的模与b 在a 的方向上的投影||cos b θ的乘积。
4. 平面向量数量积的性质:两个非零向量,a b ,e 是与b 方向相同的单位向量,θ是a 与e 的夹角,则:①||cos a e e a a θ⋅=⋅= ②0a b a b ⊥⇔⋅=③ 当a 与b 方向相同时,||||a b a b ⋅=,特别地2||||a a a a ==⋅;当a 与b 方向相反时,||||a b a b ⋅=- ④cos ||||a ba b θ⋅=⑤ ||||||a b a b ⋅≤5. 平面向量数量积的坐标表示:设1122(,),(,)a x y b x y ==,它们的夹角为θ,则: ①1212a b x x y y ⋅=+ ②21||a x y =+③cos θ=④121200a b a b x x y y ⊥⇔⋅=⇔+= 【例题讲解】★☆☆例题1.已知(1,1),(1,2)a b =-=-,则(2)a b a +⋅=( )A. -1B. 0C. 1D. 2答案:C解析:(2)(1,0)(1,1)1a b a +⋅=⋅-=★☆☆练习1.在平面直角坐标系中,已知四边形ABCD 是平行四边形,(1,2),(2,1)AB AD =-=,则AD AC ⋅=()A. 5B. 4C. 3D. 2答案:A解析:因为四边形ABCD 是平行四边形,所以AC AB AD =+,()(2,1)(3,1)5AD AC AD AB AD ⋅=⋅+=⋅-=★☆☆练习2.已知(1,3),(3,1)a b ==,则a 与b 夹角的大小为 . 答案:30︒ 3,2||||a b a b a b ⋅<>==⋅,,30a b >=︒ ★☆☆例题2. 设,x y R ∈,(,1),(1,),(2,4)a x b y c ===-,且,//a c b c ⊥,则||a b +=( )A.B.10C. D. 10答案:B 解析:,//2,2a c b c x y ⊥∴==-(2,1)(1,2)(3,1),||10a b a b +=+-=-+=★★☆练习1. 设向量,a b 满足||10,||6a b a b +=-=,则a b ⋅=( )A. 1B. 2C. 3D. 5答案:A解析:使用极化恒等式221[()()]14a b a b a b ⋅=+--= ★★☆练习2. 若非零向量,a b 满足||3|||2|a b a b ==+,则,a b 夹角的余弦值为 。
平面向量的数量积及其应用自主梳理1.向量数量积的定义 (1)向量数量积的定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量___.|a ||b |cos θ_____叫做a 和b 的数量积(或内积),记作__ a ·b =|a ||b |cos θ_____,其中向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影。
投影的绝对值称为射影;注意 在两向量的夹角定义,两向量必须是同起点的,范围0︒≤θ≤180︒。
规定:零向量与任一向量的数量积为___ 0_____. 即00a ⋅= (2)平面向量数量积的几何意义数量积a·b 等于a 的长度|a |与b 在a 的方向上的投影____|b |cos θ_____的乘积.(3) 平面向量数量积的重要性质: ①如果e 是单位向量,则a·e =e·a =__ |a |cos θ________; ②非零向量a ,b ,a ⊥b ⇔____a·b =0____________; ③当a 与b 同向时,a·b =__|a||b|___;(两个非零向量a 与b 垂直的充要条件是__ a·b =0__) 当a 与b 反向时,a·b =__-|a||b|______,a·a =__ a 2___=_|a |2___,|a |=___a·a ____; (两个非零向量a 与b 平行的充要条件是__ a·b =±|a||b|___)④cos θ=__a·b |a||b|________;⑤|a·b |_≤___|a||b |.2.向量数量积的运算律 (1)交换律:a·b =__ b·a ______; (2)分配律:(a +b )·c =___________ a·c +b·c _____; (3)数乘向量结合律:(λa )·b =__λ(a ·b )______________.3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(x 1,y 1),b =(x 2,y 2), 则a ·b = x 1x 2+y 1y(2) 设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔ x 1x 2+y 1y 2=0 . (3) 设两个非零向量a ,b ,a =(x 1,y 1),b =(x 2,y 2),则 cos θ=121222221122x y x y +⋅+_____.C(4)若a =(x ,y ),则|a |2= 22x y + 或|a |=x 2+y 2 .(5)若A (x 1,y 1),B (x 2,y 2),则 AB →=______(x 2-x 1,y 2-y 1) ___,所以|AB →|=______222121x -x )+y -y )((_____.点评:1.向量的数量积是一个实数两个向量的数量积是一个数量,这个数量的大小与两个向量的长度及其夹角的余弦值有关,在运用向量的数量积解题时,一定要注意两向量夹角的范围. 2.a·b =0不能推出a =0或b =0,因为a·b =0时,有可能a ⊥b .3.一般地,(a·b )c ≠(b·c )a 即乘法的结合律不成立.因a·b 是一个数量,所以(a·b )c 表示一个与c 共线的向量,同理右边(b·c )a 表示一个与a 共线的向量,而a 与c 不一定共线,故一般情况下(a·b )c ≠(b·c )a .4.a·b =a·c (a ≠0)不能推出b =c ,即消去律不成立.5.向量夹角的概念要领会,比如正三角形ABC 中,〈AB →,BC →〉应为120°,而不是60°.自我检测1.已知向量a 和向量b 的夹角为135°,|a |=2, |b |=3,则向量a 和向量b 的数量积a·b =___-32 _____.2.在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .163.已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 B 2(22)a b a b -=-=2244a a b b -⋅+=8=2 2.4.已知a ⊥b ,|a |=2,|b |=3,且3a +2b 与λa -b 垂直,则实数λ的值为___32_____.5.已知a =(2,3),b =(-4,7),则a 在b 方向上的投影为___655___. 6.设a ,b ,c 是任意的非零向量,且相互不共线,则下列命题正确的有____②④____ ①(a·b )c -(c·a )b =0;②|a |-|b |<|a -b |;③(b·c )a -(a·c )b 不与c 垂直;④(3a +4b )·(3a -4b )=9|a |2-16|b |2.7.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 8.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.题型一 平面向量的数量积的运算例1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是________.2(2)如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →, |AD →|=1,则AC →·AD →等于( ) A.2 3B.32C.33D . 3解法1基底法: ∵BC →=3BD →,∴AC →=BC →-BA →=3BD →-BA →=3(AD →-AB →)+AB → =3AD →+(1-3)AB →. 又AD ⊥AB ,|AD →|=1.∴AC →·AD →=3AD 2→+(1-3)AB →·AD →= 3.法2定义法设BD =a ,则BC =3a ,作CE ⊥BA 交的延长线于E ,可知∠DAC =∠ACE , 在Rt △ABD 与Rt △BEC 中, Rt △ABD ∽Rt △BEC 中,BD ADBC EC=,CE =3, ∴cos ∠DAC =cos ∠ACE =3AC.∴AD →·AC →=|AD →|·|AC →|cos ∠DAC =|AD →|·|AC →| cos ∠ACE = 3.法3坐标法变式训练1 (1)若向量a 的方向是正南方向,向量b 的方向是正东方向,且|a |=|b |=1,则 (-3a )·(a +b )=___-3___.(2)如下图,在ABC △中,3==BC AB ,︒=∠30ABC ,AD 是边BC 上的高,则AC AD ⋅的值等于 ( ) A .0B .49C .4D .49-【思路点拨】充分利用已知条件的3==BC AB ,︒=∠30ABC ,借助数量积的定义求出. 【答案】B 【解析】因为3==AC AB ,︒=∠30ABC ,AD 是边BC 上的高,23=AD 29cos 4AD AC AD AC CAD AD ⋅=⋅∠==.(3)设向量a ,b ,c 满足|a|=|b|=1,a·b =-12,〈a -c ,b -c 〉=60°,则|c|的最大值等于( )A .2 B.3 C.2 D .1 【解析】 ∵a·b =-12,且|a|=|b|=1,∴cos 〈a ,b 〉=a·b |a|·|b|=-12.∴〈a ,b 〉=120°.如图所示,将a ,b ,c 的起点平移至同一点O ,则a -c =CA →,b -c =CB →,∠ACB =60°,于是四 点A ,O ,B ,C 共圆,即点C 在△AOB 的外接圆上,故当OC 为直径时,|c|取最大值.由余弦定理,得AB =OA 2+OB 2-2·OA·OB·cos 〈a ,b 〉=3,由正弦定理,得2R =ABsin 120°=2,即|c|的最大值为2.题型二 向量的夹角与向量的模例2 已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ; (2)求|a +b |; (3)若AB →=a ,BC →=b ,求△ABC 的面积. 例2 解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61,∴a·b =-6. ∴cos θ=a·b |a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积.|a +b |2=(a +b )2=|a |2+2a·b +|b |2=42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.变式训练2 (1)已知平面向量α,β,|α|=1,β=(2,0),α⊥(α-2β),求|2α+β|的值; (2)已知三个向量a 、b 、c 两两所夹的角都为120°,|a |=1,|b |=2,|c |=3,求向量a +b +c 与向量a 的夹角.解 (1)∵β=(2,0),∴|β|=2,又α⊥(α-2β), ∴α·(α-2β)=α2-2α·β=1-2α·β=0.∴α·β=12.∴(2α+β)2=4α2+β2+4α·β=4+4+2=10.∴|2α+β|=10.(2)由已知得(a +b +c )·a =a 2+a·b +a·c =1+2cos 120°+3cos 120°=-32,|a +b +c |=a +b +c2=a 2+b 2+c 2+2a·b +2a·c +2b·c=1+4+9+4cos 120°+6cos 120°+12cos 120°= 3.设向量a +b +c 与向量a 的夹角为θ,则cos θ=a +b +c ·a |a +b +c ||a |=-323=-32,即θ=150°,故向量a +b +c 与向量a 的夹角为150°.(3)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.(4)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________解 以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =y .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,y ), P A →=(2,-y ),PB →=(1,a -y ), ∴P A →+3PB →=(5,3a -4y ), |P A →+3PB →|2=25+(3a -4y )2,∵点P 是腰DC 上的动点,∴0≤y ≤a ,因此当y =34a 时,|P A →+3PB →|2的最小值为25,∴|P A →+3PB →|的最小值为5.题型三 平面向量的垂直问题例3 已知a =(cos α,sin α),b =(cos β,sin β)(0<α<β<π). (1)求证:a +b 与a -b 互相垂直;(2)若k a +b 与a -k b 的模相等,求β-α.(其中k 为非零实数) (1)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2 =(cos 2α+sin 2α)-(cos 2β+sin 2β)=0, ∴a +b 与a -b 互相垂直.(2)解 k a +b =(k cos α+cos β,k sin α+sin β), a -k b =(cos α-k cos β,sin α-k sin β),|k a +b ||a -k b |∵|k a +b |=|a -k b |,∴2k cos(β-α)=-2k cos(β-α). 又k ≠0,∴cos(β-α)=0.而0<α<β<π,∴0<β-α<π,∴β-α=π2.变式训练3 (1) 已知平面向量a =(3,-1),b =⎝⎛⎭⎫12,32.①证明:a ⊥b ;② 若存在不同时为零的实数k 和t ,使c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,试求函数关系式k =f (t ).① 证明 ∵a·b =3×12-1×32=0,∴a ⊥b .②解 ∵c =a +(t 2-3)b ,d =-k a +t b ,且c ⊥d ,∴c·d =[a +(t 2-3)b ]·(-k a +t b )=-k a 2+t (t 2-3)b 2+[t -k (t 2-3)]a·b =0, 又a 2=|a |2=4,b 2=|b |2=1,a·b =0,∴c·d =-4k +t 3-3t =0,∴k =f (t )=t 3-3t4(t ≠0).(2) 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).① 求证:a +b 与a -b 垂直; ②用k 表示a ·b ; ③ 求a ·b 的最小值以及此时a 与b 的夹角θ.点拨: 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 ①由题意得,|a |=|b |=1,∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直.②|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b .由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b , 从而有,a ·b =1+k 24k (k >0).③由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.(3)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β). ① 若a 与b -2c 垂直,求tan(α+β)的值; ②求|b +c |的最大值;③ 若tan αtan β=16,求证:a ∥b . ① 解 因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.②解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=22sin cos )(4cos 4sin )ββββ++-( =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.③证明 由tan αtan β=16得sin sin 16cos cos αβαβ=即16cos cos sin sin 0αβαβ-=所以a ∥b .(4)如图4-4-1所示,在等腰直角三角形ABC 中,∠ACB =90°,CA =CB ,D 为BC 的中点,E 是AB 上的一点,且AE =2EB .求证:AD ⊥CE . 解 AD →·CE →=(AC →+12CB →)·(CA →+23AB →)=-|AC →|2+12CB →·CA →+23AB →·AC →+13AB →·CB →=-|AC →|2+12|CB →||CA →|cos 90°+223|AC →|2cos 45°+23|AC →|2cos 45°=-|AC →|2+|AC →|2=0, ∴AD →⊥CE →,即AD ⊥CE .,(5) 在△ABC 中,AB =(2, 3),=(1, k ),且△ABC 的一个内角为直角,求k 值解:当A = 90︒时,AB ⋅= 0,∴2×1 +3×k = 0 ∴k =23-当B = 90︒时,AB ⋅= 0,=-AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k =311当C= 90︒时,⋅= 0,∴-1 + k (k -3) = 0 ∴k =2133±题型四 向量的数量积在三角函数中的应用例4 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |, ∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.变式迁移4 (1)已知△ABC 的面积S , 12AB →·AC →=3S ,且cos B =35,求cos C .解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A12AB →·AC →=12bc cos A =3S =32bc sin A >0, ∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1, ∴sin A =1010,cos A =31010. 由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010. ∴cos C =cos[π-(A +B )]=-1010. (2).已知△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,G 是△ABC 的重 心,且56sin A ·GA +40sin B ·GB +35sin C ·GC =0. (1)求角B 的大小;(2)设m =(sin A ,cos 2A ),n =(4k,1)(k >1),m ·n 的最大值为5,求实数k 的值. 解:(1)由G 是△ABC 的重心,得GA +GB +GC =0, ∴GC =-(GA +GB),由正弦定理,可将已知等式转化为GA +40b GB +35c (-GA -GB)=0a ⋅⋅⋅56整理,得(56a -35c )·GA +(40b -35c )·GB =0. ∵GA ,GB 不共线,∴⎩⎪⎨⎪⎧56a -35c =0,40b -35c =0.由此,得a ∶b ∶c =5∶7∶8.不妨设a =5,b =7,c =8,由余弦定理, 得cos B =a 2+c 2-b 22ac =52+82-722×5×8=12.∵0<B <π,∴B =π3.(2)m ·n =4k sin A +cos 2A =-2sin 2A +4k sin A +1,由(1)得B =π3,所以A +C =23π,故得A ∈⎝⎛⎭⎫0,2π3. 设sin A =t ∈(0,1],则m ·n =-2t 2+4kt +1,t ∈(0,1].令f (t )=-2t 2+4kt +1,则可知当t ∈(0,1],且k >1时,f (t )在(0,1]上为增函数,所以,当t =1时,m ·n 取得最大值5.于是有:-2+4k +1=5,解得k =32,符合题意,所以,k =32.(3)已知等边三角形ABC 的边长为2,⊙A 的半径为1,PQ 为⊙A 的任意一条直径,①判断BP CQ AP CB ⋅-⋅的值是否会随点P 的变化而变化,请说明理由;②求BP CQ ⋅的最大值。