材料力学复习资料公式大全
- 格式:doc
- 大小:139.00 KB
- 文档页数:6
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。
在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。
1. 应力和应变。
在材料力学中,应力和应变是最基本的概念。
应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。
其中,F为受力,A为受力面积。
应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。
其中,ΔL为长度变化量,L为原始长度。
2. 弹性模量。
弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。
3. 餐极限。
屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。
4. 断裂韧性。
断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。
其中,σ为应力,c为裂纹长度。
5. 疲劳强度。
疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。
6. 塑性体积变形。
塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。
其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。
7. 岛壳理论。
岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。
其中,P为受力,A为受力面积。
8. 塑性流动理论。
塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。
其中,ε0为初始应变,εf为终止应变。
以上就是一些常用的材料力学公式,希望对大家有所帮助。
在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。
材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
材料力学基本公式材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在材料力学中,有一些基本公式是我们必须要掌握的,它们是我们研究材料力学问题的基础。
接下来,我们将介绍一些材料力学中的基本公式。
一、胡克定律。
胡克定律是材料力学中最基本的定律之一,它描述了弹性体在小应变下的应力和应变之间的线性关系。
胡克定律的数学表达式为:\[ \sigma = E \varepsilon \]其中,\( \sigma \) 表示应力,单位为帕斯卡(Pa);\( E \) 表示杨氏模量,单位为帕斯卡(Pa);\( \varepsilon \) 表示应变,无量纲。
二、泊松比。
泊松比是描述材料在拉伸或压缩过程中横向变形与纵向变形之间的比值。
泊松比的数学表达式为:\[ \mu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,\( \mu \) 表示泊松比,无量纲;\( \varepsilon_{y} \) 表示横向应变;\( \varepsilon_{x} \) 表示纵向应变。
三、胡克定律的广义表达式。
在实际工程中,材料的应力和应变往往不只是单向的,而是多维的。
这时,我们可以使用胡克定律的广义表达式来描述材料的应力和应变之间的关系:\[ \sigma_{ij} = C_{ijkl} \varepsilon_{kl} \]其中,\( \sigma_{ij} \) 表示应力张量;\( C_{ijkl} \) 表示弹性常数张量;\( \varepsilon_{kl} \) 表示应变张量。
四、杨氏模量和泊松比的关系。
材料的杨氏模量和泊松比之间存在着一定的关系,它们之间的关系可以用下面的公式表示:\[ E = 2G(1+\mu) \]其中,\( E \) 表示杨氏模量;\( G \) 表示剪切模量;\( \mu \) 表示泊松比。
五、拉伸应力和应变的关系。
材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。
在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。
本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。
1. 应力公式。
在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。
2. 应变公式。
应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。
3. 弹性模量公式。
弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。
在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。
5. 剪切应变公式。
剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。
6. 泊松比公式。
泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。
7. 弯曲应力公式。
在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。
8. 弯曲应变公式。
弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。
材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。
常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。
下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。
2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。
3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。
4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。
其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。
5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。
6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。
7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。
8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
1.外力偶矩计算公式 P功率,n转速2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式杆件横截面轴力F N,横截面面积A,拉应力为正4.轴向拉压杆斜截面上的正应力与切应力计算公式夹角a 从x轴正方向逆时针转至外法线的方位角为正5.6.纵向变形和横向变形拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d17.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力, 脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律切变模量G,切应变g19.拉压弹性模量E、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩a实心圆21.b空心圆22.圆轴扭转时横截面上任一点切应力计算公式扭矩T,所求点到圆心距离r23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,a实心圆25. b空心圆26.薄壁圆管壁厚δ≤ R0 /10 ,R0为圆管的平均半径扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同如阶梯轴时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力, ,38.三向应力状态最大与最小正应力 ,39.三向应力状态最大切应力40.广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z和轴y的惯性半径,48.平行移轴公式形心轴z c与平行轴z1的距离为a,图形面积为A49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数, ,52.几种常见截面的最大弯曲切应力计算公式为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸压缩66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.弯拉扭或弯压扭组合作用时强度计算公式70.剪切实用计算的强度条件71.挤压实用计算的强度条件72.等截面细长压杆在四种杆端约束情况下的临界力计算公式73. 压杆的约束条件:a 两端铰支 μ=l74. b 一端固定、一端自由 μ=2 75. c 一端固定、一端铰支 μ=0.7 76. d 两端固定 μ=0.577. 压杆的长细比或柔度计算公式 ,78. 细长压杆临界应力的欧拉公式79. 欧拉公式的适用范围80. 压杆稳定性计算的安全系数法81. 压杆稳定性计算的折减系数法82.关系需查表求得3 截面的几何参数序号 公式名称 公式 符号说明3.1截面形心位置AzdA z Ac⎰=,AydA y Ac⎰=Z 为水平方向 Y 为竖直方向3.2截面形心位置∑∑=ii i c A A z z , ∑∑=ii i c A A y y3.3 面积矩 ⎰=AZ ydA S ,⎰=Ay zdA S3.4 面积矩 i i z y A S ∑=,i i y z A S ∑=3.5截面形心位置A S z yc =,ASy z c =4 应力和应变5 应力状态分析2 内力和内力图6 强度计算7 刚度校核8 压杆稳定性校核10 动荷载9 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、拉压 []σσ≤=maxmax AN2、剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I Mzt③[]ττ≤⋅=bI S Q z *max z max max 5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉压弯组合 []σσ≤+=maxmax zW M A N注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n2wr34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2w r475.03W M M二、变形及刚度条件 1、拉压 ∑⎰===∆LEAxx N EAL N EANLL d )(ii 2、扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L m / 3、弯曲1积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)( 2叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…3基本变形表注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθ4弹性变形能注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出EI L M U 22==i i i EI L M 22∑=()⎰EIdx x M 22 5卡氏第二定理注:只给出线性弹性弯曲梁的公式 三、应力状态与强度理论1、二向应力状态斜截面应力2、二向应力状态极值正应力及所在截面方位角 3、二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为4504、三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律 1、表达形式之一用应力表示应变2、表达形式之二用应变表示应力 6、三向应力状态的广义胡克定律 7、强度理论1[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=2[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s s n σσ=8、平面应力状态下的应变分析1αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫ ⎝⎛---++=xy y x y x +-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫ ⎝⎛-xy 222min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式若把直杆分为三类①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆 s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式 i Lμλ= p 2p σπλE= ba s s σλ-=3、惯性半径公式AI i z =圆截面 4di z =,矩形截面12min b i =b 为短边长度五、动载荷只给出冲击问题的有关公式 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK 自由落体冲击 st20d ∆=g v K 水平冲击 六、截面几何性质1、 惯性矩以下只给出公式,不注明截面的形状⎰=dA I P 2ρ=324d π ()44132απ-D D d =α2、惯性矩平移轴公式。
材料⼒学公式⼤全(值得收藏)
1、轴向拉伸与压缩强度条件
2、切应⼒强度条件
3、泊松⽐
4、轴向拉伸和压缩的胡克定律
5、挤压强度条件
6、外⼒偶矩
7、薄壁圆筒横截⾯上的切应⼒
8、剪切胡克定律
9、弹性模量、泊松⽐、剪切弹性模量的关系
10、圆轴扭转的切应⼒
Ip为极惯性矩
11、圆轴扭转的最⼤切应⼒(Wt抗扭截⾯系数)
12、扭转强度条件
13、圆轴扭转时的变形及刚度计算
14、载荷集度、剪⼒和弯矩关系
15、弯曲正应⼒公式
Iz为惯性矩(常⽤型钢查表可得)
16、最⼤弯曲正应⼒
Wz为抗弯截⾯模量。
17、常见截⾯的I Z 和WZ
18、梁在弯曲变形下的微分⽅程
19、⼴义胡克定律的⼀般形式
20、最⼤拉应⼒理论(第⼀强度理论)
21、最⼤伸长线应变理论(第⼆强度理论)
22、最⼤切应⼒理论(第三强度理论)
23、畸变能密度理论(第四强度理论)
24、欧拉公式的普遍形式(适⽤于细长杆)
临界应⼒
25、细长杆稳定的临界压⼒
26、压杆柔度
27、中⼩柔度杆临界应⼒经验公式(系数a、b查表)
28、平⾯图形形⼼坐标
29、静矩
30、惯性积
31、平⾏移轴公式
32、转轴公式
33、主惯性矩公式。
材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
1.外力偶矩计算公式(P功率,n转速)
2.弯矩、剪力和荷载集度之间的关系式
3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面
积A,拉应力为正)
4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至
外法线的方位角为正)
5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,
拉伸后试样直径d1)
6.纵向线应变和横向线应变
7.泊松比
8.胡克定律
9.受多个力作用的杆件纵向变形计算公式?
10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力,脆性材料,塑性材料
13.延伸率
14.截面收缩率
15.剪切胡克定律(切变模量G,切应变g )
16.拉压弹性模量E、泊松比和切变模量G之间关系式
17.圆截面对圆心的极惯性矩(a)实心圆
(b)空心圆
18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)
19.圆截面周边各点处最大切应力计算公式
20.扭转截面系数,(a)实心圆
(b)空心圆
21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式
22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式
23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时
或
24.等直圆轴强度条件
25.塑性材料;脆性材料
26.扭转圆轴的刚度条件? 或
27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,
28.平面应力状态下斜截面应力的一般公式
,
29.平面应力状态的三个主应力,
,
30.主平面方位的计算公式
31.面内最大切应力
32.受扭圆轴表面某点的三个主应力,,
33.三向应力状态最大与最小正应力 ,
34.三向应力状态最大切应力
35.广义胡克定律
36.四种强度理论的相当应力
37.一种常见的应力状态的强度条件,
38.组合图形的形心坐标计算公式,
39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和
的关系式
40.截面图形对轴z和轴y的惯性半径? ,
41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)
42.纯弯曲梁的正应力计算公式
43.横力弯曲最大正应力计算公式
44.矩形、圆形、空心圆形的弯曲截面系数? ,,
45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z
的静矩,b为横截面在中性轴处的宽度)
46.矩形截面梁最大弯曲切应力发生在中性轴处
47.工字形截面梁腹板上的弯曲切应力近似公式
48.轧制工字钢梁最大弯曲切应力计算公式
49.圆形截面梁最大弯曲切应力发生在中性轴处
50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处
51.弯曲正应力强度条件
52.几种常见截面梁的弯曲切应力强度条件
53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或
,
54.梁的挠曲线近似微分方程
55.梁的转角方程
56.梁的挠曲线方程?
57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算
公式
58.偏心拉伸(压缩)
59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式
,
60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为
61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式
62.
63.弯拉扭或弯压扭组合作用时强度计算公式
64.剪切实用计算的强度条件
65.挤压实用计算的强度条件
66.等截面细长压杆在四种杆端约束情况下的临界力计算公式
67.压杆的约束条件:(a)两端铰支μ=l
(b)一端固定、一端自由μ=2
(c)一端固定、一端铰支μ=0.7
(d)两端固定μ=0.5
68.压杆的长细比或柔度计算公式,
69.细长压杆临界应力的欧拉公式
70.欧拉公式的适用范围
71.压杆稳定性计算的安全系数法
72.压杆稳定性计算的折减系数法
73.关系需查表求得。