微积分常用公式总结
- 格式:ppt
- 大小:308.50 KB
- 文档页数:10
高等数学常用微积分公式一、极限1.无穷大与无穷小:当x→∞时,若极限值L=0,则称函数f(x)是无穷小。
常见无穷小有:x→0时的无穷小o(x)、无穷次可导的无穷小O(x^n);当x→∞时,若极限值L≠0或不存在,则称函数f(x)是无穷大;2.函数极限:若函数f(x)当x→a时的极限存在稳定的常数L,则称L为f(x)当x→a时的极限,记作:lim(x→a) f(x) = L;3.等价无穷小:若 f(x) 和 g(x) 都是x→a 时的无穷小,并且lim(x→a)(f(x)/g(x))=1,则称 f(x) 和 g(x) 是x→a 时的等价无穷小。
二、导数1.导数的定义:若函数f(x)在点x处的函数值可近似表示为f(x+Δx)≈f(x)+f'(x)Δx,其中f'(x)为f(x)在点x处的导数,则称f'(x)是函数f(x)在点x处的导数。
2.常见函数的导数:(1)和差法则:(u±v)'=u'±v';(2)乘法法则:(u*v)'=u'*v+u*v';(3)除法法则:(u/v)'=(u'*v-u*v')/v^2,其中v≠0;(4) 链式法则:若 y=f(u),u=g(x) ,则 y=f(g(x)) 的导数为dy/dx = f'(u)*g'(x)。
3.高阶导数:函数f(x)的导数f'(x)的导数称为f(x)的二阶导数,记为f''(x)。
可以依此类推,得到函数f(x)的n阶导数f^(n)(x)。
三、微分1.微分的定义:函数 f(x) 在点 x 处的微分记为 dx,根据导数的定义,有 df(x) = f'(x)dx。
2.微分的性质:(1)常数微分:d(c)=0,其中c为常数;(2) 取单项微分:d(x^n) = nx^(n-1)dx,其中 n 为实数,x 为变量;(3) 和差微分:d(u ± v) = du ± dv;(4) 乘法微分:d(uv) = u*dv + v*du;(5) 除法微分:d(u/v) = (v*du - u*dv)/v^2,其中v ≠ 0;(6) 复合函数微分:若 y=f(u),u=g(x),则 dy = f'(u)du =f'(g(x))g'(x)dx。
微积分基本公式16个1. 微分:微分是数学中最重要的概念之一,它指的是在一定时间内几何形状的变化率。
可以理解为小步长地移动拟合函数,接近曲线本身。
可以表示为\frac{dy}{dx} 或f'(x) 。
2. 泰勒公式:泰勒公式是一个重要的微积分工具,它可以在某一特定点附近对任意连续函数进行展开,也就是说任意设定一个位置x0,可以根据它附近的数值向量求出函数在该位置的平均值。
可以用公式表示为:f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)(x-x_0)^2}{2!} + \frac{f^{n}(x_0)(x-x_0)^n}{n!} + ...3. 高斯积分公式:高斯积分是指将函数抽象为一次多项式曲线,采用指数型或线性型积分方法求解积分。
它可以用公式f(x)=\sum_{i=0}^n a_i x^i 表示,其中a_i为积分下限、上限和积分点x_i处函数值相乘所得到的系数。
4. 黎曼积分:黎曼积分是一种常用的积分方法,它通过对连续函数求和,来确定函数在给定区间上的定积分。
可以用公式表示为:\int_{a}^{b}f(x)dx=\sum_{i=1}^{n}f(x_i)\Delta x_i ,其中n为梯形的节点数。
5. Stokes公式:Stokes公式是一种将多变量函数投影到多方向进行积分的方法,可以用公式表示为:\int_{\Omega}\nabla\times{\bf F} dA =\int_{\partial\Omega}{\bf F}\cdot{\bf n}dS,其中\nabla\times{\bf F} 为梯度矢量场,\partial\Omega 为边界,{\bfn}dS 为单位向量与边界面积的乘积。
6. Γ函数:Γ函数是一种重要的数学函数,通常用来表示非负整数的排列组合,也可以表示实数的阶乘,可以用公式表示为:\Gamma(x)=\int_0^{\infty}t^{x-1}e^{-t}dt7. 方阵的行列式:方阵的行列式是指一个n阶矩阵的行列式,可以用公式表示为:D= |a_{i,j}| = \begin{vmatrix} a_{1,1} & a_{1,2} & ... & a_{1,n} \\ a_{2,1} & a_{2,2} & ... & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & ... & a_{n,n} \end{vmatrix} ,其中a_{i,j} 为矩阵中的元素。
微积分的公式大全微积分(Calculus)是数学中的一个分支,研究函数的变化率以及与函数相关的一些重要概念,如极限、导数、积分等。
本文将为你介绍微积分中的一些重要公式。
在开始之前,我们先定义一些符号:-f(x)表示一个函数-a表示一个常数- dx 表示自变量的微增量,通常取极小值- dy 表示函数的微增量,即f(x+dx)-f(x)下面是一些微积分中常用的公式:1.极限- 极限定义:lim(x->a) f(x) = L,表示当自变量 x 接近 a 时,函数 f(x) 的值接近 L。
-基本极限:a. lim(x->a) = a,表示当 x 接近 a 时,常数 a 的值保持不变b. lim(x->a) x^n = a^n,表示当 x 接近 a 时,幂函数的值保持不变c. lim(x->a) sinx = sin a,表示当 x 接近 a 时,正弦函数的值保持不变d. lim(x->a) cosx = cos a,表示当 x 接近 a 时,余弦函数的值保持不变e. lim(x->a) ex = e^a,表示当 x 接近 a 时,指数函数的值保持不变2.导数- 导数定义:f'(x) = lim(dx->0) dy/dx = lim(dx->0) [f(x+dx)-f(x)]/dx,表示函数 f(x) 在 x 处的变化率。
-基本导数:a.(c)'=0,表示一个常数c的导数为0b. (x^n)' = nx^(n-1),表示一个幂函数 x^n 的导数c. (sinx)' = cosx,表示正弦函数的导数d. (cosx)' = -sinx,表示余弦函数的导数e.(e^x)'=e^x,表示指数函数的导数f. (lnx)' = 1/x,表示自然对数函数的导数g. (a^x)' = ln(a) * a^x,表示以 a 为底的指数函数的导数3.积分- 积分定义:∫[a, b] f(x) dx = lim(n->∞) Σ f(xi)Δx,表示在区间 [a, b] 上函数 f(x) 的累积增量。
常用微积分公式大全微积分是数学的一个重要分支,它研究了函数的导数、积分以及它们之间的关系。
微积分公式是求导和积分的基本工具,以下是一些常用的微积分公式:1.基本导数法则:-导数和差法则:(f+g)'=f'+g'-常数倍法则:(c*f)'=c*f'-乘积法则:(f*g)'=f'*g+f*g'-商法则:(f/g)'=(f'*g-f*g')/g^22.基本函数的导数:-非常数次幂:(x^n)'=n*x^(n-1)- 幂函数:(a^x)' = ln(a) * a^x-自然指数函数:(e^x)'=e^x- 对数函数:(log_a x)' = 1 / (x ln(a))3. 链式法则:如果 y = f(u) 和 u = g(x) 是可导函数,那么复合函数 y = f(g(x)) 的导数为 dy/dx = (dy/du) * (du/dx)4.高阶导数:如果f'(x)存在,则f''(x)表示f'(x)的导数,称为f(x)的二阶导数。
同理,f''(x)的导数称为f(x)的三阶导数,以此类推。
5.基本积分法则:- 恒等积分:∫(c dx) = c*x + C- 幂函数积分:∫(x^n dx) = (1/(n+1)) * x^(n+1) + C- 自然指数函数积分:∫(e^x dx) = e^x + C- 对数函数积分:∫(1/x dx) = ln,x, + C6. 替换法则:如果∫(f(g(x)) g'(x) dx) 可以被积分,则∫(f(u) du) = ∫(f(g(x)) g'(x) dx)7. 定积分:∫[a,b] f(x) dx 表示函数 f(x) 在区间 [a,b] 上的定积分,表示曲线围成的面积。
8.收敛性和发散性:如果一个定积分存在有限的数值,那么它是收敛的;如果一个定积分没有有限的数值,那么它是发散的。
微积分—基本积分公式微积分是数学的一个重要分支,主要研究变化和量的关系。
其中积分是微积分的一个基本概念,它用于求解函数曲线下面的面积,以及函数的反导数。
在微积分中,有一些基本的积分公式是非常重要的,通过这些公式,我们可以简化积分计算的过程。
1.常数积分公式:∫k*dx = kx + C这个公式表示对于任何常数k,对其进行积分,得到的结果是k乘以自变量x再加上一个常数C。
2.幂函数积分公式:∫x^n*dx = (x^(n+1))/(n+1) + C (n≠-1)这个公式适用于幂函数的积分,其中n为任意实数。
对于幂函数的积分,可以将指数n加1后再除以(n+1),然后加上一个常数C。
3.指数函数积分公式:∫e^x*dx = e^x + C这个公式对于指数函数e^x的积分非常简单,积分结果直接是e^x再加上一个常数C。
4.对数函数积分公式:∫1/x*dx = ln,x, + C这个公式适用于1/x形式的函数的积分,其中ln表示自然对数。
对于1/x的积分,结果是ln取绝对值后再加上一个常数C。
5.三角函数积分公式:∫sin(x)*dx = -cos(x) + C∫cos(x)*dx = sin(x) + C这两个公式分别表示sin(x)和cos(x)的积分结果,其中负号表示积分后的结果会减少。
6.反三角函数积分公式:∫1/√(1-x^2)*dx = arcsin(x) + C∫1/√(1+x^2)dx = arctan(x) + C这两个公式分别表示1/√(1-x^2)和1/√(1+x^2)的积分结果,其中arcsin和arctan分别表示反正弦和反正切。
上面列举的是一些基本的积分公式,它们在微积分的求解过程中经常使用。
当然,还有其他一些复杂的积分公式和技巧,但它们都是由这些基本公式进行推导和扩展而来的。
需要注意的是,这些基本积分公式只是一些常用的情况,对于更复杂的函数积分,可能需要借助其他技巧和方法进行求解,比如换元法、分部积分等。
高数微积分基本公式大全1.导数的基本公式:-基本导数:(常数)' = 0, (x^n)' = nx^(n-1), (e^x)' = e^x, (a^x)' = a^xln(a), (ln(x))' = 1/x, (sin(x))' = cos(x),(cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x), (sec(x))' = sec(x)tan(x), (csc(x))' = -csc(x)cot(x).-乘法法则:(uv)' = u'v + uv'.-除法法则:(u/v)' = (u'v - uv') / v^2.-链式法则:(f(g(x)))' = f'(g(x)) * g'(x).2.不定积分的基本公式:-基本积分:∫(k) dx = kx + C, ∫(x^n) dx =(1/(n+1))x^(n+1) + C, ∫(e^x) dx = e^x + C, ∫(1/x) dx =ln(|x|) + C, ∫(sin(x)) dx = -cos(x) + C, ∫(cos(x)) dx =sin(x) + C.-分部积分:∫(uv') dx = uv - ∫(u'v) dx.-特殊积分:∫(1/(1+x^2)) dx = arctan(x) + C,∫(1/(sqrt(1-x^2))) dx = arcsin(x) + C.3.微分方程的基本公式:-一阶线性微分方程:dy/dx + P(x)y = Q(x),解为y = e^(-∫P(x)dx) * (∫Q(x)e^(∫P(x)dx)dx + C).-齐次方程:dy/dx = f(y/x),令v = y/x,化为可分离变量的形式求解.-常系数线性齐次微分方程:ay'' + by' + cy = 0,其特征方程为ar^2 + br + c = 0,解为y = C1e^(r1x) + C2e^(r2x)。
微积分数学公式微积分数学公式是数学领域中很重要的概念,它是高等数学中最核心的部分,可以用来解决许多复杂的数学问题。
它是用来求解特定空间函数的极限问题及各种多元函数的一系列公式。
以下将介绍一些常见的微积分数学公式。
一、求和公式求和公式是一组描述数列求和的公式,其中的一些定义是无穷的。
求和公式描述了当我们有一系列数字,想要知道它们总和的时候,可以用求和公式来求出总和。
1、求和常数的求和:S=a+a+a+…+a其中,S为被加数,a为加数。
2、求和平方和:n^2=1^2+2^2+3^2+…+n^2这个公式用来求1到n之间所有正整数的平方和。
二、积分公式积分公式是一类描述求积分的公式。
当我们想要求积分的时候,可以用它们来得到答案,而不用计算每一项。
1、基本积分:∫f(x)dx=F(x)+C其中,f(x)为原函数,C为任意常数,F(x)为原函数的积分函数。
2、复合函数的积分:∫f(g(x))dx=F(g(x))+C其中,f(g(x))为复合函数,C为任意常数,F(g(x))为复合函数的积分函数。
三、微分公式微分公式用于求微分面积,它是用来描述求微分问题的一类公式。
1、基本微分:y=f(x)其中,y为原函数的导数,f(x)为原函数的导函数。
2、解微分方程:dy/dx=f(x)其中,f(x)为微分方程的左边。
以上就是关于微积分数学公式的介绍,它们可以用来解决许多复杂的数学问题,有时是高等数学的核心问题,所以学习它们非常重要。
只有深入掌握微积分数学公式,我们才能在数学领域有所作为。
微积分的公式大全微积分是数学的一个分支,主要研究连续变化的函数及其相关性质。
在微积分中,有许多重要的公式在各个方面被广泛应用。
下面给出了微积分的一些重要公式。
1.极限公式(1)a^0=1,a≠0(2)lim(x→0) sinx/x = 1(3)lim(x→∞) (1+1/x)^x = e(4)lim(x→∞) (1+1/n)^nt = e^t(5)lim(x→0) (1+x)^1/x = e(6)lim(x→∞) (1+1/x)^x = e2.微分公式(1)dy/dx (x^n) = nx^(n-1)(2)dy/dx (a^x) = a^x ln(a)(3)dy/dx (e^x) = e^x(4)d/dx (ln(x)) = 1/x(5)d/dx (sinx) = cosx(6)d/dx (cosx) = -sinx(7)d/dx (tanx) = sec^2x(8)d/dx (cotx) = -csc^2x(9)d/dx (secx) = secx tanx(10)d/dx (cscx) = -cscx cotx3.积分公式(1)∫x^n dx = x^(n+1)/(n+1) + C,n≠-1(2)∫a^x dx = a^x/ln(a) + C(3)∫e^x dx = e^x + C(4)∫1/x dx = ln,x, + C(5)∫sinx dx = -cosx + C(6)∫cosx dx = sinx + C(7)∫sec^2x dx = tanx + C(8)∫csc^2x dx = -cotx + C(9)∫secx tanx dx = secx + C(10)∫cscx cotx dx = -cscx + C4.导数规则(1)(f+g)’=f’+g’(2)(af)’ = af’,a为常数(3)(f×g)’=f’×g+f×g’(4)(f/g)’ = (f’g - fg’)/g^2,g≠0(5)(fog)’=f’og×g’,o表示复合函数(6)(f^n)’ = nf^(n-1) f’,n为常数5.积分规则(1)∫(f + g) dx = ∫f dx + ∫g dx(2)∫(af) dx = a∫f dx,a为常数(3)∫(f × g) dx = ∫f dx ∫g dx - ∫f’ dx ∫g dx + C,C 为常数(4)∫(1/f) dx = ∫1/f dx(5)∫f’(x) dx = f(x) + C,C为常数以上是微积分中的一些公式,它们在求解问题和推导定理时都起到了重要的作用。
微积分公式大全导数公式1. 常数函数导数公式:如果 $c$ 是一个常数,那么 $f(x) = c$ 的导数是 $f'(x) = 0$。
2. 幂函数导数公式:如果 $f(x) = x^n$,其中 $n$ 是一个实数常数,那么导数为$f'(x) = nx^{n-1}$。
3. 指数函数导数公式:如果 $f(x) = e^x$,那么导数为 $f'(x) = e^x$。
4. 对数函数导数公式:如果 $f(x) = \log_a (x)$,那么导数为 $f'(x) = \frac{1}{x \ln(a)}$。
5. 三角函数导数公式:- 正弦函数:$f(x) = \sin(x)$ 的导数为 $f'(x) = \cos(x)$。
- 余弦函数:$f(x) = \cos(x)$ 的导数为 $f'(x) = -\sin(x)$。
- 正切函数:$f(x) = \tan(x)$ 的导数为 $f'(x) = \sec^2(x)$。
积分公式1. 幂函数积分公式:如果 $f(x) = x^n$,其中 $n \neq -1$,那么积分为 $\int f(x)dx = \frac{1}{n+1}x^{n+1} + C$。
2. 指数函数积分公式:如果 $f(x) = e^x$,那么积分为 $\int f(x)dx = e^x + C$。
3. 对数函数积分公式:如果 $f(x) = \ln(x)$,那么积分为 $\int f(x)dx = x(\ln(x) - 1) + C$。
4. 三角函数积分公式:- 正弦函数:$\int \sin(x)dx = -\cos(x) + C$。
- 余弦函数:$\int \cos(x)dx = \sin(x) + C$。
- 正切函数:$\int \tan(x)dx = -\ln|\cos(x)| + C$。
以上仅为微积分公式的一小部分,还有很多其他的公式和规则可供研究和应用。
常用微积分公式大全1. 导数公式1.1 基本导数公式•常数规则: 如果c是一个实数, 那么导数f(x)=c相对于x是f′(x)= 0。
•幂函数规则: 如果f(x)=x n, 其中n是常数, 那么导数f′(x)=nx n−1。
•指数函数规则: 如果f(x)=e x, 那么导数f′(x)=e x。
•对数函数规则: 如果 $f(x) = \\log_a(x)$, 那么导数 $f'(x) = \\frac{1}{x\\ln(a)}$。
•乘法法则: 如果f(x)=g(x)ℎ(x), 那么导数f′(x)=g′(x)ℎ(x)+g(x)ℎ′(x)。
•除法法则: 如果 $f(x) = \\frac{{g(x)}}{{h(x)}}$, 那么导数 $f'(x) =\\frac{{g'(x)h(x) - g(x)h'(x)}}{{(h(x))^2}}$。
1.2 常见函数导数表•常数函数: f(x)=c, 导数f′(x)=0。
•幂函数: f(x)=x n, 导数f′(x)=nx n−1。
•指数函数: f(x)=e x, 导数f′(x)=e x。
•对数函数: $f(x) = \\log_a(x)$, 导数 $f'(x) = \\frac{1}{x \\ln(a)}$。
•三角函数:–正弦函数: $f(x) = \\sin(x)$, 导数 $f'(x) = \\cos(x)$。
–余弦函数: $f(x) = \\cos(x)$, 导数 $f'(x) = -\\sin(x)$。
–正切函数: $f(x) = \\tan(x)$, 导数 $f'(x) = \\sec^2(x)$。
2. 积分公式2.1 基本积分公式•幂函数积分: 如果f(x)=x n, 其中n不等于−1, 那么积分 $\\intf(x)\\,dx = \\frac{1}{n+1}x^{n+1} + C$。
•指数函数积分: 如果f(x)=e x, 那么积分 $\\int f(x)\\,dx = e^x + C$。