5.体会抽象概括的过程,加强直观想象素养的培
养.
一、二次函数的配方法
【问题思考】
1.y=4x2-4x-1如何配方?你能由此求出方程4x2-4x-1=0的根吗?
提示:y=4(x2-x)-1
=4 - ×
=4
+
- -2.
能求出方程的根,令 4
-1
-2=0
解法1:y>0对∀x∈[1,+∞)恒成立,等价于x2+2x+a>0对
∀x∈[1,+∞)恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),那么问题转化为g(x)>0在
x∈[1,+∞)上恒成立,又g(x)在区间[1,+∞)上单调递增,从而
g(x)min=3+a.
于是当且仅当g(x)min=3+a>0,即a>-3时,g(x)>0对x∈[1,+∞)
任意三点时,设一般式;抛物线的顶点坐标常设顶点式;抛物线
与x轴的交点或交点的横坐标时,常设两根式.
【变式训练1】 一元二次函数的图象的对称轴是直线x=-1,
并且经过点(1,13)和(2,28),求一元二次函数的解析式.
解:设一元二次函数的解析式为 y=a(x+1)2+k(a≠0),
+ = ,
数y=f(x)的最值.
解:y=x2-4x-4=(x-2)2-8在区间[-3,2]上单调递减,在区间[2,4]上
单调递增,所以f(x)的最小值为-8.
又因为x=-3时,y=17,x=4时,y=-4,所以f(x)的最大值为17.