黑洞数简介
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数.6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax 2+bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:aac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++⋅⋅⋅++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10⋅⋅⋅ 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此.阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -=,又有 ⎪⎪⎭⎫ ⎝⎛r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=--Λ如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p² 不整除a 0 ,那么f (x )在有理数域上是不可约的.奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路.阿基米德折弦定理它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg (u )+deg (v )≥n →G 有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路. 阿基米德折弦定理(阿基米德中点定理) AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足D 是折弦ABC 的中点,即CD =AB +BD .折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.伯特兰·切比雪夫定理 伯特兰·切比雪夫定理说明:若整数n > 3,则至少存在一个质数p ,符合n < p < 2n − 2.另一个稍弱说法是:对于所有大于1的整数n ,存在一个质数p ,符合n < p < 2n .贝亚蒂定理 定义一个正无理数r 的贝亚蒂列B r 为B r =[r ],[2r ],[3r ],...=[nr ](n ≥1),这里的[ ]是取整函数.若然有两个正无理数p ,q 且111=+q p ,(即1-=p p q ) ,则B p =[np ](n ≥1),B q =[nq ](n ≥1)构成正整数集的一个分划:+=⋃∅=⋂Z B B B B q p q p ,.布利安桑定理 布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P 和Q ,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon )定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理 设P(x)为满足p ≤ x 的素数数目,使得p + 2也是素数(也就是说,P (x )是孪生素数的数目).那么,对于x ≥ 3,我们有:()()()22log log log x x x c x P <,其中c 是某个常数. 裴蜀定理(贝祖定理) 对任何整数a 、b 和它们的最大公约数d ,关于未知数x 和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 都一定是d 的倍数,特别地,一定存在整数x ,y ,使ax +by =d 成立。
阅读材料一:数字游戏产生“黑洞数”黑洞数又称陷阱数,是类具有奇特转换特性的整数。
有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止。
不管你开始写的是一个什么数,几步之后变成的自然数总是相同的。
最后这个相同的数就叫它为黑洞数。
在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
阅读材料二:奇妙的6174苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。
不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。
6174有什么奇妙之处?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同,例如3333、7777等都应该排除。
写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。
将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。
例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。
这里,经过两步变换就掉入6174这个“陷阱”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。
再如,我们开始取数2187,按要求进行变换:2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
数字⿊洞 ⼈教版⼩学数学五年级上册第31页的“你知道吗?”谈到了数字⿊洞6174。
这个数字⿊洞是印度数学家卡普耶卡于1949年发现的。
类似的数字⿊洞还有许多。
⿊洞原本是天⽂学中的概念,表⽰这样⼀种天体:它的引⼒场⾮常强,任何物质甚⾄是光,⼀旦被它吸⼊就再也休想逃脱出来。
数学中借⽤这个词,正像⽂中所说的那样,“数学⿊洞是指⾃然数经过某种数学运算之后陷⼊⼀种循环的境况。
” 与四位数的数字⿊洞6174相类似,三位数的数字⿊洞是495。
如,987-789=198,981-189=792,972-279=693,963-369=594,954-459=495,954-459=495,…… 再如,601-016=585,855-558=297,972-279=693,963-369=594,954-459=495,954-459=495,…… 下⾯再介绍⼏个有趣的数字⿊洞。
1、数字⿊洞153 任意取⼀个是3的倍数的数。
求出这个数各个数位上数字的⽴⽅和,得到⼀个新数,然后再求出这个新数各个数位上数字的⽴⽅和,⼜得到⼀个新数,如此重复运算下去,最后⼀定落⼊数字⿊洞“153”。
如,取63。
63+33=216+27=243, 23+43+33=8+64+27=99,93+93=729+729=1458, 13+43+53+83=1+64+125+512=702, 73+03+23=243+0+8=351, 33+53+13=153, 13+53+33=153,…… 再如,取219。
23+13+93=8+1+729=738,73+33+83=343+27+512=882,83+83+23=512+512+8=1032,13+03+33+23=1+0+27+8=36,33+63=27+216=243,23+43+33=8+64+27=99,93+93=729+729=1458,13+43+53+83=1+64+125+512=702,73+03+23=343+0+8=351,33+53+13=27+125+1=153,13+53+33=153,…… 数字⿊洞153⼜叫“圣经数”,请参看前⽂“奇妙的数153”。
黑洞数495的证明黑洞数495是一个有趣而神秘的数字,它引发了许多数学家和科学家的兴趣和探索。
本文将从几个方面来介绍495这个黑洞数的证明。
我们需要了解什么是黑洞数。
黑洞数是指一个有限的自然数,在每一次迭代操作下,将其各个位上的数字按升序排列得到一个新的数字,然后再将其各个位上的数字按降序排列得到另一个新的数字,将这两个数字相减,得到一个新的数字,重复这个过程,最终将会得到一个稳定的数字,这个数字就被称为黑洞数。
在495这个数字上,我们将通过数学推理来证明它是一个黑洞数。
我们将495分解为其各个位上的数字,即4、9和5。
按照黑洞数的定义,我们将这些数字按升序排列得到一个新的数字,即459。
然后,将这些数字按降序排列得到954。
接下来,我们将954减去459,得到495。
正如我们所预期的一样,495是一个稳定的数字,没有进一步的变化。
接下来,我们将对495这个黑洞数进行数学推理,来证明它是一个黑洞数。
我们可以将495表示为:495 = 4 * 100 + 9 * 10 + 5。
根据黑洞数的定义,我们将459和954表示为:459 = 4 * 100 + 5 * 10 + 9,954 = 9 * 100 + 5 * 10 + 4。
将459和954相减得到495,即 (4 * 100 + 5 * 10 + 9) - (9 * 100 + 5 * 10 + 4) = 495。
从这个推理过程中,我们可以看到495是由4、9和5这三个数字构成的,通过按升序排列、降序排列和相减这样的操作,最终得到495。
进一步地,我们可以推广这个证明过程。
对于任何一个三位数abc,其中a、b和c分别代表百位、十位和个位上的数字,我们可以通过按升序排列得到abc1,再按降序排列得到1cba,然后将1cba减去abc1,得到一个新的数字,继续进行这样的操作,最终得到一个稳定的数字。
通过这个推广,我们可以证明495不仅仅是一个黑洞数,而是一个通用的规律。
神奇的黑洞数
黑洞数又称陷阱数,是一类具有奇特转换特性的整数。
任何一个数字不全相同的整数,经过有限次“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。
"重排求差"操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。
例:随便写出一个数字不全相同的四位数,把数中的各位数字按照从大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。
将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次变换之后,得到6174。
例如,我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。
这里,经过两步变换就掉入6174这个“陷阱”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。
再如,我们开始取数2187,按要求进行变换:
2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
这里,经过五步变换就掉入了“陷阱”——6174。
拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”再也出不来了。
符合数字不全相同的所有的四位数都会掉入6174设的陷阱。
三位数的黑洞数为495。
著名数学定理15定理15-定理是由约翰·何顿·康威(JohnHortonConway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax 2+bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++⋅⋅⋅++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10⋅⋅⋅ 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此.阿贝尔二项式定理二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -=,又有 ⎪⎪⎭⎫ ⎝⎛r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p²不整除a 0 ,那么f (x )在有理数域上是不可约的.奥尔定理离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路.它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg (u )+deg (v )≥n →G 有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路.阿基米德折弦定理(阿基米德中点定理)AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足D 是折弦ABC 的中点,即CD =AB +BD .折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦. 伯特兰·切比雪夫定理伯特兰·切比雪夫定理说明:若整数n > 3,则至少存在一个质数p ,符合n <p < 2n − 2.另一个稍弱说法是:对于所有大于1的整数n ,存在一个质数p ,符合n <p < 2n .贝亚蒂定理定义一个正无理数r 的贝亚蒂列B r 为B r =[r ],[2r ],[3r ],...=[nr ](n ≥1),这里的[]是取整函数.若然有两阿基米德折弦定理个正无理数p ,q 且111=+q p ,(即1-=p p q ) ,则B p =[np ](n ≥1),B q =[nq ](n ≥1)构成正整数集的一个分划:+=⋃∅=⋂Z B B B B q p q p ,.布利安桑定理布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P 和Q ,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon )定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理设P(x)为满足p ≤ x 的素数数目,使得p +2也是素数(也就是说,P (x )是孪生素数的数目).那么,对于x ≥3,我们有:()()()22log log log x x x c x P <,其中c 是某个常数. 裴蜀定理(贝祖定理)对任何整数a 、b 和它们的最大公约数d ,关于未知数x 和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 都一定是d 的倍数,特别地,一定存在整数x ,y ,使ax +by =d 成立。
黑洞数及其简单理论黑洞是宇宙中最神秘的天体之一,它的存在引发了科学家们长期的困惑与探索。
黑洞数是研究黑洞的一个重要指标,它们的数量和特征对于理解宇宙的结构和演化过程具有重要意义。
本文将介绍黑洞数的定义、计算方法以及对宇宙演化的影响。
1. 黑洞数的定义黑洞数指的是在给定的空间范围内存在的黑洞的数量。
它是对黑洞分布和密度进行统计的结果。
由于黑洞是无法直接观测到的,科学家们只能通过观测黑洞周围的物质运动以及引力效应来推测其存在。
通过统计这些观测结果,可以得出一个相对准确的黑洞数。
2. 黑洞数的计算方法黑洞数的计算方法通常涉及测量黑洞的质量和距离。
科学家们利用射电望远镜、X 射线望远镜等装置观测天空,探测到黑洞的辐射或者通过星系中恒星轨道的变化来推断黑洞的存在。
通过这些观测数据,可以计算出黑洞的质量以及距离。
3. 黑洞数的影响黑洞数的变化对宇宙的演化过程有着重要的影响。
首先,黑洞的形成和演化是宇宙星系形成和演化的重要因素之一。
恒星在演化的过程中,当它们燃尽燃料时会发生引力坍缩,形成黑洞。
这些黑洞会继续吸积周围的物质,增加质量并影响周围星系的演化。
其次,根据黑洞数目的统计,科学家们可以推测宇宙中的物质分布和结构。
黑洞的存在会对周围的星系、星团和宇宙大尺度结构产生引力影响,形成所谓的「大尺度结构形成引擎」。
通过观测和研究黑洞数分布的变化,可以揭示宇宙的演化历程和结构形成的规律。
此外,黑洞数还与宇宙背景辐射有关。
黑洞的辐射会对周围的物质进行加热,产生热辐射。
这些辐射主要是X 射线和γ 射线辐射,对研究宇宙背景辐射的特性和起源有着重要的意义。
4. 黑洞数的研究进展与未来展望随着观测和理论的发展,科学家们对黑洞数的研究取得了重要的进展。
天文学家利用射电望远镜、X 射线望远镜等高精度观测装置,逐渐建立了相对准确的黑洞数统计模型。
未来,随着技术的进步和观测装置的提升,科学家们将能够精确测量黑洞的质量和距离,并进一步完善黑洞数的统计。
黑洞数相关问题研究
黑洞数是一种数字游戏,也被称为Kaprekar常数。
其定义为:
取任意一个四位数(数字不完全相同),将数字从大到小排列和从
小到大排列分别得到两个新数,再将两个新数相减得到一个新的数,重复以上操作,最终得到数值为6174的结果,这个结果就是黑洞数。
黑洞数的研究主要集中在其数学性质和统计特征上。
事实上,
黑洞数有很多神奇的性质,比如:
1. 不同的初始数字会以相同的步骤收敛到相同的黑洞数。
2. 任何以0结尾的数字无法走向黑洞数。
3. 4位数字的个位与十位数字相同且百位数字等于千位数字的
数字无法走向黑洞数。
4. 可以证明,任何四位数字最多只需7次操作即可走向黑洞数。
除了上述性质外,人们还对黑洞数进行了统计分析,比如:
1. 从1000到9999的所有不同的四位数字中,有2431个数字
最终可以走向黑洞数。
2. 如果两个四位数是颠倒顺序的,它们走向黑洞数需要的次数
相同。
3. 黑洞数的平均折叠次数是
4.619。
总的来说,黑洞数是一种有趣的数字游戏,研究它的数学性质
和统计特征有助于深入理解数字的性质和规律。
神奇的黑洞数
黑洞数又称陷阱数,是一类具有奇特转换特性的整数。
任何一个数字不全相同的整数,经过有限次“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。
"重排求差"操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。
例:随便写出一个数字不全相同的四位数,把数中的各位数字按照从大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。
将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次变换之后,得到6174。
例如,我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。
这里,经过两步变换就掉入6174这个“陷阱”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。
再如,我们开始取数2187,按要求进行变换:
2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
这里,经过五步变换就掉入了“陷阱”——6174。
拿6174 本身来试,只需一步:7641-1467=6174,就掉入“陷阱”再也出不来了。
符合数字不全相同的所有的四位数都会掉入6174设的陷阱。
三位数的黑洞数为495。