六位黑洞数
- 格式:xls
- 大小:43.00 KB
- 文档页数:1
阅读材料一:数字游戏产生“黑洞数”黑洞数又称陷阱数,是类具有奇特转换特性的整数。
有一种数字游戏,可以产生“黑洞数”,操作步骤如下:第一步,任意写出一个自然数(以下称为原数);第二步,再写一个新的三位数,它的百位数字是原数中偶数数字的个数,十位数字是原数中奇数数字的个数,个位数字是原数的位数;以下每一步,都对上一步得到的数,按照第二步的规则继续操作,直至这个数不再变化为止。
不管你开始写的是一个什么数,几步之后变成的自然数总是相同的。
最后这个相同的数就叫它为黑洞数。
在数学中由有很多有趣,有意义的规律等待我们去探索和研究,让我们在数学中得到更多的乐趣。
阅读材料二:奇妙的6174苏联的科普作家高基莫夫在他的著作《数学的敏感》一书中,提到了一个奇妙的四位数6174,并把它列作“没有揭开的秘密”。
不过,近年来,由于数学爱好者的努力,已经开始拨开迷雾。
6174有什么奇妙之处?请随便写出一个四位数,这个数的四个数字有相同的也不要紧,但这四个数不准完全相同,例如3333、7777等都应该排除。
写出四位数后,把数中的各位数字按大到小的顺序和小到大的顺序重新排列,将得到由这四个数字组成的四位数中的最大者和最小者,两者相减,就得到另一个四位数。
将组成这个四位数的四个数字施行同样的变换,又得到一个最大的数和最小的数,两者相减……这样循环下去,一定在经过若干次(最多7次)变换之后,得到6174。
例如,开始时我们取数8208,重新排列后最大数为8820,最小数为0288,8820—0288=8532;对8532重复以上过程:8532-2358=6174。
这里,经过两步变换就掉入6174这个“陷阱”。
需要略加说明的是:以0开头的数,例如0288也得看成一个四位数。
再如,我们开始取数2187,按要求进行变换:2187 → 8721-1278=7443→7443-3447=3996→9963-3699=6264→6642-2466=4176→7641-1467=6174。
一、卡普雷卡尔黑洞(重排求差黑洞)三位数黑洞495只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。
那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字,人称:卡普雷卡尔黑洞。
举例:输入352,排列得最大数位532,最小数为235,相减得297;再排列得972和279,相减得693;接着排列得963和369,相减得594;最后排列得到954和459,相减得495。
四位数黑洞6174把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成6174。
例如3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。
而6174 这个数也会变成6174,7641 - 1467 = 6174。
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。
如取四位数5679,按以上方法作运算如下:9765-5679=4086 8640-4068=4572 7542-2457=50858550-5058=3492 9432-2349=7083 8730-3078=56526552-2556=3996 9963-3699=6264 6642-2466=41767641-1467=6174那么,出现6174的结果究竟有什么科学依据呢?二、水仙花数黑洞数字黑洞153任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数——153,我们称它为数字“黑洞”。
黑洞数123探秘王凯成(陕西省小学教师培训中心 710600)设正整数A 中的偶数字个数为m(A 中没有偶数字时m=0),奇数字个数为n(A 中没有奇数字时n=0),A 是m+n 位数,把A 的偶数字个数m 、奇数字个数n 、总位数m+n 按照“偶奇总”顺序排列得到一个新的整数B(B 的首位可以为0),我们把从A 得到B 的过程叫做A 的黑洞数变换f ,即f(A)=B 。
例如:A=36925037186,A 中的偶数字个数为m=5,奇数字个数为n=6,A 是m+n=11位数。
把A 的偶数字个数5、奇数字个数6、总位数11按照“偶奇总”顺序排列得到一个新的整数B=5611。
从A=36925037186得到B=5611的过程就是A=36925037186的一次黑洞数变换,即有:f(36925037186)=5611。
任意一个正整数A ,经过有限次黑洞数变换f 后,总能得到123。
例如:A=3546980001有6个偶数字、4个奇数字,6+4=10,那么f(3546980001)=6410; 6410有3个偶数字、1个奇数字,3+1=4,那么f(6410)=314;314有1个偶数字、2个奇数字,是3位数,所以f(314)=123(将123黑洞数变换f 后仍然是123,即f(123)=123)。
A 经过三次黑洞数变换f ,最终成为123。
再如:A=555555有0个偶数字6个奇数字,0+6=6,那么f(555555)=066(066是形式上的3位数,本文仍然称为3位数,以下类同);066有3个偶数字0个奇数字,3+0=3,那么f(066)=303; 303有1个偶数字2个奇数字,1+2=3,所以f(303) =123。
命题1:设k 位数A= 12k a a a ⋅⋅⋅(i a 是数字),A 有m 个偶数字、n 个奇数字(m 、n 是自然数),m+n=k 。
则A 经过有限次黑洞数变换f 后,总能得到123。
著名数学定理15定理15-定理是由约翰·何顿·康威(JohnHortonConway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数. 6714(黑洞数)定理黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax 2+bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:a ac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++⋅⋅⋅++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10⋅⋅⋅ 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此.阿贝尔二项式定理二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -=,又有 ⎪⎪⎭⎫ ⎝⎛r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=-- 如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p²不整除a 0 ,那么f (x )在有理数域上是不可约的.奥尔定理离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路.它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg (u )+deg (v )≥n →G 有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路.阿基米德折弦定理(阿基米德中点定理)AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足D 是折弦ABC 的中点,即CD =AB +BD .折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦. 伯特兰·切比雪夫定理伯特兰·切比雪夫定理说明:若整数n > 3,则至少存在一个质数p ,符合n <p < 2n − 2.另一个稍弱说法是:对于所有大于1的整数n ,存在一个质数p ,符合n <p < 2n .贝亚蒂定理定义一个正无理数r 的贝亚蒂列B r 为B r =[r ],[2r ],[3r ],...=[nr ](n ≥1),这里的[]是取整函数.若然有两阿基米德折弦定理个正无理数p ,q 且111=+q p ,(即1-=p p q ) ,则B p =[np ](n ≥1),B q =[nq ](n ≥1)构成正整数集的一个分划:+=⋃∅=⋂Z B B B B q p q p ,.布利安桑定理布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P 和Q ,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon )定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理设P(x)为满足p ≤ x 的素数数目,使得p +2也是素数(也就是说,P (x )是孪生素数的数目).那么,对于x ≥3,我们有:()()()22log log log x x x c x P <,其中c 是某个常数. 裴蜀定理(贝祖定理)对任何整数a 、b 和它们的最大公约数d ,关于未知数x 和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 都一定是d 的倍数,特别地,一定存在整数x ,y ,使ax +by =d 成立。
数学黑洞:神秘数字6174
有一个神秘的数学黑洞,叫做“6174”。
只要任选4个不完全相同的数字,将“最大排列”减去“最小排列”(例如4321-1234),其差也是一组四个不同的数字。
重复这个运算,最后一定会得到相同的结果:6174。
无论怎样换那4个数字,最后的结果都是“6174”。
而这个“最大减最小”的运算,最多不会超过7次!这又加深了“6174”的神秘性。
以6321为例:
6321-1236=5085一次
8550-0558=7992二次
9972-2799=7173三次
7731-1377=6354四次
6543-3456=3087五次
8730-0378=8352六次
8532-2358=6174七次
这个数字“6174”称为“卡普耶卡常数”(或翻卡布列克常数)。
在追寻“6174”的卡普耶卡变换中,有可能第一次就碰到黑洞(当距组是3,2,1,和中组是6,2的时候),也可能要连做7次变换才走得到终点。
如果改用十二、十六进制,乃至其他计数制,有没有相应的“黑洞”呢?
让我用8384试一试:
8843-3488=5355
5553-3555=1998
9981-1899=8082
8820-0288=8532
8532-2358=6174
还真有!。
著名数学定理 15定理15-定理是由约翰·何顿·康威(John Horton Conway ,1937-)和W.A.Schneeberger 于1993年证明的定理,内容为:如果一个二次多项式可以通过变量取整数值而表示出1~15的值(更严格的结论是只要表示出1,2,3,5,6,7,10,14,15)的话(例如a 2+b 2+c 2+d 2),该二次多项式可以通过变量取整数值而表示出所有正整数.6714(黑洞数)定理 黑洞数又称陷阱数,是类具有奇特转换特性的整数.任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数.“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数.或者是冰雹原理中的“1”黑洞数.举个例子,三位数的黑洞数为495.简易推导过程:随便找个数,如297,三个位上的数从小到大和从大到小各排一次,为972和279,相减,得693.按上面做法再做一次,得到594,再做一次,得到495.之后反复都得到495.再如,四位数的黑洞数有6174.阿贝尔-鲁菲尼定理 定理定义:阿贝尔-鲁菲尼定理并不是说明五次或更高次的多项式方程没有解.事实上代数基本定理说明任意非常数的多项式在复数域中都有根.然而代数基本定理并没有说明根的具体形式.通过数值方法可以计算多项式的根的近似值,但数学家也关心根的精确值,以及它们能否通过简单的方式用多项式的系数来表示.例如,任意给定二次方程ax 2+bx+c=0(a ≠0),它的两个解可以用方程的系数来表示:aac b b r 2422,1-±-=. 这是一个仅用有理数和方程的系数,通过有限次四则运算和开平方得到的解的表达式,称为其代数解.三次方程,四次方程的根也可以使用类似的方式来表示.阿贝尔-鲁菲尼定理的结论是:任意给定一个五次或以上的多项式方程:()0,500111≠≥=++⋅⋅⋅++--n n n n n a n a x a x a x a ,那么不存在一个通用的公式(求根公式),使用 n a a a ,,,10⋅⋅⋅ 和有理数通过有限次四则运算和开根号得到它的解.或者说,当n 大于等于5时,存在n 次多项式,它的根无法用自己的系数和有理数通过有限次四则运算和开根号得到.换一个角度说,存在这样的实数或复数,它满足某个五次或更高次的多项式方程,但不能写成任何由方程系数和有理数构成的代数式.这并不是说每一个五次或以上的多项式方程,都无法求得代数解.比如025=-x 的解就是52.具体区分哪些多项式方程可以有代数解而哪些不能的方法由伽罗瓦给出,因此相关理论也被称为伽罗瓦理论.简单来说,某多项式方程有代数解,等价于说它对应的域扩张上的伽罗瓦群是一个可解群.对于一般的二次,三次和四次方程,它们对应的伽罗瓦群是二次,三次和四次对称群: 432,,σσσ ,它们都是可解群.但一般的五次方程对应的是五次对称群5σ,这是一个不可解群.当次数n 大于等于5时,情况也是如此.阿贝尔二项式定理 二项式定理可以用以下公式表示:()∑=-=+n r r r n r n n b a C b a 0.其中,()!!!r n r n C r n -=,又有 ⎪⎪⎭⎫ ⎝⎛r n 等记法,称为二项式系数,即取的组合数目.此系数亦可表示为杨辉三角形.它们之间是互通的关系.艾森斯坦因判别法 艾森斯坦判别法是说:给出下面的整系数多项式()011a x a x a x f n n n n +++=--Λ如果存在素数p ,使得p 不整除a n ,但整除其他a i (i=0,1,...,n -1);p² 不整除a 0 ,那么f (x )在有理数域上是不可约的.奥尔定理 离散数学中图论的一个定理)如果一个总点数至少为3的简单图G 满足:G 的任意两个点u 和v 度数之和至少为n ,即deg (u )+deg (v )≥n ,那么G 必然有哈密顿回路.阿基米德折弦定理它描述了简单图拥有哈密顿回路的一个充分条件.表达式deg (u )+deg (v )≥n →G 有哈密顿通路相关概念:简单图:没有重边和环的无向图.度数:某点所连接的边的数目.哈密顿回路:经过图的所有的点的一条回路. 阿基米德折弦定理(阿基米德中点定理) AB 和BC 是⊙O 的两条弦(即ABC 是圆的一条折弦),BC >AB ,M 是弧ABC 的中点,则从M 向BC 所作垂线之垂足D 是折弦ABC 的中点,即CD =AB +BD .折弦定义:从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.伯特兰·切比雪夫定理 伯特兰·切比雪夫定理说明:若整数n > 3,则至少存在一个质数p ,符合n < p < 2n − 2.另一个稍弱说法是:对于所有大于1的整数n ,存在一个质数p ,符合n < p < 2n .贝亚蒂定理 定义一个正无理数r 的贝亚蒂列B r 为B r =[r ],[2r ],[3r ],...=[nr ](n ≥1),这里的[ ]是取整函数.若然有两个正无理数p ,q 且111=+q p ,(即1-=p p q ) ,则B p =[np ](n ≥1),B q =[nq ](n ≥1)构成正整数集的一个分划:+=⋃∅=⋂Z B B B B q p q p ,.布利安桑定理 布利安桑定理叙述如下:如果六边形的边交替地通过两个定点P 和Q ,则连接六边形的相对的顶点的三条对角线是共点的.布列安桑(Brainchon )定理是一个射影几何中的著名定理,它断言六条边和一条圆锥曲线相切的六边形的三条对角线共点,此点称为该六边形的布列安桑点.布朗定理 设P(x)为满足p ≤ x 的素数数目,使得p + 2也是素数(也就是说,P (x )是孪生素数的数目).那么,对于x ≥ 3,我们有:()()()22log log log x x x c x P <,其中c 是某个常数. 裴蜀定理(贝祖定理) 对任何整数a 、b 和它们的最大公约数d ,关于未知数x 和y 的线性不定方程(称为裴蜀等式):若a ,b 是整数,且(a ,b )=d ,那么对于任意的整数x ,y ,ax +by 都一定是d 的倍数,特别地,一定存在整数x ,y ,使ax +by =d 成立。
黑洞数河北张家口市第十九中学贺峰一、一位黑洞数(0)黑洞数0:随意取4个数,如8,3,12,5写在圆周的四面。
用两个相邻数中的大数减小数,将得数写在第二圈圆周。
如此做下去,必会得到4个相同的数。
这个现象是意大利教授杜西在1930年发现的,所以叫作"杜西现象"。
其实把“杜西现象”再继续下去必会得到这个圆周的最外层是四个0。
因为得到的4个相同的数两两相减差为0,也就得到:任意地在圆周的四面写上4个数,用两个相邻数中的大数减小数(相同的也相减),将得数写在第二圈圆周。
如此做下去,必会得到4个0。
这就是黑洞0。
二、两位黑洞数(13)(2004重庆北碚区)自然数中有许多奇妙而有趣的现象,很多秘密等待着我们去探索!比如:对任意一个自然数,先将其各位数字求和,再将其和乘以3后加上1,多次重复这种操作运算,运算结果最终会得到一个固定不变的数R,它会掉入一个数字“陷井”,永远也别想逃出来,没有一个自然数能逃出它的“魔掌”。
那么最终掉入“陷井”的这个固定不变的数R=__13_。
三、三位黑洞数(495、123)黑洞数123随便找一个数,然后分别数出这个数中的奇数个数和偶数个数以及这个数有多少位,并用数出来的个数组成一个新数,最后组成的数字总会归结到123。
举个例子,如:58967853,这里面有8、6、8共3个偶数,5、9、7、5、3共5个奇数,共8位数。
然后我们用新得到的几个数字重新组合,把原数中的偶数个数放在最左边,中间放原数的奇数个数,最右边表示原数的位数。
根据这个规则,上面的数就变成358了,然后按照这个规则继续变换下去,就会得到123。
再取任一个数,如:81872115378,其中偶数个数是4,奇数个数是7,是11位数,又组成一个新的数4711。
该数有1个偶数,3个奇数,是4位数,又组成新数134。
再重复以上程序,1个偶数,2个奇数,是3位数,便得到123黑洞。
反复重复以上程序,始终是123,就再也逃不出去,得不到新的数了。