高三数学一轮复习必备精品4:基本初等函数【高三数学一轮复习必备精品共42讲全部免费欢迎下载】
- 格式:doc
- 大小:1.41 MB
- 文档页数:20
基本初等函数、函数与方程及函数的应用一、基础知识要记牢指数函数y =a x(a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图像和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.二、经典例题领悟好[例1] (1)(2012·四川高考)函数y =a x-1a(a >0,且a ≠1)的图像可能是( )(2)(2013·全国卷Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c[解析] (1)当x =-1时,y =1a -1a =0,所以函数y =a x-1a的图像必过定点(-1,0),结合选项可知选D.(2)a =log 36=log 33+log 32=1+log 32, b =log 510=log 55+log 52=1+log 52, c =log 714=log 77+log 72=1+log 72, ∵log 32>log 52>log 72,∴a >b >c . [答案] (1)D (2)D比较指数函数值、对数函数值、幂函数值大小有三种方法:一是根据同类函数的单调性进行比较;二是采用中间值0或1等进行比较;三是将对数式转化为指数式,或将指数式转化为对数式,通过转化进行比较. 三、预测押题不能少1.(1)函数y =x -x 13的图像大致为( )解析:选A 函数y =x -x 13为奇函数.当x >0时,由x -x 13>0,即x 3>x ,可得x 2>1,故x >1,结合选项,选A. (2)若x ∈(e-1,1),a =ln x ,b =⎝ ⎛⎭⎪⎫12ln x ,c =e ln x,则a ,b ,c 的大小关系为( )A .c >b >aB .b >c >aC .a >b >cD .b >a >c解析:选B 依题意得a =ln x ∈(-1,0),b =⎝ ⎛⎭⎪⎫12ln x ∈(1,2),c =x ∈(e -1,1),因此b >c >a .一、基础知识要记牢确定函数零点的常用方法:(1)解方程判定法,方程易解时用此法; (2)利用零点存在的判定定理;(3)利用数形结合,尤其是那些方程两端对应的函数类型不同时多以数形结合法求解. 二、经典例题领悟好[例2] (1)函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点个数是( )A .2B .3C .4D .5[解析] (1)由f (-1)=12-3<0,f (0)=1>0及零点定理,知f (x )的零点在区间(-1,0)上.(2)当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有四个不同的零点. [答案] (1)B (2)C函数的零点、方程的根,都可以转化为函数图像与x 轴的交点,数形结合法是解决函数零点、方程根的分布、零点个数、方程根的个数的一个有效方法.在解决函数零点问题时,既要注意利用函数的图像,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. 三、预测押题不能少2.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1,所以实数a 的取值范围是0<a ≤1. 答案:(0,1]一、经典例题领悟好[例3] 某企业为打入国际市场,决定从A ,B 两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如表:(单位:万美元)其中年固定成本与年生产的件数无关,为待定常数,其值由生产产品的原材料价格决定,预计m ∈[6,8].另外,年销售x 件B 产品时需上交0.05x 2万美元的特别关税.假设生产出来的产品都能在当年销售出去.(1)写出该厂分别投资生产A ,B 两种产品的年利润y 1,y 2与生产相应产品的件数x 之间的函数关系并指明其定义域;(2)如何投资最合理(可获得最大年利润)?请你做出规划.[解] (1)由年销售量为x 件,按利润的计算公式,有生产A ,B 两产品的年利润y 1,y 2分别为y 1=10x -(20+mx )=(10-m )x -20(x ∈N,0≤x ≤200),y 2=18x -(8x +40)-0.05x 2=-0.05x 2+10x -40(x ∈N,0≤x ≤120).(2)因为6≤m ≤8,所以10-m >0,函数y 1=(10-m )x -20在[0,200]上是增函数,所以当x =200时,生产A 产品有最大利润,且y 1max =(10-m )×200-20=1 980-200m (万美元).又y 2=-0.05(x -100)2+460(x ∈N,0≤x ≤120),所以当x =100时,生产B 产品有最大利润,且y 2max =460(万美元). 因为y 1max -y 2max =1 980-200m -460 =1 520-200m ⎩⎪⎨⎪⎧>0,6≤m <7.6,=0,m =7.6,<0,7.6<m ≤8.所以当6≤m <7.6时,可投资生产A 产品200件;当m =7.6时,生产A 产品或生产B 产品均可(投资生产A 产品200件或生产B 产品100件);当7.6<m ≤8时,可投资生产B 产品100件.解决函数实际应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题;二是要合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解. 二、预测押题不能少3.某集团为了获得更大的利润,每年要投入一定的资金用于广告促销.经调查,每年投入广告费t (百万元)可增加销售额约为-t 2+5t (百万元)(0≤t ≤3).(1)若该集团将当年的广告费控制在三百万元以内,则应投入多少广告费,才能使集团由广告费而产生的收益最大?(2)现在该集团准备投入三百万元,分别用于广告促销和技术改造.经预算,每投入技术改造费x (百万元),可增加的销售额约为-13x 3+x 2+3x (百万元).请设计一个资金分配方案,使该集团由这两项共同产生的收益最大.解:(1)设投入广告费t (百万元)后由此增加的收益为f (t )(百万元), 则 f (t )=(-t 2+5t )-t =-t 2+4t =-(t -2)2+4(0≤t ≤3). 所以当t =2时,f (t )max =4,即当集团投入两百万元广告费时,才能使集团由广告费而产生的收益最大.(2)设用于技术改造的资金为x (百万元),则用于广告的费用为(3-x )(百万元),则由此两项所增加的收益为g (x )=⎝ ⎛⎭⎪⎫-13x 3+x 2+3x +[-(3-x )2+5(3-x )]-3=-13x 3+4x +3(0≤x ≤3). 对g (x )求导,得g ′(x )=-x 2+4,令g ′(x )=-x 2+4=0, 得x =2或x =-2(舍去).当0≤x <2时,g ′(x )>0,即g (x )在[0,2)上单调递增; 当2<x ≤3时,g ′(x )<0,即g (x )在(2,3]上单调递减. ∴当x =2时,g (x )max =g (2)=253.故在三百万元资金中,两百万元用于技术改造,一百万元用于广告促销,这样集团由此所增加的收益最大,最大收益为253百万元.函数的性质与零点的交汇函数零点(方程的根)的问题,常见的类型有: (1)零点或零点存在区间的确定; (2)零点个数的确定;(3)利用零点求参数范围问题.函数的性质与零点的交汇问题成为新的命题点. 一、经典例题领悟好[例] (2012·湖南高考)设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数,当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,(x -π2)f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8学审题——审结论之逆向分析函数y =f (x )-sin x 的零点――→转化 y =f (x )与y =sin x 图像交点――→作用 f (x )的范围――――→函数f x的性质确定f ′(x )的正负――――→分类讨论 ⎝ ⎛⎭⎪⎫x -π2·f ′(x )>0. 用“思想”——尝试用“转化与化归思想”解题∵⎝⎛⎭⎪⎫x -π2f ′(x )>0,x ∈(0,π)且x ≠π2,∴当0<x <π2时,f ′(x )<0,f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递减.当π2<x <π时,f ′(x )>0,f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递增.∵当x ∈[0,π]时,0<f (x )<1.∴当x ∈[π,2π],则0≤2π-x ≤π. 又f (x )是以2π为最小正周期的偶函数, 知f (2π-x )=f (x ).∴x ∈[π,2π]时,仍有0<f (x )<1.依题意及y =f (x )与y =sin x 的性质,在同一坐标系内作y =f (x )与y =sin x 的简图.则y =f (x )与y =sin x 在x ∈[-2π,2π]有4个交点. 故函数y =f (x )-sin x 在[-2π,2π]上有4个零点. [答案] B1本题在求解时,用了转化与化归、数形结合、分类讨论思想.个别学生不会利用题设条件判定y =f x 的值域以及函数y =f x 图像的变化趋势,导致求解受阻. 2函数与方程应用转化与化归的常见类型①判断函数零点个数常转化为两函数的图像交点.②由函数的零点情况确定参数范围,常转化为利用函数图像求解. ③方程根的讨论转化为函数零点的问题. 二、预测押题不能少函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,当x ∈[-1,4]时,f (x )=x 2-2x ,则f (x )在区间[0,2012]上零点的个数为( )A .2 011B .2 012C .1 026D .1 027解析:选D 根据f ⎝ ⎛⎭⎪⎫x +54=-f ⎝ ⎛⎭⎪⎫x -54,可得f ⎝⎛⎭⎪⎫x +52=-f (x ),进而得f (x +5)=f (x ),即函数y =f (x )是以5为周期的周期函数.当x ∈[-1,4]时,f (x )=x 2-2x,在[-1,0]内有一个零点,在(0,4]内有x 1=2,x 2=4两个零点,故在一个周期内函数有三个零点.又因为2 012=402×5+2,故函数在区间[0,2 010]内有402×3=1 206个零点,在区间(2 010,2 012]内的零点个数与在区间(0,2]内零点的个数相同,即只有一个零点,所以函数f (x )在[0,2 012]上零点的个数为1 207.1.(2013·广州惠州调研)已知幂函数y =f (x )的图像过点⎝ ⎛⎭⎪⎫12,22,则log 4f (2)的值为( )A.14 B .-14 C .2 D .-2解析:选A 设f (x )=x a,由其图像过点⎝ ⎛⎭⎪⎫12,22得⎝ ⎛⎭⎪⎫12a =22=⎝ ⎛⎭⎪⎫1212⇒a =12,故log 4f (2)=log 4212=14.2.(2013·陕西高考)设a ,b ,c 均为不等于1的正实数, 则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a c解析:选B 利用对数的换底公式进行验证,log a b ·log c a =log c blog c a ·log c a =log c b ,则B 对.3.(2013·河北质检)若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x -1B .y =f (x )e -x+1C .y =e x f (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.(2013·天津一中模拟)设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解析:选C 由题意得0<a <1,b >1,而log 34>1,c =log 34(log 34),得c <0,故c <a <b .5.下列区间中,函数f (x )=|ln(2-x )|在其上为增函数的是( ) A .(-∞,1] B.⎣⎢⎡⎦⎥⎤-1,43 C.⎣⎢⎡⎭⎪⎫0,32D .[1,2)解析:选D 法一:当2-x >1,即x <1时,f (x )=|ln(2-x )|=ln(2-x ),此时函数f (x )在(-∞,1]上单调递减.当0<2-x ≤1,即1≤x <2时,f (x )=|ln(2-x )|=-ln(2-x ),此时函数f (x )在[1,2)上单调递增,故选D. 法二:f (x )=|ln(2-x )|的图像如图所示.由图像可得,函数f (x )在区间[1,2)上为增函数,故选D.6.(2013·东北三校联合模拟)已知函数f (x )=⎩⎪⎨⎪⎧a ·2x,x ≤0,log 12x ,x >0.若关于x 的方程f (f (x ))=0有且仅有一个实数解,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞)解析:选B 若a =0,当x ≤0时,f (x )=0,故f (f (x ))=f (0)=0有无数解,不符合题意,故a ≠0.显然当x ≤0时,a ·2x≠0,故f (x )=0的根为1,从而f (f (x ))=0有唯一根,即为f (x )=1有唯一根.而x >0时,f (x )=1有唯一根12,故a ·2x=1在(-∞,0]上无根,当a ·2x =1在(-∞,0]上有根可得a =12x ≥1,故由a ·2x =1在(-∞,0]上无根可知a <0或0<a <1. 7.已知a =5-22,函数f (x )=a x,若实数m ,n 满足f (m )>f (n ),则m ,n 的大小关系为________. 解析:由题意知,a =5-22∈(0,1),故函数f (x )=a x是减函数,由f (m )>f (n )得m <n . 答案:m <n 8.(2013·陕西高考)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为________(m).解析:如图,过A 作AH ⊥BC 于H ,交DE 于F ,易知DE BC =x 40=AD AB =AF AH ⇒AF =x ⇒FH =40-x .则S =x (40-x )≤x +40-x 22=⎝ ⎛⎭⎪⎫4022,当且仅当40-x =x ,即x =20时取等号.所以满足题意的边长x 为20(m).答案:209.(2013·江苏扬州中学期中)已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.解析:由已知∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则需x ≤1时,f (x )不单调即可,即对称轴a 2<1,解得a <2. 答案:a <210.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)∵g (x )=x +e 2x ≥2e 2=2e(x >0), 当且仅当x =e 2x时取等号. ∴当x =e 时,g (x )有最小值2e.因此g (x )=m 有零点,只需m ≥2e.∴m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图像有两个不同的交点.如图所示,作出函数g (x )=x +e 2x(x >0)的大致图像. ∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其对称轴为x =e ,f (x )max =m -1+e 2.若函数f (x )与g (x )的图像有两个交点,必须有m -1+e 2>2e ,即m >-e 2+2e +1.即g (x )-f (x )=0有两个相异实根,则m 的取值范围是(-e 2+2e +1,+∞).11.某服装厂生产一种服装,每件服装的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100件时,每多订购一件,订购的全部服装的出场单价就降低0.02元,根据市场调查,销售商一次订购量不会超过600件.(1)设一次订购x 件,服装的实际出厂单价为p 元,写出函数p =f (x )的表达式;(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少? 解:(1)当0<x ≤100时,p =60;当100<x ≤600时,p =60-(x -100)×0.02=62-0.02x .所以p =⎩⎪⎨⎪⎧ 60, 0<x ≤100,62-0.02x , 100<x ≤600.(2)设利润为y 元,则当0<x ≤100时,y =60x -40x =20x ;当100<x ≤600时,y =(62-0.02x )x -40x =22x -0.02x 2.所以y =⎩⎪⎨⎪⎧ 20x , 0<x ≤100,22x -0.02x 2, 100<x ≤600.当0<x ≤100时,y =20x 是单调增函数,当x =100时,y 最大,此时y =20×100=2 000; 当100<x ≤600时,y =22x -0.02x 2=-0.02(x -550)2+6 050,所以当x =550时,y 最大,此时y =6 050.显然6 050>2 000.所以当一次订购550件时,利润最大,最大利润为6 050元.12.(2013·江西七校联考)已知函数f (x )=log 4(4x +1)+kx (k ∈R )为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围.解:(1)∵f (x )为偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,即(2k +1)x =0,∴k =-12. (2)依题意令log 4(4x +1)-12x =log 4(a ·2x -a ), 即⎩⎪⎨⎪⎧ 4x +1=a ·2x -a ·2x ,a ·2x -a >0.令t =2x ,则(1-a )t 2+at +1=0,只需其有一正根即可满足题意.①当a =1时,t =-1,不合题意,舍去.②上式有一正一负根t 1,t 2,即⎩⎪⎨⎪⎧ Δ=a 2-41-a >0,t 1t 2=11-a <0,经验证满足a ·2x-a >0,∴a >1. ③上式有两根相等,即Δ=0⇒a =±22-2,此时t =a 2a -1,若a =2(2-1),则有t =a 2a -1<0,此时方程(1-a )t 2+at +1=0无正根,故a =2(2-1)舍去; 若a =-2(2+1),则有t =a 2a -1>0,且a · 2x -a =a (t -1)=a ⎣⎢⎡⎦⎥⎤a 2a -1-1=a 2-a 2a -1>0, 因此a =-2(2+1).综上所述,a 的取值范围为{a |a >1或a =-2-22}.。
01 函数及其表示函数的概念【知识简介】函数与映射的概念【典例】1. 判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) 【答案】 (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( )A.⎣⎡⎭⎫32,+∞B.(-∞,3)∪(3,+∞)C.⎣⎡⎭⎫32,3∪(3,+∞)D.(3,+∞)【解析】由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.【答案】C3.(2017·东北三省四市二联)已知函数f (x )=⎩⎪⎨⎪⎧log 5x ,x >0,2x , x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫125=( ) A .4 B.14C.-4D.-14【解析】∵f ⎝⎛⎭⎫125=log 5125=log 55-2=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫125=f (-2)=2-2=14,故选B. 【答案】B 4.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________. 【解析】[∵f (x )=ax 3-2x 的图象过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2. 【答案】-2 5.给出下列四个命题:①函数是其定义域到值域的映射; ②f (x )=x -3+2-x 是一个函数; ③函数y =2x (x ∈N)的图象是一条直线; ④f (x )=lg x 2与g (x )=2lg x 是同一个函数. 其中正确命题的序号是________. 【解析】由函数的定义知①正确.∵满足⎩⎪⎨⎪⎧x -3≥0,2-x ≥0的x 不存在,∴②不正确.∵y =2x (x ∈N)的图象是位于直线y =2x 上的一群孤立的点,∴③不正确. ∵f (x )与g (x )的定义域不同,∴④也不正确. 【答案】① 求函数的定义域 【知识简介】求函数定义域主要有两种类型,一种是具体函数求定义域,即结合分式、根式及对数式等考查自变量的取值;另一种是抽象函数定义域的求解,高考中常以选择题形式出现,难度较低. 【典例】 1(1)(2014·山东,3)f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12 B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞) D.⎝⎛⎦⎤0,12∪[2,+∞) (2)(2013·大纲全国,4)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0) D.⎝⎛⎭⎫12,1【答案】 (1)C (2)B 【名师点睛】(1)求定义域时对于解析式先不要化简;(2)求出定义域后,一定要将其写成集合或区间的形式. 1.(2012·江西,2)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin x x1.D 函数y =13x 的定义域为{x |x ≠0,x ∈R },与函数y =sin xx 的定义域相同,故选D.2.若典型例题1(2)改为函数f (x 2-1)的定义域为[0,2],则函数g (x )=f (2x )的定义域为________.【答案】 ⎣⎡⎦⎤-12,32,求函数定义域的三种常考类型及求解策略(1)已知函数的解析式:构建使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出. ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. (3)实际问题:既要使构建的函数解析式有意义,又要考虑实际问题的要求.求函数的解析式 【知识简介】高考中直接考查求函数解析式的题目很少,主要考查应用问题,备考时熟练掌握换元法、待定系数法求解析式,高考中常以选择题或填空题形式出现,难度不大.【典例】 2(1)(2014·浙江,6)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( ) A .c ≤3 B .3<c ≤6 C .6<c ≤9 D .c >9(2)(2015·浙江,7)存在函数f (x )满足:对任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+x C .f (x 2+1)=|x +1| D .f (x 2+2x )=|x +1|(3)(2013·安徽,14)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.【解析】 (1)由f (-1)=f (-2)=f (-3)得,⎩⎪⎨⎪⎧-1+a -b +c =-8+4a -2b +c ,-1+a -b +c =-27+9a -3b +c ,解得⎩⎪⎨⎪⎧a =6,b =11,∴f (x )=x 3+6x 2+11x +c .由0<f (-1)≤3,得0<-1+6-11+c ≤3,即6<c ≤9,故选C.(3)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).【答案】 (1)C (2)D (3)-12x (x +1),【名师点睛】题(2)中判断对应关系“f ”是否是函数关键在于对于∀x ∈R 在f 的作用下是否有唯一的y 与之对应.求函数解析式的常见方法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可.(2)换元法:已知f (h (x ))=g (x )求f (x )时,往往可设h (x )=t ,从中解出x ,代入g (x )进行换元,求出f (t )的解析式,再将t 替换为x 即可.(3)转化法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足的等量关系间接获得其解析式.(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x (或f (-x ))的表达式,可根据已知条件再构造出另一个方程构成方程组求出f (x ). 分段函数分段函数作为考查函数知识的最佳载体,一直是高考命题的热点,试题常以选择题、填空题形式出现,考查求值、解方程(零点)、解不等式、函数图象及函数性质等问题.解题过程中常渗透分类讨论的数学思想.【典例】3(1)(2015·课标Ⅱ,5)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ), x <1,2x -1, x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12(2)(2014·浙江,15)设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2, x ≥0.若f (f (a ))≤2,则实数a 的取值范围是________.【答案】 (1)C (2)(-∞,2] 【名师点睛】当分段函数的自变量范围不确定时,应分类讨论.(2015·山东临沂调研,5)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45 C .2 D .9 C ∵0<1,∴f (0)=20+1=2. ∵f (0)=2≥1,∴f (f (0))=22+2a =4a , ∴a =2.故选C.,分段函数两种题型的求解策略 (1)根据分段函数的解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值(或函数值的范围)求自变量的值(或范围)应根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围.【针对训练】1.(2016·湖南三校联考,3)函数f (x )=-x 2+3x +4+lg(x -1)的定义域是( ) A .[-1,4] B .(-1,4] C .[1,4] D .(1,4] 1.D 由题意,得⎩⎪⎨⎪⎧-x 2+3x +4≥0,x -1>0,解得1<x ≤4. 2.(2016·福建厦门一模,4)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1393.(2016·湖南衡阳联考,3)已知f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x ,则f (x )=( ) A .(x +1)2 B .(x -1)2C .x 2-x +1D .x 2+x +13.C f ⎝⎛⎭⎫1+x x =x 2+1x 2+1x =⎝⎛⎭⎫x +1x 2-x +1x +1,令x +1x =t ,则f (t )=t 2-t +1,即f (x )=x 2-x +1.4.(2015·河北唐山统考,5)f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x ) D .-x 3+ln(1-x )4.C 当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ).∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )],∴f (x )=x 3-ln(1-x ). 5.(2016·广东广州一模,8)已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫12,2 5.B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎪⎨⎪⎧3≤2x ≤6,log 12(2-x )>0⇒⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1⇒32≤x <2.故选B.6.(2016·陕西西安一中一模,10)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,-2)D .(-2,1)7.(2015·湖北武汉质检,6)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,x 2-2x ,x ≥0.若f (-a )+f (a )≤0,则a 的取值范围( )A .[-1,1]B .[-2,0]C .[0,2]D .[-2,2]7.D 依题意可得⎩⎪⎨⎪⎧a ≥0,a 2-2a +(-a )2+2(-a )≤0 或⎩⎪⎨⎪⎧a <0,(-a )2-2(-a )+a 2+2a ≤0, 解得a ∈[-2,2],故选D.8.(2015·安徽合肥二模,7)设集合A =⎣⎡⎭⎫0,12,B =⎣⎡⎦⎤12,1,函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且 f (f (x 0))∈A ,则x 0的取值范围是( ) A.⎝⎛⎦⎤0,14 B.⎝⎛⎦⎤14,12 C.⎝⎛⎭⎫14,12 D.⎣⎡⎦⎤0,38思路点拨:解答本题关键是要分清x 0∈A 时,f (x 0)的取值范围,以决定如何求f (f (x 0))的值. 9.(2016·浙江慈溪、余姚联考,10)若函数f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________.9. 【解析】 用1x 替换2f (x )+f ⎝⎛⎭⎫1x =3x 中的x ,得到2f ⎝⎛⎭⎫1x +f (x )=3x ,两个方程联立消去f ⎝⎛⎭⎫1x ,得f (x )=2x -1x. 【答案】 2x -1x10.(2016·湖北武昌调考,14)新定义函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)sgn x >2的解集是________. 10. 【解析】 ①当x >0时, sgn x =1,不等式的解集为{x |x >1}; ②当x =0时,sgn x =0,不等式无解;③当x <0时,sgn x =-1,不等式的解集为{x |x <-3}, 所以不等式(x +1)sgn x >2的解集为{x |x <-3或x >1}. 【答案】 {x |x <-3或x >1}【点击高考】1.(2014·江西,2,易)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)1.C 要使函数有意义,需满足x 2-x >0,解得x <0或x >1,故选C.2.(2014·江西,3,易)已知函数f (x )=5|x |,g (x )=ax 2-x (a ∈R ).若f (g (1))=1,则a =( ) A .1 B .2 C .3 D .-1 2.A 由已知条件可知 f (g (1))=f (a -1)=5|a -1|=1, ∴|a -1|=0,得a =1.故选A.3.(2012·安徽,2,易)下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1 D .f (x )=-x4.(2015·山东,10,中)设函数f (x )=⎩⎪⎨⎪⎧3x -1, x <1,2x , x ≥1.则满足f (f (a ))=2f (a )的a 的取值范围是( )A.⎣⎡⎦⎤23,1 B .[0,1] C.⎣⎡⎭⎫23,+∞ D .[1,+∞)4.C 令f (a )=t ,则由f (f (a ))=2f (a )得f (t )=2t .由f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1可知t ≥1.∴f (a )≥1⇒⎩⎪⎨⎪⎧a <1,3a -1≥1或⎩⎪⎨⎪⎧a ≥1,2a ≥1⇒23≤a <1或a ≥1⇒a ≥23.故选C. 5.(2015·湖北,6,中)已知符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.f (x )是R 上的增函数,g (x )=f (x )-f (ax )(a >1),则( )A .sgn[g (x )]=sgn xB .sgn[g (x )]=-sgn xC .sgn[g (x )]=sgn[f (x )]D .sgn[g (x )]=-sgn[f (x )]6.(2015·湖北,10,难)设x ∈R ,[x ]表示不超过x 的最大整数.若存在实数t ,使得[t ]=1,[t 2]=2,…,[t n ]=n 同时成立,则正整数n 的最大值是( ) A .3 B .4 C .5 D .6 6.B 由题可知: 当n =1时,1≤t <2.当n =2时,2≤t 2<3,即2≤t <3满足条件.当n =3时,3≤t 3<4,即33≤t <34满足条件. 当n =4时,4≤t 4<5,即44≤t <45满足条件. 当n =5时,5≤t 5<6,即55≤t <56, 而33>56.所以正整数n 的最大值为4.7.(2015·浙江,10,易)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3, x ≥1,lg (x 2+1), x <1,则f (f (-3))=________,f (x )的最小值是________.8.(2015·山东,14,中)已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.8.【解析】 当0<a <1时,由已知得⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧b =-2,a =12,∴a +b =-32.当a >1时,⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,解得b =-1,∴1a =0,无解.综上a +b =-32. 【答案】 -3202 函数的单调性求函数的单调区间 【知识简介】对于高考中函数的单调性是重点考查内容.备考时要熟记基本初等函数的图象和性质.往往以选择题、填空题形式出现,难度中等,解答题部分一般与导数结合,考查难度较大. 【典例】 1(1)(2015·湖南,5)设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数(2)(2014·天津,4)函数f (x )=log 12(x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调增区间,即求函数y =x 2-4的单调减区间,结合函数的定义域x 2-4>0,可知所求区间为(-∞,-2). 【答案】 (1)A (2)D(2015·河南洛阳二模,6)函数y =f (x )(x ∈R )的图象如图所示,则函数g (x )=f (log a x )(0<a <1)的单调减区间是( )A.⎣⎡⎦⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .[a ,a +1] B 由图象可知,函数y =f (x )的单调递减区间为(-∞,0)和⎝⎛⎭⎫12,+∞,单调递增区间为⎣⎡⎦⎤0,12. ∵0<a <1,∴函数y =log a x 在定义域内单调递减.由题意可知,0≤log a x ≤12,解得a ≤x ≤1,即所求递减区间为[a ,1],故选B.,判断函数单调性(单调区间)的常用方法(1)定义法:先求定义域,再根据取值、作差、变形、定号的顺序得结论.(2)图象法:若函数是以图象形式给出的,或者函数的图象可作出,可由图象的升、降判断它的单调性或写出单调区间.(3)复合函数法:适用于形如y =f (φ(x ))的复合函数,具体规则如下表:函数 增减情况内函数t =φ(x ) 增 增 减 减 外函数y =f (t ) 增 减 增 减 y =f (φ(x ))增减减增y =f (φ(x ))的单调性可以利用口诀——“同增异减”来判断,即内外函数的单调性相同时,为增函数;单调性不同时为减函数.(4)导数法:先求导,再确定导数值的正负,由导数的正负得函数的单调性(区间). (5)性质法:利用函数单调性的有关结论,确定简单的初等函数的单调性. 函数的值域 【知识简介】确定函数的值域或最值一般先探求函数在定义域内的单调性,通常出现在选择题或填空题中,函数求值域问题涉及到的函数是基本初等函数,或由基本初等函数经过变换得到.在备考时熟练掌握几个常见函数模型的图象与性质,如y =ax +b cx +d (c ≠0)或y =x +ax (a ≠0).此外,在解答题中常与恒成立、有解问题综合考查,属于中高档题.【典例】 2(1)(2014·安徽,9)若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8(2)(2015·福建,14)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.【解析】 (1)①当-1≤-a2,即a ≤2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x ≤-1,-x -a +1,-1<x <-a 2,3x +a +1,x ≥-a 2. 易知函数f (x )在x =-a 2处取最小值,即1-a2=3.所以a =-4.②当-1>-a2,即a >2时,f (x )=⎩⎪⎨⎪⎧-3x -a -1,x ≤-a2,x +a -1,-a 2<x <-1,3x +a +1,x ≥-1.易知函数f (x )在x =-a 2处取最小值,即a2-1=3,故a =8.综上可得a =-4或a =8.【答案】 (1)D (2)(1,2](2015·福建福州一模,6)如果函数f (x )对任意的实数x ,都有f (1+x )=f (-x ),且当x ≥12时,f (x )=log 2(3x -1),那么函数f (x )在[-2,0]上的最大值与最小值之和为( ) A .2 B .3 C .4 D .-1常见求函数值域的方法(1)配方法:对形如y =ax 2+bx +c (a ≠0)形式的函数,配方转化为顶点式,利用二次函数值域的求法求 解.(2)单调性法(图象法):若f (x )在[a ,b ]上单调递增,则f (x )min =f (a ),f (x )max =f (b );若f (x )在[a ,b ] 上单调递减,则f (x )min =f (b ),f (x )max =f (a ).(3)对于形如y =x +ax (a >0)的函数,利用基本不等式:a +b ≥2ab (a >0,b >0)求最值.(4)导数法. 单调性的应用 【知识简介】函数单调性的应用常以基本初等函数为载体,考查学生数形结合思想、转化与化归思想的应用,综合分析问题的能力.在高考中常以选择题、填空题出现,难度中等. 【典例】 3(1)(2015·天津,7)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b=f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a(2)(2013·安徽,4)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)内单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(3)(2014·课标Ⅱ,15)已知偶函数f (x )在[0,+∞)上单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.【解析】 (1)∵f (x )为偶函数,∴f (-x )=f (x ),∴m =0, ∴f (x )=2|x |-1.图象如图,由函数的图象可知,函数f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数.∵a=f(log0.53)=f(log23),b=f(log25),c=f(0),又log25>log23>0,∴b>a>c,故选C.(3)由题知,f(2)=0且f(x-1)>0,故f(x-1)>f(2),而函数f(x)在[0,+∞)上单调递减且为偶函数,故满足|x -1|<2,解得-1<x<3.【答案】(1)C(2)C(3)(-1,3),比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.含“f”号不等式的解法首先根据函数的性质把不等式转化为f(g(x))>f(h(x))的形式,然后根据函数的单调性去掉“f”号,转化为具体的不等式(组),此时要注意g(x)与h(x)的取值应在外层函数的定义域内.利用函数的单调性求参数的取值范围已知函数在区间A上是增函数,求相关参数的取值范围,若函数是复合函数的形式,此类问题应理解为区间A是函数增区间的子集,根据复合函数“同增异减”的单调性结论来解决.若函数的导数可求,则可用函数的导数恒大于或等于0来解决.如f(x)在区间A上为增函数,求参数a的范围,则转化为:f′(x)≥0在A上恒成立且f ′(x )=0在A 的任意子区间不恒成立,若求得a ≥2,则需检验a =2时是否符合题意.【针对训练】1.(2016·河南郑州一模,2)下列函数中是偶函数并且在(0,+∞)内单调递增的是( ) A .y =-(x -1)2 B .y =cos x +1 C .y =lg|x |+2 D .y =2x2.(2015·河北保定三模,6)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是( )A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 2.C 要使函数f (x )的值域为R ,只需⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,故选C.3.(2015·湖南株洲一模,7)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .123.C 由已知得当-2≤x ≤1时,f (x )=x -2; 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.4.(2016·黑龙江哈尔滨联考,8)已知函数f (x )的图象向右平移a (a >0)个单位后关于直线x =a +1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关 系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c4.D 由函数f (x )的图象向右平移a (a >0)个单位后关于直线x =a +1对称,知f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减. ∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c ,故选D.5.(2016·江西八校联考,10)定义在R 上的函数f (x )对任意x 1,x 2(x 1≠x 2)都有f (x 1)-f (x 2)x 1-x 2<0,且函数y=f (x -1)的图象关于点(1,0)中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4时,t -2ss +t 的取值范围是( )A.⎣⎡⎭⎫-3,-12B.⎣⎡⎦⎤-3,-12 C.⎣⎡⎭⎫-5,-12 D.⎣⎡⎦⎤-5,-12①不等式组⎩⎪⎨⎪⎧1≤s ≤4,s ≤t ,s +t ≤2的解只有⎩⎪⎨⎪⎧s =1,t =1,此时t -2s s +t=-12.②∵t -2s s +t =t +s -3s s +t=1-31+t s,不等式组⎩⎪⎨⎪⎧1≤s ≤4,s ≥t ,s +t ≥2表示的可行域如图中阴影部分所示,6.(2016·吉林长春质检,15)已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是________.6.【解析】 由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1, ∴所求解集是(-∞,1]∪[3,+∞). 【答案】 (-∞,1]∪[3,+∞)【点击高考】1.(2014·北京,2,易)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)1.A 对于A ,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故符合;对于B ,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故不符合;对于C ,函数y =2-x =⎝⎛⎭⎫12x在R 上为减函数,故不符合;对于D ,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故不符合.2.(2014·陕西,7,易)下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x3 C .f (x )=⎝⎛⎭⎫12xD .f (x )=3x2.D ∵f (x +y )=f (x )f (y ), ∴f (x )为指数函数模型,排除A ,B.又∵f (x )为单调递增函数,∴排除C ,故选D.3.(2012·广东,4,易)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2) B .y =-x +1 C .y =⎝⎛⎭⎫12x D .y =x +1x4.(2012·陕西,2,易)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1xD .y =x |x |4.D (逐项验证法)对于A ,注意到函数y =x +1不是奇函数;对于B ,注意到函数y =-x 3是在R 上的减函数;对于C ,注意到函数y =1x 在其定义域上不是增函数;对于D ,注意到-x ·|-x |+x |x |=0,即函数y =x |x |是奇函数,且当x ≥0时,y =x |x |=x 2是增函数,因此函数y =x |x |既是奇函数又是R 上的增函数,故选D.5.(2015·北京,14,中)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________. 5.【解析】 (1)若a =1,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1.当x <1时,-1<2x -1<1.当x ≥1时,4(x -1)(x -2)=4(x 2-3x +2)=4⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫x -322-14≥-1,∴f (x )min =-1.6.(2012·上海,7,中)已知函数f (x )=e |x--a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________.6.【解析】 方法一:∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ),∴f (x )在[a ,+∞)上为增函数, 则[1,+∞)⊆[a ,+∞),∴a ≤1.方法二:∵f (x )=e |x -a |=⎩⎪⎨⎪⎧e x -a (x ≥a ),e -x +a (x <a ),当x ≥a 时,f (x )=e x -a ,f ′(x )=e x -a .由题意知f ′(x )=e x -a ≥0在[1,+∞)上是恒成立的, ∴a ≤x min ,∴a ≤1.当x <a 时,f ′(x )=-e x -a <0恒成立,不符合题意. 综上所述,a ≤1. 【答案】 (-∞,1]7.(2016·浙江,16,15分,中)已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q . (1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ).7.解:(1)由于a≥3,故当x≤1时,(x2-2ax+4a-2)-2|x-1|=x2+2(a-1)(2-x)>0,当x>1时,(x2-2ax+4a-2)-2|x-1|=(x-2)(x-2a).所以使得等式F(x)=x2-2ax+4a-2成立的x的取值范围为[2,2a].03 函数的奇偶性与周期性函数奇偶性的判断及应用【知识简介】函数的奇偶性常与函数单调性相结合,解决求值、求参数问题,也与函数的周期性、图象对称性在同一个题目中出现,常以选择题或填空题形式出现,难度不大,属于中低档题.【典例】1(1)(2015·安徽,2)下列函数中,既是偶函数又存在零点的是()A.y=cos x B.y=sin xC.y=ln x D.y=x2+1(2)(2014·湖南,3)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3 B.-1C.1 D.3(3)(2015·课标Ⅰ,13)若函数f(x)=x ln(x+a+x2)为偶函数,则a=______.【答案】(1)A(2)C(3)1(2013·四川,14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.【答案】 (-7,3),判断函数奇偶性的方法 (1)定义法首先确定函数的定义域,若定义域关于原点对称,则确定f (x )与f (-x )的关系,进而得出函数的奇偶性;否则该函数既不是奇函数也不是偶函数. (2)图象法观察f (x )的图象,若关于原点对称,则f (x )为奇函数,若关于y 轴对称,则f (x )为偶函数.应用奇偶性可解决的问题及方法(1)求函数值:利用奇偶性转化到已知区间上求解.(2)求解析式:步骤:①求谁设谁;②转化到已知解析式的区间;③利用已知区间解析式求出f (-x );④利用奇偶性求出f (x ).(3)求解析式中参数的值:利用待定系数法求解,由f (x )±f (-x )=0得出关于参数的恒等式,进而求解. 函数的周期性 【知识简介】函数的周期性常与函数的奇偶性、图象的对称性结合,考查函数求值等问题,难度中等,一般以选择题、填空题的形式出现.【典例】 2(1)(2012·山东,8)定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2,当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( ) A .335 B .338 C .1 678 D .2 012(2)(2014·四川,12)设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 【解析】 (1)由f (x +6)=f (x )可知,函数f (x )的周期为6,所以f (-3)=f (3)=-1,f (-2)=f (4)=0,f (-1)=f (5)=-1,f (0)=f (6)=0,f (1)=1,f (2)=2,所以在一个周期内有f (1)+f (2)+…+f (6)=1+2-1+0-1+0=1,所以f (1)+f (2)+…+f (2 012)=f (1)+f (2)+335×1=1+2+335=338.(2)由已知易得f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1,又由函数的周期为2, 可得f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=1. 【答案】 (1)B (2)1,函数周期性的判定与应用(1)判断函数的周期只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,即周期性与奇偶性都具有将未知区间上的问题转化到已知区间的功能.在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期. 函数性质的综合应用 【知识简介】函数的奇偶性、周期性及单调性,在高考中常将它们综合在一起命题,奇偶性多与单调性结合,周期性多与抽象函数结合,并结合奇偶性求函数值,难度中等,一般以选择题、填空题的形式出现. 【典例】 3(1)(2014·大纲全国,12)奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8) +f (9)=( )A .-2B .-1C .0D .1(2)(2012·课标全国,16)设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M +m =________.(2)显然其定义域为全体实数,f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,∵g (-x )=-g (x ),∴g (x )为奇函数,由奇函数图象的对称性知g (x )max +g (x )min =0,∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2. 【答案】 (1)D (2)2,函数性质综合应用的注意点函数的周期性常通过奇偶性得到,奇偶性体现的是一种对称关系.而函数的单调性体现的是函数值随自变量变化而变化的规律.因此在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.【针对训练】1.(2016·山东潍坊联考,4)设函数f (x )是定义在R 上的奇函数,则下列结论中一定正确的是( ) A .函数f (x 2)+x 2是奇函数 B .函数[f (x )]2+|x |不是偶函数 C .函数x 2f (x )是奇函数 D .函数f (x )+x 3不是奇函数2.(2016·甘肃兰州一模,12)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( )A.⎣⎡⎭⎫12,+∞B.⎣⎡⎭⎫12,2 C.⎣⎡⎦⎤12,2 D .(0,2]2.C 因为f (log 12a )=f (-log 2a )=f (log 2a ),所以原不等式可化为f (log 2a )≤f (1).又f (x )在区间[0,+∞)上单调递增,所以|log 2a |≤1,解得12≤a ≤2,故选C.3.(2016·广东东莞一模,6)已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (21.8),则a ,b ,c 的大小关系是( )A .c <a <bB .c <b <aC .b <c <aD .a <b <c3.B ∵f (x )是定义在(-∞,+∞)上的偶函数, ∴b =f (log 123)=f (-log 23)=f (log 23),∵21.8>2>log 23=log 49>log 47, ∴log 47<log 49<21.8,∵f (x )在(-∞,0]上是增函数, ∴f (x )在[0,+∞)上是减函数, 则f (log 47)>f (log 49)>f (21.8), 即c <b <a .4.(2015·湖北名校联考,7)设f (x )是定义在R 上的偶函数,对任意x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=⎝⎛⎭⎫12x-1.若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是( )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)∴在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根可转化为函数f (x )的图象与y =log a (x +2)的图象有且只有三个不同的交点,则⎩⎪⎨⎪⎧log a (2+2)<3,log a(6+2)>3, 解得34<a <2,故选D.5.(2016·河北石家庄模拟,15)若函数f (x )=2x +sin x 对任意的m ∈[-2,2],有f (mx -3)+f (x )<0恒成立,则x 的取值范围是________.【答案】 (-3,1)6.(2016·山东济南二模,13)已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x )+22,若函数f (x -1)的图象关于直线x =1对称,f (1)=2,则f (2 015)=________.6.【解析】 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x )+22,得f (x +4+4)=-f (x +4)+22=f (x ), ∴f (x )是周期T =8的偶函数,∴f (2 015)=f (7+251×8)=f (7)=f (8-1)=f (-1)=f (1)=2. 【答案】 27.(2016·山西太原三模,16)已知定义在R 上的奇函数f (x )满足f ⎝⎛⎭⎫32-x =f (x ),f (-2)=-3,数列{a n }的前n 项和为S n ,且a 1=-1,S n =2a n +n (n ∈N *),则f (a 5)+f (a 6)=________. 7.【解析】 ∵奇函数f (x )满足f ⎝⎛⎭⎫32-x =f (x ), ∴f ⎝⎛⎭⎫32-x =-f (-x ), ∴f (x )=-f ⎝⎛⎭⎫x +32=f (x +3), ∴f (x )是以3为周期的周期函数, ∵S n =2a n +n ,① ∴S n +1=2a n +1+n +1,②②-①可得a n +1=2a n -1,即a n +1-1=2(a n -1),∴数列{a n -1}是首项为-2,公比为2的等比数列,即a n -1=-2·2n -1=-2n ,即a n =-2n +1,∴a 5=-31,a 6=-63,∴f (a 5)=f (-31)=f (2)=-f (-2)=3,f (a 6)=f (-63)=f (0)=0,∴f (a 5)+f (a 6)=3. 【答案】 38.(2016·河南郑州质检,15)设函数y =f (x )的定义域为D ,若对于任意x 1,x 2∈D ,当x 1+x 2=2a 时,恒有f (x 1)+f (x 2)=2b ,则称点(a ,b )为函数y =f (x )图象的对称中心.研究函数f (x )=x 3+sin πx +2图象的某一个对称中心,并利用对称中心的上述定义,可得到f (-1)+f ⎝⎛⎭⎫-1920+…+f ⎝⎛⎭⎫1920+f (1)=________. 【答案】 82【点击高考】1.(2016·山东,9,中)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)=( ) A .-2 B .-1 C .0 D .21.D 由题意得,当x >12时,f (x +1)=f ⎝⎛⎭⎫x +12+12=f ⎝⎛⎭⎫x +12-12=f (x ),所以当x >12时,f (x )的周期为1,所以f (6)=f (1).又f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2,故选D.2.(2016·课标Ⅱ,12,难)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1 (x i +y i )=( ) A .0 B .m C .2m D .4m3.(2015·广东,3,易)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12x D .y =x +e x3.D A 中函数y =1+x 2为偶函数;B 中f (-x )=-x -1x =-f (x ),故为奇函数;C 中f (-x )=2-x +12-x =12x+2x =f (x ),故为偶函数;D 中f (-x )=-x +e -x ,为非奇非偶函数,故选D.4.(2014·课标Ⅰ,3,易)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数4.C 若f (x )为奇函数,则|f (x )|为偶函数;若g (x )为偶函数,则|g (x )|为偶函数,且两函数相乘奇偶性“同偶异奇”,对照选项可知C 正确.5.(2013·山东,3,易)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .25.A 因为函数f (x )为奇函数,所以f (-1)=-f (1)=-2.故选A.6.(2012·福建,7,中)设函数D (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则下列结论错误的是( )A .D (x )的值域为{0,1}B .D (x )是偶函数C .D (x )不是周期函数 D .D (x )不是单调函数7.(2016·天津,13,中)已知f(x)是定义在R上的偶函数,且在区间(-∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是________.7.【解析】由f(x)是偶函数且f(x)在(-∞,0)上单调递增,得f(x)在(0,+∞)上单调递减.又f(2|a-1|)>f(-2),f(-2)=f(2),∴f(2|a-1|)>f(2),∴2|a-1|<2,即|a-1|<1 2,∴12<a<32.【答案】12<a<328.(2012·上海,9,易)已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.04 二次函数与幂函数二次函数 【知识简介】在高考中,二次函数图象常与其他函数结合考查,多以选择题形式出现,难度偏大,属于中高档题. 二次函数性质中单调性及最值在高考中出现频率较高,在解答题中常与导数相结合,考查函数的单调性、极值、零点与不等式问题,难度较大.【典例】 1(1)(2015·四川,9)如果函数f (x )=12(m -2)x 2+(n -8)x +1(m ≥0,n ≥0)在区间⎣⎡⎦⎤12,2上单调递减,那么mn 的最大值为( ) A .16 B .18 C .25 D.812(2)(2013·辽宁,12)已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( ) A .a 2-2a -16 B .a 2+2a -16 C .-16 D .16③当m -2<0,即0≤m <2时,f (x )开口向下,对称轴x =-n -8m -2=8-n m -2≤12,整理得m +2n ≤18.∴mn =12×2mn ≤12×⎝⎛⎭⎫m +2n 22≤812,当且仅当m =2n ,m +2n =18,即n =92,m =9时,等号成立,而m =9与0≤m <2矛盾;故不合题意.综上可知,mn 的最大值为18,故选B.(2)令f(x)=g(x),即x2-2(a+2)x+a2=-x2+2(a-2)x-a2+8,即x2-2ax+a2-4=0,解得x=a+2或x=a-2.f(x)与g(x)的图象如图.由图象及H1(x)的定义知H1(x)的最小值是f(a+2),H2(x)的最大值为g(a-2),∴A-B=f(a+2)-g(a-2)=(a +2)2-2(a+2)2+a2+(a-2)2-2(a-2)2+a2-8=-16.【答案】(1)B(2)C,【名师点睛】(1)首先根据函数的单调性建立关于m,n的不等式,然后运用基本不等式求最值.注意需对二次项系数进行分类讨论.(2)比较两个函数的大小可以转化成两图象的上下位置关系,故可用图象法求解,在画图时要抓好轴与顶点.二次函数图象的主要考查方向(1)二次函数的图象的识别问题,主要有以下三个要点:一是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y轴的交点、与x轴的交点,函数图象的最高点与最低点等.从这三方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)与其他图象的公共点问题,解决此类问题的关键是正确作出二次函数及题目所涉及的相应函数图象,要注意其相对位置关系.二次函数性质应用的求解策略(1)先定性:当二次项系数含参数时,要分类讨论:二次项参数大于0,等于0,小于0. (2)再定量:根据分类,画出符合条件的草图,结合图象列式计算. 幂函数 【知识简介】高考中考查幂函数的概念、图象及性质,利用幂函数性质求参数,很少单独考查,一般结合指数函数、对数函数考查基本初等函数的图象与性质,以选择题、填空题的形式呈现,难度不大.【典例】 2(1)(2014·浙江,7)在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图象可能是 ( )(2)(2014·上海,9)若f (x )=x 23-x -12,则满足f (x )<0的x 的取值范围是________.(2)令y 1=x 23,y 2=x -12,则f (x )<0即为y 1<y 2.函数y 1=x 23,y 2=x -12的图象如图所示,由图象知当0<x <1时,y 1<y 2,所以满足f (x )<0的x 的取值范围是(0,1). 【答案】 (1)D (2)(0,1)(2016·山东实验中学三模,5)幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α=( )A.12 B .1 C.32D .2幂函数的图象与性质问题的解题策略(1)关于图象辨识问题,关键是熟悉各类幂函数的图象特征,如过特殊点、凹凸性等.(2)关于比较幂值大小问题,结合幂值的特点利用指数幂的运算性质化成同指数幂,选择适当的幂函数,借助其单调性进行比较或应用.(3)在解决幂函数与其他函数的图象的交点个数、对应方程根的个数及近似解等问题时,常用数形结合的思想方法,即在同一坐标系下画出两函数的图象,数形结合求解.【针对训练】1.(2016·河南郑州一模,4)已知幂函数f (x )=(m 2-3m +3)·x m +1为偶函数,则m =( )A .1B .2C .1或2D .3 1.A ∵幂函数f (x )=(m 2-3m +3)x m+1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数为f (x )=x 2为偶函数,满足条件.当m =2时,幂函数为f (x )=x 3为奇函数,不满足条件.故选A.2.(2016·浙江宁波二模,6)已知函数f (x )=(x -a )(x -b )(其中a >b )的图象如图所示,则函数g (x )=a x +b 的图象是( )2.A [考向1,2]由f (x )的图象知,0<a <1,b <-1.由0<a <1可排除C ,D ,又由g (0)=1+b <0可排除B.故。
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
高三数学一轮复习:基础知识归纳第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2.数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B ==I U U I . (3)A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=ΦI U C A B R ⇔=U注意:讨论的时候不要遗忘了φ=A 的情况.(4)集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空真子集有2n –2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、 绝对值的意义等);⑧利用函数有界性(xa 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域.(2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y = ②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
高三数学一轮复习必备精品4:基本初等函数【高三数学一轮复习必备精品共42讲全部免费欢迎下载】-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第4讲 基本初等函数备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一.【课标要求】 1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型 2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点; 3.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1)。
4.幂函数(1)了解幂函数的概念(2)结合函数y=x, ,y=x 2, y=x 3,y=x 21,y=x1的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。
从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。
为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。
预测2010年对本节的考察是: 1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。
同时它们与其它知识点交汇命题,则难度会加大 三.【要点精讲】 1.指数与对数运算(1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n =,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =;3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n 。
(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n ( N *;2))0(10≠=a a ; n 个 3)∈=-p aa p p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=⋅+、∈s Q ); 2)r a a a s r s r ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a r r r ,0,0()( Q )。
(注)上述性质对r 、∈s R 均适用。
(3).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b =,那么数b 称以a 为底N 的对数,记作,logb N a =其中a 称对数的底,N 称真数1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质:1)真数N 为正数(负数和零无对数);2)01log =a ; 3)1log =a a ;4)对数恒等式:N a N a =log 。
③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M NMa a alog log log -=; 3)∈=n M n M a n a (log log R ) ④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a 1)1log log =⋅a b b a ;2)b mnb a n a m log log =。
2.指数函数与对数函数 (1)指数函数:①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ;2)函数的值域为),0(+∞; 3)当10<<a 时函数为减函数,当1>a 时函数为增函数。
②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限; 2)指数函数都以x 轴为渐近线(当10<<a 时,图象向左无限接近x 轴,当1>a 时,图象向右无限接近x 轴);3)对于相同的)1,0(≠>a a a 且,函数x x a y a y -==与的图象关于y 轴对称③函数值的变化特征:(2)对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 1)函数的定义域为),0(+∞;2)函数的值域为R ; 3)当10<<a 时函数为减函数,当1>a 时函数为增函数; 4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x 且互为反函数 ②函数图像:10<<a1>a①100<<>y x 时, ②10==y x 时, ③10><y x 时 ①10>>y x 时, ②10==y x 时, ③100<<<y x 时,1)对数函数的图象都经过点(1,0),且图象都在第一、四象限; 2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4)对于相同的)1,0(≠>a a a 且,函数x y x y aa 1log log ==与的图象关于x 轴对称。
③函数值的变化特征:(3)幂函数1)掌握5个幂函数的图像特点2)a>0时,幂函数在第一象限内恒为增函数,a<0时在第一象限恒为减函数 3)过定点(1,1)当幂函数为偶函数过(-1,1),当幂函数为奇函数时过(-1,-1)当a>0时过(0,0)4)幂函数一定不经过第四象限 四.【典例解析】 题型1:指数运算例1.(1)计算:22110.50.25332234[(3)(5)(0.008)(0.02)(0.32)]0.062589----+÷⨯÷; (2)化简:5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--。
解:(1)原式=41322132)10000625(]102450)81000()949()278[(÷⨯÷+- 922)2917(21]1024251253794[=⨯+-=÷⨯⨯+-=; (2)原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=。
点评:根式的化简求值问题就是将根式化成分数指数幂的形式,然后利用分数指数幂的运算性质求解,对化简求值的结果,一般用分数指数幂的形式保留;一般的进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数为分数运算,同时兼顾运算的顺序。
例2.(1)已知11223x x-+=,求22332223x x x x--+-+-的值解:∵11223x x-+=,∴11222()9x x -+=, ∴129x x -++=, ∴17x x -+=, ∴12()49x x -+=, ∴2247x x -+=, 又∵331112222()(1)3(71)18x xx x x x ---+=+⋅-+=⋅-=,∴223322247231833x x x x--+--==-+-。
点评:本题直接代入条件求解繁琐,故应先化简变形,创造条件简化运算。
题型2:对数运算(2).(江苏省南通市2008届高三第二次调研考试)幂函数()y f x =的图象经过点1(2,)8--,则满足()f x =27的x 的值是 .答案 13例3.计算(1)2(lg 2)lg 2lg 50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+;(3)1.0lg 21036.0lg 21600lg )2(lg 8000lg 5lg 23--+⋅解:(1)原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++(11)lg 22lg52(lg 2lg5)2=++=+=; (2)原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg 352lg 36lg 24=⋅=; (3)分子=3)2lg 5(lg 2lg 35lg 3)2(lg 3)2lg 33(5lg 2=++=++; 分母=41006lg 26lg 101100036lg)26(lg =-+=⨯-+; ∴原式=43。
点评:这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧例4.设a 、b 、c 为正数,且满足222a b c +=(1)求证:22log (1)log (1)1b c a ca b +-+++=; (2)若4log (1)1b c a ++=,82log ()3a b c +-=,求a 、b 、c 的值。
证明:(1)左边222log log log ()a b c a b c a b c a b ca b a b +++-+++-=+=⋅22222222222()22log log log log 21a b c a ab b c ab c c ab ab ab+-++-+-=====;解:(2)由4log (1)1b c a ++=得14b ca++=, ∴30a b c -++=……………①由82log ()3a b c +-=得2384a b c +-==………… ……………②由①+②得2b a -=……………………………………③ 由①得3c a b =-,代入222a b c +=得2(43)0a a b -=, ∵0a >, ∴430a b -=………………………………④ 由③、④解得6a =,8b =,从而10c =。