高二数学第2课时充要条件习题课
- 格式:pdf
- 大小:5.12 MB
- 文档页数:38
高中数学学习材料金戈铁骑整理制作第2课四种命题和充要条件【自主学习】第2课四种命题和充要条件(本课时对应学生用书第页)自主学习回归教材1.(选修2-1P8习题1改编)命题:“若x2<1,则-1<x<1”的逆否命题是. 【答案】若x≥1或x≤-1,则x2≥12.(选修2-1P7练习改编)命题“若x<0,则x2>0”及其逆命题、否命题、逆否命题这四个命题中正确命题的个数为.【答案】2【解析】原命题为真,所以逆否命题为真;逆命题为“若x2>0,则x<0”为假命题,所以否命题为假.3.(选修2-1P20习题改编)判断下列命题的真假.(填“真”或“假”)(1)命题“在△ABC中,若AB>AC,则C>B”的否命题为命题.(2)命题“若ab=0,则b=0”的逆否命题为命题.【答案】(1)真(2)假4.(选修2-1P9习题4(2)改编)“sin α=sin β”是“α=β”的条件.(填“充分不必要”、“必要不充分”、“ 充要”或“ 既不充分也不必要”)【答案】必要不充分5.(选修2-1P20习题改编)已知p,q都是r的必要条件,s是r的充分条件,q是s的充分条件,则r是q的条件,p是q的条件.【答案】充要必要【解析】q⇒s⇒r⇒q,所以r是q的充要条件;q⇒s⇒r⇒p,所以p是q的必要条件.1.记“若p则q”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p”,逆否命题为“若非q则非p”.其中互为逆否命题的两个命题同真假,即等价,原命题与逆否命题等价,逆命题与否命题等价.因此,四种命题为真的个数只能是偶数.2.对命题“若p则q”而言,当它是真命题时,记作p⇒q,称p是q的充分条件,q是p的必要条件;当它是假命题时,记作p⇒/q,称p是q的非充分条件,q是p的非必要条件.3.①若p⇒q,且q⇒/p,则p是q的充分不必要条件;②若p⇒/q,且q⇒p,则p是q的必要不充分条件;③若p⇒q,且q⇒p,则p是q的充要条件,记作p⇔q;④若p⇒/p,且q⇒/p,则p是q的既不充分也不必要条件.4.证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).【要点导学】要点导学各个击破命题真假的判断例1在△ABC中,已知命题p:若C=60°,则sin2A+sin2B-sin A sin B=sin2C.(1)求证:命题p是真命题;(2)写出命题p的逆命题,判断逆命题的真假,并说明理由.【思维引导】(1)利用正弦定理将待证式转化为a2+b2-ab=c2,然后利用余弦定理即证;(2)分清命题p的条件与结论,正确地对原命题的条件和结论进行互换或否定.【解答】设△ABC的内角A,B,C所对的边分别为a,b,c.(1)因为C=60°,由余弦定理得c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.由正弦定理sin a A =sin b B =sin cC , 得sin 2C=sin 2A+sin 2B-sin A sin B. 故命题p 是真命题.(2)命题p 的逆命题:在△ABC 中, 若sin 2A+sin 2B-sin A sin B=sin 2C ,则C=60°. 它是真命题.证明如下:由sin 2A+sin 2B-sin A sin B=sin 2C 和正弦定理得c 2=a 2+b 2-ab.而由余弦定理c 2=a 2+b 2-2ab cos C ,得cos C=12. 因为0°<C<180°,所以C=60°.【精要点评】对于命题真假的判定,关键是分清命题的条件与结论,只有将条件与结论分清,再结合所涉及的知识才能正确地判断命题的真假.变式 给出以下四个命题:①“若x+y=0,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x+q=0有实数根”的逆否命题; ④若a+b 是偶数,则整数a ,b 都是偶数. 其中真命题是 .(填序号) 【答案】①③【解析】①显然正确;②不全等的三角形的面积不相等,故②不正确;③原命题正确,所以它的逆否命题也正确;④若a+b 是偶数,则整数a ,b 都是偶数或都是奇数,故④不正确.【精要点评】对命题真假的判断,正确的命题要加以论证;不一定正确的命题要举出反例,这是最基本的数学思维方式.在判断命题真假的过程中,要注意简单命题与复合命题之间的真假关系;要注意四种命题之间的真假关系.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.因此,四种命题中真命题的个数只能是0,2或4.充要条件的判断例2从“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”中,选出一种适当的填空.(1)(2015·泰安期末)已知a∈R,则“a2<a”是“a<1”的条件.(2)(2015·保定期末)若集合A={0,1},B={-1,a2},则“A∩B={1}”是“a=1”的条件.【思维引导】(1)找到不等式a2<a的解集为(0,1),然后根据“小范围能推大范围,大范围推不出小范围”进行判断.(2)判断充要条件时,可先分清条件与结论,若由条件能推出结论,则充分性满足;若由结论能推出条件,则必要性满足.【答案】(1)充分不必要(2)必要不充分【解析】(1)因为由a2<a,可得0<a<1,所以“a2<a”是“a<1”的充分不必要条件.(2)若A∩B={1},则a2=1,a=±1,所以充分性不满足,必要性满足,故“A∩B={1}”是“a=1”的必要不充分条件.【精要点评】在判断充分条件及必要条件时,首先要分清哪个是条件,哪个是结论;其次,要从两个方面,即“充分”与“必要”分别考查.判定时,对于有关范围的问题也可以从集合观点看,如p,q对应的范围为集合A,B,若AB,则A是B 的充分条件,B是A的必要条件;若A=B,则A,B互为充要条件.变式从“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中,选出一种适当的填空.(1)“x=2kπ+π4(k∈Z)”是“tan x=1”的;(2)“22x y >⎧⎨>⎩,”是“44x y xy +>⎧⎨>⎩,”的 ;(3)“m<12”是“一元二次方程x 2+x+m=0有实数解”的 ; (4)对于数列{a n },“a n+1>|a n |(n ∈N *)”是“数列{a n }为递增数列”的 ;(5)“函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增”是“m ≥289x x +对任意的x>0恒成立”的 .【思维引导】判定p 是q 的什么条件,实际上就是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,这部分内容经常与其他知识点相结合考查.【答案】(1)充分不必要条件 (2)充分不必要条件 (3)必要不充分条件 (4)充分不必要条件 (5)充要条件【解析】(1)因为x=2k π+π4(k ∈Z )⇒tan x=1,但反过来不一定成立,即tan x=1⇒x=k π+π4(k ∈Z ),(2)因为x>2,y>2,根据不等式的性质易得x+y>4,xy>4,但反过来不一定成立,如x=13,y=24.(3)一元二次方程x 2+x+m=0有实数解⇔m ≤14,因为m ≤14⇒m<12,反之不成立,所以是必要不充分条件.(4)因为a n+1>|a n |(n ∈N *), 所以当n ≥2时,a n >0, 即当n ≥2时,a n+1>a n . 若a 1≥0,有a 2>|a 1|=a 1,若a 1<0,a 2>a 1显然成立,充分性得证.当数列{a n }为递增数列时,设a n =1-2n⎛⎫ ⎪⎝⎭,则a 2>|a 1|不成立.(5)函数f (x )=x 3+2x 2+mx+1在(-∞,+∞)上单调递增⇔f'(x )=3x 2+4x+m ≥0恒成立⇔Δ=16-12m ≤0⇔m ≥43.m ≥289xx +对任意x>0恒成立⇔m ≥2max 89x x ⎛⎫ ⎪+⎝⎭,又289x x +=89x x +≤892x x ⋅=43,所以m ≥43. 【精要点评】在判断时注意反例的应用;在判断“若p 则q ”较繁琐时,可以利用它的逆否命题“若非q 则非p ”,判断其是否正确;有时将某些条件转化为与它等价的条件再与另一条件进行判断会更简单 .结合充要条件求参数例3 已知集合M={x|x<-3或x>5},P={x|(x-a )(x-8)≤0}. (1)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的充要条件; (2)求实数a 的一个值,使它成为M ∩P={x|5<x ≤8}的一个充分不必要条件; (3)求实数a 的取值范围,使它成为M ∩P={x|5<x ≤8}的一个必要不充分条件. 【思维引导】求a 的取值范围使它成为M ∩P 的不同条件,可借助集合的观点,根据要求,求出成立时a 的取值范围.【解答】(1)由M ∩P={x|5<x ≤8},得-3≤a ≤5, 因此M ∩P={x|5<x ≤8}的充要条件是-3≤a ≤5.(2)即在集合{a|-3≤a ≤5}中取一个值,如取a=0,此时必有M ∩P={x|5<x ≤8}; 反之,M ∩P={x|5<x ≤8}未必有a=0,故a=0是所求的一个充分不必要条件. (3)即求一个集合Q ,使{a|-3≤a ≤5}是集合Q 的一个真子集.如果{a|a≤5},那么未必有M∩P={x|5<x≤8},但是M∩P={x|5<x≤8}时,必有a≤5,故a≤5是所求的一个必要不充分条件.【精要点评】解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式求解.变式(2015·南通期中)若不等式x-1x>0成立的充分不必要条件是x>a,则实数a的取值范围是.【答案】[1,+∞)【解析】由不等式x-1x>0,得(1)(-1)x xx>0,得-1<x<0或x>1.由充分不必要条件的含义可知{x|x>a}为不等式解集的真子集,进而得到a≥1.充要条件的证明例4已知a,b,c都是实数,求证:方程ax2+bx+c=0有一个正根和一个负根的充要条件是ac<0.【思维引导】证明充分性,由“ac<0”推出“方程ax2+bx+c=0有一个正根和一个负根”,证明必要性是由“方程ax2+bx+c=0有一个正根和一个负根”推出“ac<0”,主要根据判别式、一元二次方程的根与系数的关系进行论证.【解答】设原方程的两根分别为x1,x2.①充分性:由ac<0,得a,c异号,所以Δ=b2-4ac>0,且x1x2=ca<0.故方程ax2+bx+c=0有一正一负两个实根.所以ac<0是原方程有一正一负两个实根的充分条件.②必要性:若方程ax2+bx+c=0有一个正根和一个负根,不妨设x1>0,x2<0,则x1x2<0,即ca<0,所以a,c异号,即ac<0.故ac<0是原方程有一正一负两个实根的必要条件.综上,ac<0是原方程有一正一负两个实根的充要条件.【精要点评】充要条件的证明应注意:(1)一般地,条件已知,证明结论成立是充分性,结论已知,推出条件成立是必要性.(2)有关充要条件的证明问题,要分清哪个是条件,哪个是结论.变式设数列{a n},{b n},{c n}满足:b n=a n-a n+2,c n=a n+2a n+1+3a n+2(n=1,2,3,…),求证:数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).【解答】必要性:设{a n}是公差为d1的等差数列,则b n+1-b n=(a n+1-a n+3)-(a n-a n+2)=(a n+1-a n)-(a n+3-a n+2)=d1-d1=0,所以b n≤b n+1(n=1,2,3,…)成立.又c n+1-c n=(a n+1-a n)+2(a n+2-a n+1)+3(a n+3-a n+2)=d1+2d1+3d1=6d1(常数)(n=1,2,3,…),所以数列{c n}为等差数列.充分性:设数列{c n}是公差为d2的等差数列,且b n≤b n+1(n=1,2,3,…).因为c n=a n+2a n+1+3a n+2,①所以c n+2=a n+2+2a n+3+3a n+4,②①-②,得c n-c n+2=(a n-a n+2)+2(a n+1-a n+3)+3(a n+2-a n+4)=b n+2b n+1+3b n+2.因为c n-c n+2=(c n-c n+1)+(c n+1-c n+2)=-2d2,所以b n+2b n+1+3b n+2=-2d2,③从而有b n+1+2b n+2+3b n+3=-2d2,④④-③,得(b n+1-b n)+2(b n+2-b n+1)+3(b n+3-b n+2)=0.⑤因为b n+1-b n≥0,b n+2-b n+1≥0,b n+3-b n+2≥0,所以由⑤得b n+1-b n=0(n=1,2,3,…).由此不妨设b n=d3(n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2⇒c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-3d3,两式相减得c n+1-c n=2(a n+1-a n)-2d3,因此a n+1-a n=12(cn+1-c n)+d3=12d2+d3(常数)(n=1,2,3,…),所以数列{a n}为等差数列.综上,数列{a n}为等差数列的充要条件是{c n}为等差数列且b n≤b n+1(n=1,2,3,…).1.(2014·安徽卷)“x<0”是“ln(x+1)<0”的条件.【答案】必要不充分【解析】由ln(x+1)<0,得0<1+x<1,所以-1<x<0,而(-1,0)是(-∞,0)的真子集,所以“x<0”是“ln(x+1)<0”的必要不充分条件.2.(2015·安徽卷)设命题p:1<x<2,q:2x>1,则p是q的条件.【答案】充分不必要【解析】由q:2x>1=20,解得x>0,所以p⇒q,但q p,所以p是q的充分不必要条件.3.(2015·南通模考)已知集合M={x|x-2<0},N={x|x<a},若“x∈M”是“x∈N” 的充分条件,则实数a的取值范围是.【答案】[2,+∞)【解析】由题意得M={x|x-2<0}={x|x<2},因为“x∈M”是“x∈N”的充分条件,所以M⊆N,所以a≥2.4.求证:方程mx2-2x+3=0有两个同号且不相等的实数根的充要条件是0<m<1 3.【解答】①充分性:因为0<m<13,所以方程mx2-2x+3=0的判别式Δ=4-12m>0,且3m>0,所以方程mx2-2x+3=0有两个同号且不相等的实数根.②必要性:若方程mx2-2x+3=0有两个同号且不相等的实数根,则有124-1203mx xm∆=>⎧⎪⎨=>⎪⎩,,所以0<m<13.综上,得证.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第3~4页.【检测与评估】第2课四种命题和充要条件一、填空题1.命题“若a>b,则a+1>b”的逆否命题是.2.(2014·启东中学)若使“x≥1”与“x≥a”恰有一个成立的充要条件为{x|0≤x<1},则实数a的值是.3.(2015·重庆卷)“x>1”是“lo12g(x+2)<0”的条件.4.设集合S={0,a},T={x∈Z|x2<2},则“a=1”是“S⊆T”的条件.5.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是.6.设n∈N*,则一元二次方程x2-4x+n=0有整数解的充要条件是n=.7.已知命题p:|x|>a,q:-12-1xx>0.若p是q的必要不充分条件,则实数a的取值范围是.8.(2015·郑州质检)给定方程:12x⎛⎫⎪⎝⎭+sin x-1=0,下列命题中:①该方程没有小于0的实数解;②该方程有无数个实数解;③该方程在(-∞,0)内有且只有一个实数根;④若x0是方程的实数根,则x0>-1.其中正确的命题是.(填序号)二、解答题9.(2014·惠州一模)已知集合A=2331224|y y x x x⎧⎫⎡⎤=-+∈⎨⎬⎢⎥⎣⎦⎩⎭,,,B={x|x+m2≥1}.若命题p:x∈A,命题q:x∈B,并且p是q的充分条件,求实数m的取值范围.10.设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.已知函数f(x)=4sin2π4x⎛⎫+⎪⎝⎭-23cos 2x-1,且给定命题p:x<π4或x>π2,x∈R.若命题q:-2<f(x)-m<2,且¬p是q的充分条件,求实数m的取值范围.三、选做题(不要求解题过程,直接给出最终结果)12.已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0}.若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是.13.(2015·黄山质检)在平面直角坐标系中,定义两点P(x1,y1),Q(x2,y2)之间的“直角距离”为d(P,Q)=|x1-x2|+|y1-y2|.现有以下命题:①已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;②原点O到直线x-y+1=0上任意一点P的直角距离d(O,P)的最小值为2 2;③若PQ表示P,Q两点间的距离,那么PQ≥22d(P,Q);其中为真命题的是.(填序号) 【检测与评估答案】第2课 四种命题和充要条件1.若a+1≤b ,则a ≤b2.0 【解析】由题意可得1x x a <⎧⎨≥⎩, 或1x x a ≥⎧⎨<⎩, 成立的充要条件为{x|0≤x<1},所以a=0.3.充分不必要 【解析】lo 12g (x+2)<0⇔x+2>1⇔x>-1,故“x>1”是“lo12g (x+2)<0”的充分不必要条件.4.充分不必要 【解析】当a=1时,S={0,1},又T={-1,0,1},则S ⊆T ,所以充分性成立;当S ⊆T 时,a=1或-1,所以必要性不成立.5.[-3,0] 【解析】因为命题“ax 2-2ax-3>0不成立”是真命题,则有a=0或204120a a a <⎧⎨+≤⎩,,解得a ∈[-3,0].6. 3或4 【解析】由x 2-4x+n=0,得(x-2)2=4-n ,即x=2±4-n .因为n ∈N *,方程要有整数解,所以n=3或4,故当n=3或4时方程有整数解.7. (-∞,0) 【解析】由命题p :|x|>a ⇔R 0-0x a x a x a a ∈<⎧⎨<>≥⎩,,或,,q :-12-1x x >0⇔x<12或x>1.因为p 是q 的必要不充分条件,所以使命题q 成立的不等式的解集是使命题p 成立的不等式解集的子集,所以a<0.8.②③④ 【解析】由题意可知方程12x ⎛⎫ ⎪⎝⎭+sin x-1=0的解等价于函数y=1-12x⎛⎫ ⎪⎝⎭与y=sin x 的图象交点的横坐标,在同一平面直角坐标系中分别作出它们的图象如图所示.(第8题)由图象可知:①该方程存在小于0的实数解,故①错误;②该方程有无数个实数解,故②正确;③该方程在(-∞,0)内有且只有一个实数解,故③正确;④若x 0是该方程的实数解,则x 0>-1,故④正确.9.由y=x 2-32x+1,配方得y=23-4x ⎛⎫ ⎪⎝⎭+716.因为x ∈324⎡⎤⎢⎥⎣⎦,,所以y min =716,y max =2,即y ∈7216⎡⎤⎢⎥⎣⎦,,所以A=7|216y y ⎧⎫≤≤⎨⎬⎩⎭. 由x+m 2≥1,得x ≥1-m 2,B={x|x ≥1-m 2}. 因为p 是q 的充分条件,所以A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34.故实数m 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦∪34∞⎡⎫+⎪⎢⎣⎭,.10.设m 是两个方程的公共根,显然m ≠0. 由题设知m 2+2am+b 2=0, ① m 2+2cm-b 2=0, ② 由①+②得2m (a+c+m )=0,所以m=-(a+c),③将③代入①得(a+c)2-2a(a+c)+b2=0,化简得a2=b2+c2,所以所给的两个方程有公共根的必要条件是a2=b2+c2.下面证明充分性.因为a2=b2+c2,所以方程x2+2ax+b2=0可化为x2+2ax+a2-c2=0,它的两个根分别为x1=-(a+c),x2=c-a.同理,方程x2+2cx-b2=0的两根分别为x3=-(a+c),x4=a-c.因为x1=x3,所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根.综上所述,方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是a2=b2+c2.11.由q可得()-2() 2. m f xm f x>⎧⎨<+⎩,因为¬p是q的充分条件,所以在π4≤x≤π2的条件下,()-2()2m f xm f x>⎧⎨<+⎩,恒成立.由已知得,f(x)=2π1cos22x⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦-23cos 2x-1=2sin 2x-23cos 2x+1=4sinπ2-3x⎛⎫⎪⎝⎭+1.由π4≤x≤π2,知π6≤2x-π3≤2π3,所以3≤4sinπ2-3x⎛⎫⎪⎝⎭+1≤5.故当x=5π12时,f(x)max=5,当x=π4时,f(x)min=3,所以只需5-232mm>⎧⎨<+⎩,成立,即3<m<5.所以m的取值范围是(3,5).12.3--2∞⎛⎤⎥⎝⎦,【解析】因为集合A={x|x2+2x-3≤0}={x|-3≤x≤1},B={x|2a≤x≤a2+1}.因为“x∈A”是“x∈B”的充分不必要条件,所以A B,所以2112-3aa⎧+≥⎨≤⎩,,且等号不能同时取得,解得a≤-32,故实数a的取值范围是3--2∞⎛⎤⎥⎝⎦,.13.①③【解析】已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)=|2-sin2α|+|3-cos2α|=2-sin2α+3-cos2α=4,所以①正确;设直线上任意一点为(x,x+1),则原点O 到直线x-y+1=0上任意一点P的直角距离d(O,P)=|x|+|x+1|≥|x+1-x|=1,即其最小值为1,所以命题②错误;由基本不等式a2+b2≥12(a+b)2得PQ=221212(-)(-)x x y y+≥22(|x1-x2|+|y1-y2|)=22d(P,Q),所以命题③成立,综上所述,正确的命题为①③.。
数学充要条件练习题高二数学充要条件训练题一、选择题(每小题6分,共42分)1.已知A和B是两个命题,假如A是B的充分但不必要条件,那么A是B的( )A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:A B B A,B A等价于 A B.2.(2021浙江杭州二中模拟,4)2且b是a+b4且ab的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件答案:A解析:充分性明显,当a=5,b=1时,有a+b4,但2且b不成立.3.(2021北京西城区一模,5)设a、bR,则b是|b|的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不是充分条件也不是必要条件答案:B解析:ab并不能得到a|b|.如2-5,但2|-5|,且a|b| ab.故选B.4.已知条件p:|x|=x,条件q:x2-x,则p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.?既不充分也不必要条件答案:A解析:p:A={0,1},q:B={x|x-1或x0}.∵A B,p是q的充分不必要条件.5.已知真命题:b是cd的充分不必要条件,和aA.充分非必要条件B.必要非充分条件C.充分必要条件D.?既不充分也不必要条件答案:A解析:b是cd的充分不必要条件等价于d a6.(2021全国大联考,2)不等式1A.充分而不必要条件B.必要而不充分条件C.充要条件D.?即不充分也不必要条件答案:A解析:当17.已知抛物线y=ax2+bx+c(a0,b,cR)则关于x的不等式ax2+bx+cA.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案:B解析:ax2+bx+c二、填空题(每小题5分,共15分)8.方程3x2-10x+k=0有两个同号且不相等的实根的充要条件是_______ _______.答案:0解析:其充要条件为09.已知p:|x+1|2和q: 0,则p是q的__________________.(填充分不必要必要不充分充要条件既不充分又不必要?条件)答案:充分不必要解析:∵p:x-3或x1,q:x-4或x1,p:-31, q:-41.p是q的充分不必要条件.10.给出下列各组p与q:(1)p:x2+x-2=0,q:x=-2;(2)p:x=5,q:x(3)p:内错角相等,q:两条直线互相平行;(4)p:两个角相等,q:两个角是对顶角;(5)p:xM,且xP,q:xP(P,M ).其中p是q的充分不必要条件的组的序号是_____________________.答案:(2)(5)解析:(1)(4)中p是q的必要不充分条件;?(3)中p是q的充要条件;(2)(5)满足题意.三、解答题(1113题每小题10分,14题13分,共43分)11.设x、yR,求证:|x+y|=|x|+|y|成立的充要条件是xy0.证明:充分性:假如xy=0,那么①x=0,y②y=0,x③x=0,y=0.因此|x+y|=|x| +|y|.假如xy0,即x0或x0.当x0时,|x+y|=x+y=?|x|+|y|?;当x0时,|x+y|=-(x+y)=-x+(-y)=|x|+|y|.总之,当xy0时,有|x+y|=|x|+|y|.必要性:解法一:由|x+y|=|x|+|y|及x,yR,得(x+y)2=(|x|+|y|)2,即x2+2xy+ y2=x2+2|xy|+y2,|xy|=xy,xy0.解法二:|x+y|=|x|+|y| (x+y)2=(|x|+|y|)2 x2+y2+2xy=x2+y2+2|xy| xy=|xy| xy0.12.已知a,b是实数,求证:a4-b4=1+2b2成立的充分条件是a2-b2=1,该条件是否是必要条件?证明你的结论.证明:该条件是必要条件.当a2-b2=1即a2=b2+1时,a4-b4=(b2+1)2-b4=2b2+1.a4-b4=1+2b2成立的充分条件是a2-b2=1又a4-b4=1+2b2,故a4=(b2+1)2.a2=b2+1,即a2-b2=1故该条件是必要条件.13.已知关于x的方程:(a-6)x2-(a+2)x-1=0.(aR),求方程至少有一负根的充要条件.解析:∵当a=6时,原方程为8x=-1,有负根x=- .当a6时,方程有一正根,一负根的充要条件是:x1x2=- 0,即a6.方程有两负根的充要条件是:即26.方程至少有一负根的充要条件是:26或a=6或a6,即a2.14.(1)是否存在实数p,使4x+p是x2-x-2的充分条件?假如存在,求出p的取值范畴;(2)是否存在实数p,使4x+p是x2-x-2的必要条件?假如存在,求出p 的取值范畴.解析:(1)当x2或x-1时,x2-x-20,由4x+p0得x- ,故- -1时,- -1 x2-x-2.与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
知识点:一、充分条件在实例一中,条件A1、B1、C1、D1与结论E1之间有如下三个关系:(1)只要A1、B1、C1、D1具备其中的任何一个,E1张三家有肉吃就必定成立。
(2)如果知道了张三家有肉吃(E1)是事实,我们只能断定A1、B1、C1、D1中必定有一个或者多个成立,但无法确知哪个或哪几个成立。
也就是说,如果E1成立,不能确定得出A1存在的结论,对于B1、C1、D1也是如此。
反过来说,如果A1不存在,不能得出E1不成立的结论。
(3)如果知道张三家没有肉吃(非E1)是事实,必然会确定得出A1、B1、C1、D1均不存在的结论。
在这种情况下, A1、B1、C1、D1就是E1的充分条件。
抽象的表述如下:用A表示条件A存在,用非A表示条件A不存在,用B表示结论B成立,用非B表示结论B不成立。
如果(1)A→B(→表示能够推导出,下同)且(2)非A ◌→非B(◌→表示不能推导出,下同)且(3)非B→非A,那么条件A就是结论B的充分条件。
我们再用图1所示的开关并联现象说明一下充分条件。
图中两个开关SW1和SW2是并联的,在灯泡D1完好前提下,SW1闭合、SW2闭合均是“灯泡D1亮”的充分条件。
在语言叙述中,我们一般用“如果……,就……”来表示充分条件。
例如,如果张三家里有猪肉,张三家里就有肉吃;如果期末考试考了60,就能拿到该课程的学分。
二、必要条件在实例二中,条件A2、B2、C2与结论D2之间有如下三个关系:(1)研究者具备较高的研究能力(A2)、研究者努力进行研究(B2)、研究者的研究方向聚焦(C2)三者必须同时具备,结论“研究者产出高水平的研究成果(D2)”才能成立。
(2)如果条件A2、B2、C2任何一个不存在,D2就不成立。
(3)如果D2不成立,只能断定条件A2、B2、C2中有一个或者多个不存在,但无法确定判断哪一个或者哪几个不存在。
在这种情况下,我们称A2、B2、C2是D2的必要条件。
抽象的表述如下:用A表示条件A存在,用非A表示条件A不存在,用B表示结论B成立,用非B表示结论B不成立。
人教新课标版(A )高二选修1-1 1.2.3 充分条件与必要条件习题课【基础演练】题型一:判断一个命题的真假 对命题的判断就是要看在命题的条件下,结论是否正确;如果难以证明,可取其等价命题来推断,请用以上知识来解决以下1-2题。
1. 下列命题中,是真命题的为①“5y x =+”是“10y 7x 3y x 22=+--”的充分条件; ②“0b a <-”是“0b a 22<-”的充分条件; ③“0b a <-”是“0b a 22<-”的必要条件;④“两个三角形全等”是“两边和夹角对应相等”的充分条件。
A. ①② B. ①③ C. ②③ D. ①④ 2. 有下列三个命题: ①“若0y x =+,则x 、y 互为相反数”的逆命题;②“若b a >,则22b a >”的逆否命题; ③“若3x -≤,则06x x 2<-+”的否命题。
其中真命题的序号是__________。
题型二:证明充分性及必要性 证明充分性或必要性是本节常见题型之一,尤其是证明充要条件要注意从“充分性”与“必要性”两个方面入手。
请根据以上知识解决以下3-5题。
3. 若非空集合N M ≠⊂,则“M a ∈或N a ∈”是“⋂∈M a N ”的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件4. 证明:一元二次方程0c bx ax 2=++有一正根和一负根的充要条件是0ac <。
5. 设p :31m 0<<,q :03x 2mx 2=+-有两个同号且不相等的实数根,证明p 是q 的充要条件。
题型三:充要条件的求解与应用 由充要条件定义可知,p ⇔q ,这就为此题型的灵活性埋下了伏笔,同时这也是高考常见题型一,一般的解法有两种:直接进行推导,进行两方面的论证;对于选择题还要与特值法紧密联系,请用以上知识解决6-7题。
6. 求0k x 10x 32=+-有两个同号且不相等实根的充要条件。
能力拓展提升一、选择题11.设{a n}是等比数列,则“a1<a2<a3”是“数列{a n}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析]若a1<a2<a3,则a1<a1q<a1q2,若a1>0,则q>1,此时为递增数列,若a1<0,则0<q<1,同样为递增数列,故充分性成立,必要性显然成立.12.若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件[答案] B[解析]由条件知,甲⇒乙⇒丙⇔丁,∴甲⇒丁且丁⇒/甲,故选B.13.(2012~2013学年度山东威海市直高中高二期末测试)已知命题p:x≤1,命题q:1x>1,则p是q的()A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件[答案] B[解析] 由1x >1,得1-x x >0,∴x (x -1)<0,∴0<x <1.由x ≤1⇒/ 0<x <1,由0<x <1⇒x ≤1,故选B.14.命题甲:“a 、b 、c 成等差数列”,命题乙:“a b +c b =2”,则甲是乙的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件[答案] A[解析] ∵a =b =c =0,则a 、b 、c 也成等差数列,但推不出a b +c b =2;反过来由a b +c b =2⇒a +c =2b ,即a 、b 、c 成等差数列.综上所述,“a 、b 、c 成等差数列”是“a b +c b =2”的必要不充分条件,故选A.[点评] 要注意区分“A 是B 的充分条件”和“A 是B 的充分非必要条件”,若A ⇒B ,则A 是B 的充分条件,若A ⇒B 且B ⇒/ A ,则A 是B 的充分非必要条件.二、填空题15.“ax 2+bx +c =0(a ≠0)有实根”是“ac <0”的________条件.[答案] 必要条件[解析] ax 2+bx +c =0(a ≠0)有实根⇒b 2-4ac ≥0⇒b 2≥4ac ⇒/ ac <0.反之,ac <0⇒b 2-4ac >0⇒ax 2+bx +c =0(a ≠0)有实根.所以“ax 2+bx +c =0(a ≠0)有实根”是“ac <0”的必要条件.16.命题p :|x |<a (a >0),命题q :x 2-x -6<0,若p 是q 的充分条件,则a 的取值范围是________,若p 是q 的必要条件,则a 的取值范围是________.[答案] a ≤2 a ≥3[解析] p :-a <x <a ,q :-2<x <3,若p 是q 的充分条件,则(-a ,a )⊆(-2,3),∴⎩⎪⎨⎪⎧-a ≥-2a ≤3,∴a ≤2, 若p 是q 的必要条件,则(-2,3)⊆(-a ,a ),∴⎩⎪⎨⎪⎧ -a ≤-2a ≥3,∴a ≥3. 三、解答题17.求证:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ax <0.[解析] 充分性:(由ac <0推证方程有一正根和一负根)∵ac <0,∴一元二次方程ax 2+bx +c =0的判别式Δ=b 2-4ac >0,∴方程一定有两不等实根,设为x1、x2,则x1x2=ca<0,∴方程的两根异号.即方程ax2+bx+c=0有一正根和一负根.必要性:(由方程有一正根和一负根,推证ac<0),∵方程有一正根和一负根,设为x1、x2,则由根与系数的关系得x1x2=ca<0,即ac<0,综上可知:一元二次方程ax2+bx+c=0有一正根和一负根的充要条件是ac<0.18.不等式x2-2mx-1>0对一切1≤x≤3都成立,求m的取值范围.[解析]令f(x)=x2-2mx-1要使x2-2mx-1>0对一切1≤x≤3都成立,∵f(x)的图象开口向上,且f(0)=-1<0(如图),∴f(1)>0,即1-2m-1>0,∴m<0.∴m的取值范围是m<0.。