高二数学向量垂直、平行的充要条件及应用(教师版)
- 格式:doc
- 大小:951.87 KB
- 文档页数:8
空间向量在立体几何中的应用(一)授课时间:2014年5月11日第7节课 授课班级:高二(9)班 授课教师:高志华教学目标 1、知识与技能(1) 进一步理解向量垂直的充要条件; (2)利用向量法证明线线、线面垂直;(3)利用向量解决立体几何问题,培养学生数形结合的思想方法; 2、过程与方法通过学生对空间几何图形的认识,建立恰当的空间直角坐标系,利用向量的坐标将几何问题代数化,提高学生应用知识的能力。
3、情感态度与价值观通过空间向量在立体几何中的应用,让学生感受数学、体会数学的美感, 从而激发学数学、用数学的热情。
教学重点建立恰当的空间直角坐标系,用向量法证明线线、线面垂直。
教学难点、关键建立恰当的空间直角坐标系,直线的方向向量; 正确写出空间向量的坐标。
教学方法启发式教学、讲练结合 教学媒体ppt 课件学法指导交流指导,渗透指导. 课型 新授课教学过程一、知识的复习与引人 自主学习1.若OP =x i +y j +z k ,那么(x ,y ,z )叫做向量OP 的坐标,也叫点P 的坐标.2. 如图,已知长方体D C B A ABCD ''''-的边长为AB=2,AD=2,1AA '=.以这个长方体的顶点A 为坐标原点,射线A A AD AB ',,分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,试求长方体各个顶点及A C '中点G 的坐标.3.设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),那么b a ±=(x 1±x 2,y 1±y 2, ), a ⊥b ⇔ b a ∙=x 1x 2+y 1y 2+ =0.4.设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则 12M M =(2121,x x y y --, ) [探究]1.直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有 个. 2.空间位置关系的向量表示位置关系向量表示直线l 1的方向向量为1l , 直线l 2的方向向量为2l , 直线a 的方向向量为a , 直线b 的方向向量为b .l 1⊥ l 21l ⊥2l ⇔l 1⊥αl 1⊥a ,l 1⊥b, ,a b αα⊂⊂,a ∩b=o ,[合作探究]二、新授课:利用空间向量证明线线垂直、线面垂直例1、如图,在棱长为2的正方体ABCD-A1B1C1D1中,M为BC的中点,N为AB的中点,P为BB1的中点.(Ⅰ)求证:BD1⊥B1C;(Ⅱ)求证:BD1⊥平面MNP.设计意图:使学生明确空间向量在证明线线垂直、线面垂直中的作用。
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
向量垂直条件在数学和物理中,向量是一种具有大小和方向的量,它广泛应用于各个领域。
在向量运算中,垂直条件是一种重要的概念,它描述了两个向量之间的关系。
本文将从不同角度介绍向量垂直条件,旨在帮助读者更好地理解和应用这一概念。
一、向量的定义和基本性质向量是具有大小和方向的量,通常用箭头来表示。
向量的大小可以用模长来表示,方向可以用角度或方向余弦来表示。
两个向量相等的条件是它们的大小和方向都相同。
二、向量的垂直条件两个向量垂直的条件是它们的点积为零。
点积是向量运算中的一种运算,它描述了两个向量之间的关系。
具体来说,设向量A和向量B,它们的点积为A·B,计算公式为A·B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和向量B的模长,θ表示两个向量之间的夹角。
当两个向量垂直时,它们的夹角θ等于90度或π/2弧度。
此时,cosθ的值为0,因此A·B = 0。
由此可见,向量A和向量B的点积为零是它们垂直的充分必要条件。
三、向量垂直条件的几何意义在几何中,两个向量垂直意味着它们所代表的直线相互垂直。
具体来说,设直线l1由向量A表示,直线l2由向量B表示。
当向量A和向量B垂直时,直线l1和直线l2相互垂直。
根据向量的性质,如果两个向量垂直,则它们所代表的直线也垂直。
这一性质在几何推理和证明中经常被应用。
通过判断两条直线所对应的向量是否垂直,可以简化几何问题的解决过程。
四、向量垂直条件的应用向量的垂直条件在实际问题中有广泛的应用。
以下是一些常见的应用场景:1.平面几何中的垂直线段:当两条线段相互垂直时,它们所对应的向量相互垂直。
2.力学中的力的分解:在力学问题中,一个力可以分解为两个垂直的力。
这样做可以简化问题的分析过程。
3.电磁学中的电场和磁场:在电磁学中,电场和磁场是两个相互垂直的向量场。
4.三角函数中的正交性:在三角函数中,正弦函数和余弦函数是相互垂直的。
五、总结向量的垂直条件是一种重要的概念,它描述了两个向量之间的关系。
高二数学平面向量与空间向量的垂直与共线数学中,平面向量和空间向量是两个重要的概念。
在这篇文章中,我们将探讨平面向量与空间向量之间的垂直与共线的关系。
垂直向量是指两个向量的夹角为90度的情况。
对于平面向量来说,我们可以通过向量的点乘与零向量的判断来确定垂直关系。
设有平面向量a和b,若a·b=0,则a与b垂直。
而对于空间向量来说,我们可以通过向量的数量积与零向量的判断来确定垂直关系。
设有空间向量A和B,若A·B=0,则A与B垂直。
举个简单的例子来理解垂直向量的概念。
设有两个平面向量a=(1, 2)和b=(-2, 1),我们可以计算它们的点乘:a·b=1*(-2)+2*1=0。
因此,向量a和b是垂直的。
在数学中,共线向量是指两个或多个向量的方向相同或相反的情况。
对于平面向量来说,我们可以通过向量的叉乘和零向量的判断来确定共线关系。
设有平面向量a和b,若a×b=0,则a与b共线。
而对于空间向量来说,我们可以通过向量的叉积和零向量的判断来确定共线关系。
设有空间向量A和B,若A×B=0,则A与B共线。
举个简单的例子来理解共线向量的概念。
设有两个空间向量A=(1, 2, 3)和B=(2, 4, 6),我们可以计算它们的叉积:A×B=(2*3-4*2, 6*1-2*3, 1*4-2*2)=(0, 0, 0)。
因此,向量A和B是共线的。
在实际应用中,垂直向量和共线向量有着重要的意义。
例如在物理学中,力的合成和分解中的平行四边形法则和三角法则都是基于向量的垂直和共线性质而建立的。
总结起来,平面向量和空间向量之间的垂直与共线关系可以通过点乘和叉乘来判断。
而在实际应用中,垂直向量和共线向量有着广泛的应用,特别是在力学、物理学等领域。
通过本文的探讨,我们对于高二数学中平面向量与空间向量的垂直与共线关系有了更深入的理解。
垂直向量的判断可以通过点乘与零向量进行,而共线向量的判断则可以通过叉乘与零向量进行。
8.4(1)向量的应用(1)上海市田园高级中学俞德斌一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用。
本小节的重点是结合向量知识证明平面几何中的平行、垂直问题,以及不等式、有关三角公式的证明、物理学中的应用.本小结的难点是如何结合向量知识去解决有关问题,突破难点的关键是如何启发学生发现问题和提出问题,学会分析问题和创造性地解决问题.二、教学目标设计运用平面向量的知识解决平面几何中的平行、垂直等问题;提高分析问题、解决问题的能力.三、教学重点及难点教学重点:利用平面向量知识证明平行、垂直等问题;教学难点:数形结合方法的渗透,思维能力的提高.四、教学流程设计五、教学过程设计一、 复习与回顾 思考并回答下列问题1.判断:(平行向量的理解)(1)若A 、B 、C 、D 四点共线,则向量CD AB //;( ) (2)若向量//,则A 、B 、C 、D 四点共线;( ) (3)若=,则向量=; ( ) (4)只要向量→→b a ,满足→→=b a ,就有→→=b a ;( ) 2.提问:(1)两个非零向量平行的充要条件是什么? (2)两个非零向量垂直的充要条件是什么?[说明] 教师可引导学生多写出一些两向量平行、垂直的表达形式.二、学习新课 例题分析例1、证明:菱形对角线互相垂直。
(补充) 证:设==→a , == →b∵ABCD 为菱形 ∴|→a | = |→b |∴⋅= (→b + →a )( →b - →a ) = →b 2- →a 2= |→b |2- |→a |2 = 0 ∴⊥ 证法二:设B (b ,0),D (d 1,d 2), 则AB = (b ,0), AD = (d 1,d 2)于是=+= (b ,0) + (d 1,d 2)= (b +d 1 ,d 2)=-= (d 1 -b ,d 2)∵•= (b +d 1)(d 1 -b ) + d 2d 2 = (d 12 + d 22)- b 2= |AD |2 - b 2 = |AB |2 - b 2 = b 2 - b 2 = 0∴AC ⊥BD[说明]二种方法进行比较,开拓学生的解题思维,提高能力. 例2、已知)2,1(A ,)3,2(B ,)5,2(-C ,求证ABC ∆是直角三角形.(补充).,900),3,3(),1,1(:0是直角三角形即证明ABC BAC ∆=∠∴=⋅-==例3、.,,.AC BH BC AH ABC ⊥⊥∆已知中在如图CB.CH⊥求证(课本P72例2):AB[小结]以上三题均是垂直问题的证明,请同学们注意它们间的区别与联系.例4、证明:对角线互相平分的四边形是平行四边形.(课本P71例1)三、课堂练习例5、用向量方法证明:对角线相等的平行四边形是矩形.(习题册P39习题8.4 A组1)四、课堂小结1.用向量知识证明平行、垂直问题.2.要注意挖掘平面图形本身的几何性质.四、作业布置1、书面作业:课本P73, 练习8.4 1, 2, 32、习题册P39,习题8.4 A组/1;习题册P40,习题8.4 B组/13、思考题:如图,在ABC∆中,D,E分别是边AB、AC的中点,F ,G 分别是DB 、EC 的中点, 求证:向量与FG 共线.3、思考题:如图,AD 、BE 、CF 是△ABC 的三条高,求证:AD 、BE 、CF 相交于一点.七、教学设计说明1.注意区分两向量平行、垂直充要条件的差别.建议学生结合图形,这样理解较为深刻.2.在用向量证明有关数学问题时,要注意利用平面图形的几何性质,找到解题的突破口.3.学生要注重综合能力的训练,要会举一反三、融会贯通.CD。
2024年新高二数学提升精品讲义两条直线平行与垂直的判定(解析版)模块一思维导图串知识模块二基础知识全梳理(吃透教材)模块三核心考点举一反三模块四小试牛刀过关测1.理解并掌握两条直线平行的条件及两条直线垂直的条件;2.会运用条件判定两直线是否平行或垂直;3.运用两直线平行和垂直时的斜率关系解决相应的几何问题.知识点1两条直线平行1、直线平行的判定类型斜率存在斜率不存在条件1290︒=≠αα1290︒==αα对应关系1212//=⇔l l k k 12//⇔l l 两条直线斜率都不存在图示2、对直线平行判定的理解(1)2121//k k l l =⇔成立的前提条件是:①两条直线的斜率都存在;②21l l 与不重合.(2)1212k k l l =⇒//或21l l 与重合.(3)1212l l k k ⇒=//或两条直线的斜率都不存在.(4)在判断两条不重合的直线是否平行时,先判断两条直线的斜率是否存在,若斜率存在且相等,则两者平行;若斜率都不存在,两者仍然平行.知识点2两条直线垂直1、直线垂直的判定对应关系1l 与2l 的斜率都存在,分别为12,k k ,则12121⊥⇔⋅=-l l k k 1l 与2l 中的一条斜率不存在,另一条斜率为零,则1l 与2l 的位置关系是12⊥l l图示2、对直线垂直判定的理解(1)12121-=⋅⇔⊥k k l l 成立的前提条件是两条直线的斜率都存在;(2)当两条直线的斜率都存在,且121k k ⋅=-时,两条直线垂直;(30,则两条直线也垂直.考点一:两条直线平行的判定例1.(23-24高二上·全国·课后作业)过点()1,2A 和点()1,2B -的直线与直线3y =的位置关系是()A .相交B .平行C .重合D .以上都不对【答案】B【解析】过点()1,2A 和点()1,2B -的直线方程为2y =,斜率为0,又因为直线3y =斜率为0,所以两直线平行.故选:B【变式1-1】(23-24高二上·福建泉州·期末)记平面直角坐标系内的直线1l 、2l 与x 轴正半轴方向所成的角的正切值分别为1k 、2k ,则“12l l //”是“12k k =”的()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件【答案】A【解析】由题意可知:12,k k 已经存在,若1l ∥2l ,则12k k =,即充分性成立;若12k k =,则12,l l 可能重合,即必要性均不成立;综上所述:“12l l //”是“12k k =”的充分不必要条件.故选:A .【变式1-2】(23-24高二上·山西临汾·月考)下列各对直线互相平行的是()A .直线1l 经过点()0,1A ,()10B ,,直线2l 经过点()1,3M -,()2,0N B .直线1l 经过点()1,2--A ,()1,2B ,直线2l 经过点()2,1M --,()0,2N -C .直线1l 经过点()1,2A ,()1,3B ,直线2l 经过点()1,1C -,()1,4D D .直线1l 经过点()3,2A ,()3,1B -,直线2l 经过点()1,1M -,()3,2N 【答案】A【解析】对于A ,因为1201301,11012l l k k --==-==----,所以12//l l ;对于B ,因为()12122212,11202l l k k -----====-----,所以直线12,l l 不平行;对于C ,由直线1l 经过点()1,2A ,()1,3B ,直线2l 经过点()1,1C -,()1,4D ,得直线12,l l 的斜率都不存在,且两直线重合;对于D ,因为直线1l 经过点()3,2A ,()3,1B -,所以直线直线1l 的斜率不存在,而2123132l k --==-,所以直线12,l l 不平行.故选:A.【变式1-3】(23-24高二·全国·专题练习)根据下列给定的条件,判断直线1l 与直线2l 是否平行.(1)1l 经过点()2,3A ,()4,0B -,2l 经过点()3,1M -,()2,2N -;(2)1l 的斜率为12-,2l 经过点()4,2A ,()2,3B ;(3)1l 平行于y 轴,2l 经过点()0,2P -,()0,5Q ;(4)1l 经过点()0,1E ,()2,1F --,2l 经过点()3,4G ,()2,3H .【答案】(1)不平行;(2)平行或重合;(3)平行;(4)重合【解析】(1)301242AB k -==+,21123MN k -==-+,AB MN k k ≠,所以1l 与2l 不平行.(2)1l 的斜率112k =-,2l 的斜率2231422k -==--,12k k =,所以l 1与l 2平行或重合.(3)由题意,知1l 的斜率不存在,且不与y 轴重合,2l 的斜率也不存在,且与y 轴重合,所以12l l //.(4)由题意,知11120EF k --==--,43132GH k -==-,EF GH k k =,所以1l 与2l 平行或重合.需进一步研究E ,F ,G ,H 四点是否共线,23114FG k --==--.所以E ,F ,G ,H 四点共线,所以1l 与2l 重合.考点二:两条直线平行关系的应用例2.(23-24高二上·贵州黔西·月考)已知直线1l 过()1,4A -,()2,0B ,且12//l l ,则直线2l 的斜率为()A .43B .34C .43-D .34-【答案】C【解析】由题意直线1l 的斜率为1404123k -==---,又因为12//l l ,所以直线2l 的斜率为2143k k ==-.故选:C.【变式2-1】(23-24高二上·全国·课后作业)已知经过点(3,),(5,)A n B m 的直线1l 与经过点()()2,0,0,(0)P m Q n mn -≠的直线2l 平行,则mn的值为()A .-1B .-2C .-1或2D .-2或1【答案】C【解析】由题意得122,2l l m n n k k m-==,因为12//l l ,所以12l l k k =,即22m n nm-=,化简得2220m mn n --=,所以m n =-或2m n =,又由0mn ≠得mn=-1或2,故选:C .【变式2-2】(22-23高二上·福建漳州·期中)过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,则m =()A .1B .2C .-1D .-2【答案】A【解析】过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,所以1m ≠-,因此过()(),3,1,A m B m -两点的直线的斜率为31m m---,因为过()(),3,1,A m B m -两点的直线与直线l 平行,直线l 的倾斜角为45 ,所以有3tan 45111m m m-==⇒=-- ,故选:A 【变式2-3】(23-24高二上·湖北武汉·期末)张老师不仅喜欢打羽毛球,还喜欢玩折纸游戏,他将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点()2,0与点()2,4-重合,点()2023,2024与点(),a b 重合,则a b +=()A .4046B .4047C .4048D .4049【答案】B【解析】设()2,0A ,()2,4B -,则点A ,B 所在直线的斜率为40122AB k -==---,由题意知,过点()2023,2024,(),a b 的直线与直线AB 平行,所以202412023b a -=--,整理得:202320244047a b +=+=.故选:B考点三:两条直线垂直的判定例3.(23-24高二上·山东潍坊·期末)已知两直线12,l l 的斜率分别为12,k k ,且12,k k 是方程210x x +-=的两根,则1l 与2l 的位置关系为()A .平行B .相交且垂直C .重合D .相交且不垂直【答案】B【解析】由题意121k k =-,因此两直线垂直.平面上的两直线垂直时当然相交.故选:B .【变式3-1】(23-24高二上·河北邯郸·月考)(多选)满足下列条件的直线1l 与2l ,其中12l l ⊥的是()A .1l 的倾斜角为45 ,2l 的斜率为1B .1l 的斜率为2l经过点()2,0A ,(B C .1l 经过点()2,1P ,()4,5Q --,2l 经过点()1,2M -,()1,0N D .1l 的方向向量为()1,m ,2l 的方向向量为11,m ⎛⎫- ⎪⎝⎭【答案】BCD【解析】对A ,1tan 451l k =︒=,21l k =,121l l k k ⋅≠-,所以A 不正确;对B ,2l k ==,121l l k k ⋅=-,故B 正确;对C ,151142l k --==--,220111l k -==---,121l l k k ⋅=-,故C 正确;对D ,因为()1,m 11,110m ⎛⎫⋅-=-= ⎝,所以两直线的方向向量互相垂直,故12l l ⊥,故D 正确.故选:BCD【变式3-2】(22-23高二·江苏·假期作业)判断下列各组直线是否垂直,并说明理由.(1)1l 经过点(3,4),(1,3),A B --2l 经过点(4,3),(3,1)M N --;(2)1l 经过点(3,4),(3,10),A B 2l 经过点(10,40),(10,40)M N -.【答案】(1)不垂直,理由见解析;(2)垂直,理由见解析【解析】(1)由题知直线1l ,2l 的斜率存在,分别设为12,k k ,()()1347134k --==--,()()2134347k --==--,121k k ∴⋅=,∴1l 与2l 不垂直.(2)由题意知1l 的倾斜角为90°,则1l x ⊥轴;由题知直线2l 的斜率存在,设为3k ,34040010(10)k -==--,则2l x ∥轴,∴12l l ⊥.【变式3-3】(23-24高二上·全国·课堂例题)判断直线1l 与2l 是否垂直.(1)1l 的斜率为10-,2l 经过点()10,2A ,()20,3B ;(2)1l 经过点()3,4A ,()3,10B ,2l 经过点()10,40M -,()10,40N ;(3)1l 经过点()1,2A -,()5,1B -,2l 经过点()1,0C ,()4,6D .【答案】(1)12l l ⊥;(2)12l l ⊥;(3)12l l ⊥【解析】(1)设直线1l ,2l 的斜率分别为1k ,2k ,则110k =-,2321201010k -==-,因为121k k =-,所以12l l ⊥.(2)由点A ,B 的横坐标相等,得1l 的倾斜角为90︒,则1l x ⊥,设直线2l 的斜率为2k ,则()2404001010k -==--,所以2l x ∥轴.故12l l ⊥.(3)方法一:直线1l 的斜率()1121512k --==---,直线2l 的斜率260241k -==-,因为121k k =-,所以12l l ⊥;方法二:直线1l 的方向向量()6,3AB =- ,直线2l 的方向向量()3,6CD =,因为0AB CD ⋅= ,所以AB CD ⊥,所以12l l ⊥.考点四:两条直线垂直关系的应用例4.(23-24高二上·河南郑州·月考)已知1l 的倾斜角为45°,2l 经过点()()2,1,3,P Q m --.若12l l ⊥,则实数m 为()A .6B .-6C .5D .-5【答案】B【解析】因为1tan 451l k =︒=,()()211325l m m k --+==--,且12l l ⊥,所以121115l l m k k +⋅=⨯=-,解得6m =-,故选:B.【变式4-1】(23-24高二上·江西宜春·期中)已知点(3,2),(24,4),(,),(3,32)A m B m C m m D m -----+,若直线AB CD ⊥,则m 的值为()A .1或1-B .3-或1-C .1-或3D .3或3-【答案】A【解析】∵A ,B 两点纵坐标不相等,∴AB 与x 轴不平行.∵AB CD ⊥,则CD 与x 轴不垂直,∴3m -≠,即3m ≠-.当AB 与x 轴垂直时,324m m --=--,解得1m =-,此时,点C ,D 的纵坐标均为1-,则//CD x 轴,此时AB CD ⊥,满足题意;当AB 与x 轴不垂直时,42224(3)(1)AB k m m m -==------+,322(1)3()3CD m m m k m m +-+==--+,∵AB CD ⊥,∴1AB CD k k =-,即()()212113m m m +⨯=--++,解得1m =.综上,m 的值为1或1-,故选:A .【变式4-2】(23-24高二上·浙江绍兴·期中)已知过()3,1A 、()1,3B -的直线与过()3,C m -、(),2D n 的直线互相垂直,则点(),m n 有()A .1个B .2个C .3个D .无数个【答案】D【解析】由()3,1A 与()1,3B -,则直线AB 的斜率13231AB k +==-,由AB CD ⊥,则直线CD 的斜率存在,即3n ≠-,且112CD AB k k -==-,由()3,C m -与(),2D n ,则2132m n -=-+,整理化简可得27n m =-,显然该方程有无数个解.故选:D.【变式4-3】(23-24高二上·广东茂名·期中)已知点()0,2A -,()6,0B ,()0,C a ,且点C 在线段AB 的垂直平分线上,则=a ()A .2B .2C .8D .8-【答案】C【解析】由点()0,2A -,()6,0B ,可得线段AB 的中点()3,1D -,所以得:线段AB 的斜率为021603AB k +==-,所以得:线段AB 垂直平分线的斜率为1303a k +=-=-,解之得:8a =.故选:C.考点五:直线平行、垂直的综合应用例5.(23-24高二上·全国·课后作业)(多选)已知点()()()()4,2,6,4,12,6,2,12P Q R S --,则下列结论正确的是()A .//PQ SRB .PQ PS⊥C .//PS QRD .PR QS⊥【答案】ABCD【解析】由斜率公式知423645PQ k --==-+,12632125SR k -==--,122532435PS k -==≠-+,PQ SR k k =,且,,,P Q R S 四点不共线,则//PQ SR ,A 选项正确;35153PQ PS k k =⨯⋅-=-,PQ PS ⊥,B 选项正确;6(4)51263QR PS k k --===-,//PS QR ,C 选项正确;124426QS k +==--,6211244PR k -==+,1414QS PR k k ⋅=-⨯=-,PR QS ⊥,D 选项正确.故选:ABCD .【变式5-1】(22-23高二上·河北石家庄·月考)(多选)直线12,l l 的斜率12,k k 是关于k 的方程2240k k m -+=)A .若12l l ⊥,则2m =-B .若12l l ⊥,则=2mC .若12//l l 则2m =-D .若12//l l ,则=2m 【答案】AD【解析】直线1l ,2l 的斜率1k ,2k 是关于k 的方程2240k k m -+=的两根,∴122m k k ⋅=,若12l l ⊥,则1212mk k ==-,得2m =-;若12//l l ,则12k k =,∴1680m ∆=-=,得=2m ,故选:AD【变式5-2】(23-24高二上·贵州·开学考试)已知直线1l 经过()(),1,4,3A m B m ---+,直线2l 经过点()()1,2,4,2C D m --+.(1)若1l //2l ,求m 的值;(2)若12l l ⊥,求m 的值.【答案】(1)1或6;(2)3或4-【解析】(1)由题可知直线2l 的斜率存在且()222143m mk -+==--+,若则直线1l 的斜率也存在,由()2113244m mk k m m --+-+===-+-+,得243m m m -+=--+,即2760m m -+=解得1m =或6,经检验,当1m =或6时,12//l l ;(2)若12l l ⊥,当20k =时,此时10,m l =斜率12142k -==-存在,不符合题意,当20k ≠时,直线2l 的斜率存在且不为0,则直线1l 的斜率也存在,且121k k ×=-,即2134m mm -+-⋅=--+,即2120m m +-=,解得3m =或4-,所以当3m =或4-时,12l l ⊥.【变式5-3】(23-24高二上·广东深圳·期中)已知直线1l 经过()(),3,1,A m B m 两点,2l 经过()()2,1,4,2P Q 两点.(1)若12//l l ,求m 的值;(2)若12,l l 的倾斜角互余,求m 的值.【答案】(1)73m =;(2)53m =【解析】(1)211422PQ k -==-,因为12//l l ,所以3112AB PQ m k k m -===-,得73m =,经检验,符合题意,所以73m =;(2)因为12,l l 的倾斜角互余,设1l 的倾斜角为α,则直线2l 的倾斜角为π2α-,所以3121AB PQ m k m k -===-,得53m =.考点六:几何图形的特征的应用例6.(23-24高二上·江苏盐城·期中)以()()()5,1,1,1,2,3A B C -为顶点的三角形是()A .锐角三角形B .钝角三角形C .以A 为直角顶点的直角三角形D .以B 为直角顶点的直角三角形【答案】D【解析】直线AB 的斜率1(1)1152AB k --==--,直线BC 的斜率31221BC k -==-,由1AB BC k k ⋅=-,所以AB BC ⊥,故ABC 是以B 为直角顶点的直角三角形.故选:D【变式6-1】(23-24高二上·河南南阳·月考)已知(5,1)A -,(1,1)B ,(2,3)C 三点,试判断ABC 的形状.【答案】直角三角形.【解析】如图所示,边AB 所在直线的斜率111512--==--AB k ,边BC 所在直线的斜率13212BC k -==-.由1AB BC k k ⋅=-,得AB BC ⊥,即90ABC ∠=︒,所以ABC 是直角三角形.【变式6-2】(23-24高二上·全国·课后作业)已知四边形的四个顶点分别为()0,0O ,()1,3A ,()3,2B -,()4,1C --.试判断四边形OABC 的形状,并说明理由.【答案】平行四边形,理由见解析【解析】如下图示:OA 边所在直线的斜率3OA k =,AB 边所在直线的斜率14AB k =,BC 边所在直线的斜率3BC k =,CO 边所在直线的斜率14CO k =.由BC CO k k ≠知:点O 不在BC 上,则OA 与BC 不重合,又OA BC k k =,得//OA BC .同理,由AB CO k k =且AB 与CO 不重合,得//AB CO .因此四边形OABC 是平行四边形.【变式6-3】(23-24高二上·全国·课后作业)如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为()()()()0,0,1,,12,2,2,2O P t Q t t R t -+-,其中0t >.试判断四边形OPQR 是否为矩形.【答案】四边形OPQR 为矩形,理由见解析.【解析】由斜率公式得010OP t k t -==-,()()222121RQ t t t t k t ----+-===-20120OR k t t -==---,2211122PQ t t t k t t-==-=--所以OP RQ k k =,OR PQ k k =,从而OP ∥RQ ,OR ∥PQ .所以四边形OPQR 为平行四边形.又1OP OR k k ⋅=-,所以OP OR ⊥,故四边形OPQR 为矩形.一、单选题1.(23-24高二上·湖南张家界·月考)已知直线1l 过()2,3A ,()0,4B ,且12l l ⊥,则直线2l 的斜率为()A .2B .12-C .2-D .12【答案】A【解析】由题设1431022l AB k k -===--,又12l l ⊥,则直线2l 的斜率为2.故选:A 2.(23-24高二上·河南焦作·月考)已知过(2,)A m -和(,4)B m 的直线与斜率为-2的直线平行,则m 的值是()A .-8B .0C .2D .10【答案】A【解析】由题意可知,422AB mk m -==-+,解得8m =-.故选:A 3.(23-24高二上·全国·课后作业)若直线l 经过点()2,1A a --和()2,1B a --,且与斜率为23-的直线垂直,则实数a 的值是()A .23-B .32C .23±D .32±【答案】A【解析】由题意得,直线l 的斜率必存在,且1112(2)AB k a a a=--=-----()0a ≠.因为直线l 与斜率为23-的直线垂直所以2113a ⎛⎫-⨯=- ⎪⎝⎭-,解得23a =-.故选:A .4.(22-23高二下·甘肃兰州·开学考试)已知经过点()2,0A -和点()1,3B a 的直线1l 与经过点()0,1P -和点(),2Q a a -的直线2l a 的值为()A .0B .1C .0或1D .1-或1【答案】C【解析】直线1l 的斜率()13012a k a -==--.①当0a ≠时,直线2l 的斜率()221120a ak a a----==-.因为12l l ⊥,所以121k k =-,即121aa a-⋅=-,解得1a =.②当0a =时,()0,1P -、()0,0Q ,此时直线2l 为y 轴,又()2,0A -、()10B ,,则直线1l 为x 轴,显然12l l ⊥.综上可知,0a =或1.故选:C.5.(22-23高二上·浙江杭州·期末)已知点()1,1A 和()2,4B ,点P 在y 轴上,且APB ∠为直角,则点P 坐标为()A .()0,2B .()0,2或()0,3C .()0,2或()0,4D .()0,3【答案】B【解析】由题意,设点()0,P y ,APB ∠ 为直角,AP BP ∴⊥,由141,12AP BP y y k y k --==-=,()4112AP BP y k k y -⎛⎫∴⋅=-=- ⎪⎝⎭,解得3y =或2,所以点P 的坐标为()0,2或()0,3故选:B6.(23-24高二上·全国·课后作业)以(2,1),(4,2),(2,6),(3,1)A B C D ---为顶点的四边形是()A .平行四边形,但不是矩形B .矩形C .梯形,但不是直角梯形D .直角梯形【答案】D 【解析】在坐标系中画出ABCD 点,大致如上图,其中11622,2,,//3224AD BC AD BC k k k k AD BC +-==-==-∴=-+-,211,1,422AB AB BC k k k AB BC +===-⊥+ ,AD BC AD ====≠,所以四边形ABCD 是直角梯形;故选:D.二、多选题7.(23-24高二上·青海西宁·月考)下列各组直线中1l 与2l 一定平行的是()A .1l 经过点()()2,1,3,5AB -,2l 经过点()()3,3,8,7CD --B .1l 经过点()()0,1,2,1EF --,2l 经过点()()3,4,2,3GH C .1l 的倾斜角为60 ,2l 经过点(2,M N --D .1l 平行于y 轴,2l 经过点()()0,2,0,5P Q -【答案】AD【解析】对于A .由题意知12514734,325835k k --+==-==----,所以直线1l 与直线2l 平行或重合,又5(3)443335BC k --==-≠---,故12//l l ,A 选项正确;对于B .由题意知1211341,12023k k ---====---,所以直线1l 与直线2l 平行或重合,4(1)13(2)FG k --==--,故直线1l 与直线2l 重合,B 选项错误;对于C .由题意知12tan 60k k = ,12k k =,所以直线1l 与直线2l 可能平行可能重合,C 选项错误;对于D .由题意知1l 的斜率不存在,且不是y 轴,2l 的斜率也不存在,恰好是y 轴,所以12//l l ,D 选项确.故选:AD8.(23-24高二上·全国·单元测试)(2023秋·河北石家庄·高二石家庄市第四中学校考月考)以(1,1),(2,1),(1,4)A B C --为顶点的三角形,下列结论正确的有()A .23AB k =-B .14BC k =-C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形【答案】AC【解析】对于A ,因为(1,1),(2,1)A B --,所以1(1)2123AB k --==---,所以A 正确,对于B ,因为(2,1),(1,4)B C -,所以1415214BC k --==-≠--,所以B 错误,对于C ,因为23AB k =-,143112AC k -==--,所以22133AB AC k k ⋅=-⨯=-,所以AB AC ⊥,所以ABC 以A 点为直角顶点的直角三角形,所以C 正确,对于D ,因为23AB k =-,5BC k =-,所以1AB BC k k ⋅≠-,所以D 错误,故选:AC三、填空题9.(23-24高二上·浙江嘉兴·期中)若经过点(),3m 和()2,m 的直线l 与斜率为-4的直线互相平行,则m 的值是.【答案】53/213【解析】由题意32l mk m -=-,又因为直线l 与斜率为-4的直线互相平行,所以342m m -=--,解得53m =.10.(23-24高二上·全国·课后作业)已知(1,3),(5,1),(3,7)A B C ,A ,B ,C ,D 四点构成的四边形是平行四边形,则点D 的坐标为.【答案】(7,5)或(1,9)-或(3,3)-.【解析】由题,(1,3),(5,1),(3,7)A B C ,所以73231AC k -==-,131512AB k -==--,71335BC k -==--,设D 的坐标为(),x y (1x ≠且5x ≠且3x ≠),分以下三种情况:①当BC 为对角线时,有CD AB k k =,BD AC k k =,所以,125BD y k x -==-,71=32CD y x k -=--,解得75x y =⎧⎨=⎩,即(7,5)D ;②当AC 为对角线时,有CD AB k k =,AD BC k k =,所以331AD y k x -==--,71=32CD y x k -=--,解得19x y =-⎧⎨=⎩,即(1,9)D -;③当AB 为对角线时,有BD AC k k =,AD BC k k =所以132351BD AD y y k k x x --====---,,解得33x y =⎧⎨=-⎩,即(3,3)D -;所以D 的坐标为(7,5)或(1,9)-或(3,3)-.11.(22-23高二上·北京丰台·月考)在平面直角坐标系中,直线1l 经过()()1,,4,5M m N -两点,2l 经过()6,0,(1,3)R S --两点,若12l l ⊥,则m =;若12l l ∥,则m =.【答案】0345-【解析】由已知()2303165l k -==---,当12l l ⊥时,所以155413l m k --==--,解得0m =,当12l l ∥时,153415l m k --==-,解得345m =-,经验证:当345m =-时,12,l l 不重合.四、解答题12.(23-24高二上·四川·期中)已知()4,0A ,()1,2B ,(),C m m ,()7,1D -.(1)若直线AB 与CD 平行,求m 的值;(2)若ABC 为直角三角形,求m 的值.【答案】(1)115;(2)1-或12【解析】(1)依题意可得AB CD k k =,即201147m m---=--,解得115m =.又202143AB k -==--,101743AD k --==--,所以AB AD k k ≠,所以A 、B 、C 、D 四点不共线,所以115m =.(2)若A 为直角,则1AB AC k k =-,即2001144m m --⨯=---,解得12m =.若B 为直角,则1AB BC k k =-,即2021141m m --⨯=---,解得1m =-.若C 为直角,则1AC BC k k =-,即02141m m m m --⨯=---,解得m =综上,m 的值为1-或1213.(22-23高二上·广东广州·期中)已知四边形MNPQ 的顶点(1,1),(3,1),(4,0),(2,2)M N P Q -.(1)求斜率MN k 与斜率PQ k ;(2)求证:四边形MNPQ 为矩形.【答案】(1)1,1MN PQ k k =-=-;(2)证明见解析【解析】(1)因为(1,1),(3,1),(4,0),(2,2)M N P Q -,所以1,111203124MN PQ k k ---=-==--=-,即1,1MN PQ k k =-=-.(2)因为1,1MN PQ k k =-=-,所以//MN PQ .又因为01,12112134MQ NP k k -=--=--==,所以//MQ NP ,所以四边形MNPQ 为平行四边形,又因为1MN MQ k k ⋅=-,所以MN MQ ⊥,所以四边形MNPQ 为矩形.。
学科教师辅导讲义【知识梳理】(1)两个向量平行的充要条件a ∥b ⇔a =λb ⇔x 1y 2-x 2y 1=O.(λ不等于0) (2)两个向量垂直的充要条件 a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.课堂练习与讲解:(1)若向量(,1),(4,)a x b x ==r r ,当x = __时a r 与b r 共线且方向相同;(2)已知(1,2),(3,)OA OB m =-=u u u r u u u r ,若OA OB ⊥u u u r u u u r ,则m = ;(3)已知向量(2,3)a =,(,6)b x =,且a b P ,则x 为___ _________.(4)已知向量5,(1,2)a b ==r r,且b a ρρ⊥,则a ρ的坐标是_ _ 或___ ____。
(5)若()221,2,a b a b a ==-⊥r r r r r,则b a ρρ与的夹角为____ _____。
(6)已知平面向量(1,2)a =r ,(2,)b m =-r,且a r //b r ,则23a b +r r =( )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)-- (7)已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为( )A .17B .18C .19D .20(8)已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r∥b r ,则k = . (9)已知平面向量a =,1x () ,b =2,x x (-), 则向量+a b ( )A 平行于x 轴 B.平行于第一、三象限的角平分线C.平行于y 轴D.平行于第二、四象限的角平分线(10)已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是( ) A .-2B .0C .1D .2(11)已知(1,1),(4,)a b x ==r r ,2u a b =+r r r ,2v a b =+r r r ,且//u v r r ,则x =__ ____;(12)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是 _____ __;(13)已知(1,2)n =r 向量n m ⊥r u r ,且n m=r u r ,则m u r 的坐标是 _ ___(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r,且A 、B 、C 三点共线,则 k=(15)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为( )A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),(16)已知向量(2,4)a =, (1,1)b =.若向量 ()b a b λ⊥+,则实数λ的值是 .(17)已知a,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 .(18)(2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c = ( ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93-- (19)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d ,那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向(20)已知点(1,2)A -,若向量AB u u u r 与(2,3)a =r同向, ||AB u u u r =213,则点B 的坐标为(21)已知向量(3,4),(sin ,cos ),a b αα==r r 且//a b r r,则tan α=( ).A .34 B. 34- C. 43 D. 43- (22)若,且,则向量与的夹角为( )A. 30°B. 60°C. 120°D. 150° (23)若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则=a .(24)设向量a r ,b r ,c r 满足0a b c ++=r r r r ,()a b c -⊥r r r ,a b ⊥r r,若|a r |=1,则 |a r |22||b +r +|c r |2的值是 .(25)(本题12分)已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) ⑴若|c |52=,且a c //,求c 的坐标; ⑵若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ.12.已知AD 、BE 分别为ABC V 的中线,若,AD a BE b ==u u u r u u u r r r ,则用,a b rr 表示AB u u u r ,得AB =u u u r ________13.已知向量()()1,2,3,OA OB m =-=u u u r u u u r,若OA u u u r ⊥OB uuu r ,则m =___________14.设()(),3,4,4x a y a ==+r r ,若x r ∥y r,则a =_________15.已知点()()2,0,3,0A B -,且4,3PA PB ==u u u r u u u r,则P 点的坐标为____________16.一人用绳拉车沿直线方向前进30米,若绳与行进方向的夹角为5π,人的拉力为50牛顿,则人对车所做的功为___________17.物体自点A 出发运动点B ,又折向点C ,若,AB a BC b ==u u u r u u u r r r , 用,a b rr 表示物体的实际移位,有AC =u u u r_____________18.有以下6个结论:①a b a b =r rr r gg ②00a =r r g ③00a -=r r ④0BA AB -=u u u r u u u r r ⑤a b a b ≤r r r r gg ⑥若,a b b c ⊥⊥r r r r ,则必有a r ∥c r,其中成立的序号是_____________ 三、解答题19.已知()4,3,,10a b a b =-⊥=r r rr ,求b r 的坐标。
空间向量及其运算【教学目标】1.和平面向量类比理解空间向量的概念、运算;2.掌握空间向量的共线、垂直的条件,理解空间向量基本定理和数量积【知识梳理】复习:平面向量有加减以及数乘向量运算1. 空间向量的加法和减法的运算法则有法则和法则.2.空间向量的数乘:实数λ与向量a 的积是一个量,记作,其长度和方向规定如下:(1)|λa |=.(2)当λ>0时,λa 与a. ;当λ<0时,λa 与a. ;当λ=0时,λa =.(3)共线向量定理:对空间任意两个向量a , b (b ≠0),a∥b 的充要条件是存在实数λ,使得a =λb .3. 空间向量加法和数乘向量,以下运算律仍然成立:加法交换律:a +b =b +a 数乘交换律: λa=a λ加法结合律:(a +b )+c =a +(b +c )数乘结合律:a a )()(λμμλ=数乘分配律:λ(a +b )=λa +λb a a a μλμλ+=+)(小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量. 例3三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →.追踪训练1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB →=a ,AD →=b ,AA 1→=c ,则用向量a ,b ,c 可表示向量BD 1→等于( )A .a +b +cB .a -b +cC .a +b -cD .-a +b +c2.对于向量a 、b 、c 和实数λ,下列命题中真命题是( )A .若a·b =0,则a =0或b =0B .若λa =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a·b =a·c ,则b =c 5.3.如图,在平行六面体ABCD —A 1B 1C 1D 1中,E ,F ,G ,H ,P ,Q 分别是A 1A ,AB ,BC ,CC 1,C 1D 1,D 1A 1的中点,则( )A.EF →+GH →+PQ →=0B.EF →-GH →-PQ →=0C.EF →+GH →-PQ →=0D.EF →-GH →+PQ →=04.在正方体ABCD —A 1B 1C 1D 1中,下列各式中运算结果为BD 1→的是( )①(A 1D 1→-A 1A →)-AB →;②(BC →+BB 1→)-D 1C 1→;③(AD →-AB →)-2DD 1→;④(B 1D 1→-A 1A →)+DD 1→.A .①②B .②③C .③④D .①④5. 如图所示,ABCD -A 1B 1C 1D 1中,ABCD 是平行四边形.若AE →=12EC →,A 1F →=2FD →,若AB →=b ,AD →=c ,AA 1→=a ,试用a ,b ,c 表示EF →.。
学科教师辅导讲义
【知识梳理】
(1)两个向量平行的充要条件
a ∥
b ⇔a =λb ⇔x 1y 2-x 2y 1=O.(λ不等于0) (2)两个向量垂直的充要条件 a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.
课堂练习与讲解:
(1)若向量(,1),(4,)a x b x ==r r ,当x =__2___时a r 与b r 共线且方向相同;
(2)已知(1,2),(3,)OA OB m =-=u u u r u u u r ,若OA OB ⊥u u u r u u u r ,则m = 3
2 ;
(3)已知向量(2,3)a =,(,6)b x =,且a b P ,则x 为___4__________.
(4)已知向量5,(1,2)a b ==r r
,且b a ρρ⊥,则a ρ的坐标是__(25,5-)或___(25,5)-____。
(5)若()
221,2,a b a b a ==-⊥r r r r r
,则b a ρρ与的夹角为_____045______。
(6)已知平面向量(1,2)a =r ,(2,)b m =-r
,且a r //b r ,则23a b +r r =( B )
A 、(5,10)--
B 、(4,8)--
C 、(3,6)--
D 、(2,4)-- (7)已知b a b a k b a 3),2,3(),2,1(-+-==与垂直时k 值为( C )
A .17
B .18
C .19
D .20
(8)已知向量(3,1)a =r ,(1,3)b =r ,(,7)c k =r ,若()a c -r r
∥b r ,则k = 5 . (9)已知平面向量a =,1x ()
,b =2
,x x (-), 则向量+a b ( C ) A 平行于x 轴 B.平行于第一、三象限的角平分线
C.平行于y 轴
D.平行于第二、四象限的角平分线
(10)已知向量(1,1),(2,),x ==a b 若a +b 与-4b 2a 平行,则实数x 的值是( D ) A .-2
B .0
C .1
D .2
(11)已知(1,1),(4,)a b x ==r r ,2u a b =+r r r ,2v a b =+r r r ,且//u v r r ,则x =__ 4 ____;
(12)以原点O 和A(4,2)为两个顶点作等腰直角三角形OAB ,90B ∠=︒,则点B 的坐标是_(1,3)或(3,-1)_____ __;
(13)已知(1,2)n =r 向量n m ⊥r u r ,且n m
=r u r ,则m u r 的坐标是 _ (2,1)-或(2,-1)___
(14)已知向量(,12),(4,5),(,10)OA k OB OC k ===-u u u r u u u r u u u r
,且A 、B 、C 三点共线,则 k= 3
4
-
_ (15)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r ,则顶点D 的坐标为( A )
A .722⎛⎫ ⎪⎝⎭
,
B .122⎛⎫- ⎪⎝⎭
,
C .(32),
D .(13),
(16)已知向量(2,4)a =, (1,1)b =.若向量 ()b a b λ⊥+,则实数λ的值是 -3 .
(17)已知a,b 是非零向量,且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是 60° .
(18)(2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c = ( B ) A .77(,)93 B .77(,)39-- C .77(,)39 D .77(,)93
-- (19)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d ,那么 ( D )
A .1k =且c 与d 同向
B .1k =且c 与d 反向
C .1k =-且c 与d 同向
D .1k =-且c 与d 反向
(20)已知点(1,2)A -,若向量AB u u u r 与(2,3)a =r
同向, ||AB u u u r =213,则点B 的坐标为 ( 5, 4 )或(-3,-8) .
(21)已知向量(3,4),(sin ,cos ),a b αα==r r 且//a b r r
,则tan α=( C ).
A .
34 B. 34- C. 43 D. 43
- (22)若
,且
,则向量
与
的夹角为( C )
A. 30°
B. 60°
C. 120°
D. 150° (23)若平面向量a ,b 满足
1=+b a ,b a +平行于x 轴,)1,2(-=b ,则=a (-1,1)或(-3,1) .
(24)设向量a r ,b r ,c r 满足0a b c ++=r r r r ,()a b c -⊥r r r ,a b ⊥r r
,若|a r |=1,则 |a r |22||b +r +|c r |2
的值是 4 .
(25)(本题12分)已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) ⑴若|c |52=,且a c //,求c 的坐标; ⑵若|b |=
,2
5
且b a 2+与b a 2-垂直,求a 与b 的夹角θ. 解:⑴设20,52,52||),,(2
2
2
2
=+∴=+∴==y x y x c y x c Θ
23.已知ABC V 和ABC V 所在平面内一点O ,且,OA BC OB CA ⊥⊥,用向量的方法
证明:
OC AB ⊥.
24.如图,一个质量为40N 的物体,由两根绳子,AC BC 悬挂起来,若,AC BC 与铅垂线所成的角分别为30°,45°,且物体静止不动,求绳子,AC BC 需要承受多大的力?
答案:1.C 2.A 3.B 4.C 5.C 6.C 7.A 8.C 9.D 10.B 11.16 12
2233
a b -r
r 13.4 14.26-或 15.612,55⎛⎫
- ⎪⎝⎭
16.750焦耳 17.a b +r r 18.②④⑤
19.()()6,86,8--或 20.221 21略 22略
23.只要证明0OC AB =u u u r u u u r
g
24.(
)(
)
4031,202
31AC BC F N F N =-=-
A
B
C。