脑功能认知研究的历史与发展-FMRI、MEG、EEG、ERP
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
认知神经科学的研究领域及发展趋势认知神经科学是认知科学和神经科学相结合的一门新学科(1991年正式问世),以探讨认知活动的脑机制为其研究任务即研究人脑各组件包括分子、细胞、脑组织各区及全脑如何调用以实现自身的认知活动。
认知神经科学本身只是认知心理学的一个研究取向,即采用神经科学的范式来研究人类的心智。
认知心理学从上个世纪六七十年代兴起,经历了大概四个研究阶段,而认知神经科学范式是第四个阶段,也是目前比较受追捧的研究范式。
目前的阶段,从神经科学的视角解读大脑认知的功能,探讨心智和大脑的关系。
研究的是人类对外部世界(信息)的加工和处理的过程与机制,最核心的问题(我认为)应该就是探索人类智能的起源、机制和发展过程:为什么人类会成为智慧生物,人类的心智具体有什么样的特点等等。
(一)认知神经科学的研究领域:从基础科学到转换科学1. 基础研究—大脑与心智的关系认知神经科学家不会轻易相信身心二元论,相反,这个领域的研究者对人类心智的基本认识就是“功能起源于结构”,“没有无生理基础的心理活动”。
因此,研究者的基本任务就是找到心理过程和生理过程的基本关系,这个是最基础的。
因此,可以把基础类的研究划分:心智的功能与结构;心智的起源,基因与文化;探索心智与大脑的技术与方法。
1)心智的功能与结构:大脑信息处理过程被看作不同的阶段,从感觉,知觉,到注意,记忆,情绪动机,思维决策,意识和自由意志等等。
人多研究者都始于对某个信息加工过程的专研,希望能找到通往心智与大脑关系的钥匙。
2)心智的起源:基因与文化的研究。
这一部分的研究更加基础,研究的层次可大可小。
精细的话可以达到细胞分子水平,谈到基因与上述心智过程的关系;宏大的话可以讨论文化对大脑和心智过程的塑造。
最近,一个比较有趣的研究探讨了农业生产方式对心理过程的影响,这个研究也应用了很多认知心理学的范式,3)探索心智与大脑关系的方法:基础研究的另外一个任务,就是要在方法上创新,推动上述研究话题的发展。
功能性脑成像技术的研究进展功能性脑成像技术,也被称为神经影像学技术,是一种能够直接测量大脑神经活动的方法。
该技术主要包括以下几种:功能性磁共振成像(fMRI)、正电子发射断层扫描(PET)、脑电图(EEG)和磁脑电图(MEG)。
这些技术的兴起,使得人们能够非侵入性地及时观察到人脑的活动,从而解读人脑的行为和思维机制。
本文将介绍这方面的研究进展。
一、功能性磁共振成像技术功能性磁共振成像技术主要是基于血氧水平依赖性信号(BOLD)。
该技术通过扫描大脑,观察到局部血流量和质量的变化,从而测量脑细胞的活动情况。
目前,该技术被广泛用于各种神经认知研究中,如学习、记忆和情绪等。
近年来,科学家们致力于将fMRI技术引入临床实践。
对于脑卒中和癫痫等神经类疾病的早期诊断和病因分析,fMRI已经显示出了潜在的优势。
此外,功能性脑成像技术在疼痛治疗、神经科学基础研究以及文化心理学、社会心理学等领域的应用也逐渐受到人们的关注。
二、正电子发射断层扫描技术和fMRI不同,PET技术主要利用放射性核素的比放射性来测量活动组织和器官的新陈代谢率。
PET技术可以为科学家们提供非常高精度的脑部图像数据,而这些图像数据对于研究人类认知功能,如视觉、听觉和语言等,都非常重要。
在医疗领域,PET技术早已被应用于医学影像和疾病研究中,如癌症、糖尿病、心脏病等。
在神经科学领域,PET技术同样具有广泛的应用前景,已经被应用于许多研究,例如探究脑部皮层和下丘脑的功能区和脑区的远距离的相互调节等。
三、脑电图和磁脑电图技术脑电图和磁脑电图技术可以通过记录人脑神经元的电磁活动,以实时显示人脑活动。
这些技术可以用在很多领域,包括神经科学研究、神经逆生物学研究、睡眠研究、神经反馈和神经疾病治疗等。
脑电图与磁脑电图通常被应用在神经生物反馈疗法中,例如,该疗法利用脑电图活动的反馈,用于改进大脑在情感、认知和行为方面的功能。
此外,在社交、网络和安全领域等方面,脑电图与磁脑图技术也被广泛使用,以促进人们的沟通和交流。
大脑认知与神经科学的研究进展随着现代科技的发展和神经科学的兴起,大脑认知和神经科学的研究也越来越受到关注。
大脑作为人类最重要的器官之一,一直是人类探索的热点。
而神经科学则是通过研究神经系统的构成、功能和发展等方面内容,探索大脑的工作原理和机理。
本文将介绍大脑认知与神经科学的研究进展。
一、大脑认知的基本概念大脑认知范畴主要包括:<知觉、动机、情绪和智力等方面>。
知觉是指我们通过感官获得关于世界的信息,是所有认知活动的起点;动机是指我们的行为和意识因何种原因而活跃,这与我们对外界的认知紧密相关;情绪则是大脑对生理和心理上激动性事件的反应,与认知的其他方面直接相连;智力是指人类思考和决策的能力,这也是大脑认知的高级阶段。
二、大脑认知与神经科学的联系大脑认知和神经科学相辅相成,彼此之间有着密切的关系。
不仅在科学研究中需要进行交叉结合,在人类生命过程中也是两者共同发挥作用。
神经科学通过研究脑部解剖学、生理学、生物化学和神经生物学等方式来揭示大脑功能与结构之间的关系和本质。
而大脑认知则是致力于研究人类思维、认知、意识、情感、及语言能力等内容,通过行为学、认知心理学等方法研究大脑认知的原理和规律。
三、大脑认知与神经科学的研究进展随着科技的进步和研究方法的不断更新,大脑认知与神经科学也在不断发展和完善。
以下是近年来主要的研究进展:1、认知神经科学的发展认知神经科学是研究人类思维和行为的脑过程的一种跨学科领域,它集成了神经科学、认知心理学和计算机科学等学科。
最近的研究发现,大脑中的许多区域不仅特定于某些认知处理,而且在人类中是相当共通的。
这些研究成果不仅有助于发现哪些区域被长期使用,而且也为神经可塑性的研究提供了重要的线索。
2、基于大脑成像技术的研究大脑成像技术如fMRI、PET以及MEG等技术的发展,使得科学家可以实时研究大脑活动,并能够有效地对其进行图像和视频记录。
这些技术不仅提高了研究的准确性和信度,而且还允许科学家们在实验室内对人类大脑进行观察。
脑科学研究简史一、起源与发展脑科学作为一门跨学科的研究领域,涉及神经科学、心理学以及计算机科学等多个学科的知识。
其起源可以追溯到古代,早在古希腊时期,人们就开始探索人类大脑的奥秘。
然而,直到近代,随着科学技术的进步,脑科学才逐渐成为一个独立的学科。
二、脑神经元的发现19世纪末,西班牙神经科学家拉蒙·伊·卡哈尔发现了神经元的存在,这一发现奠定了现代神经科学的基础。
神经元是构成大脑和神经系统的基本单位,它们通过电信号在神经系统中传递信息。
三、神经网络的研究20世纪初,神经科学家们开始研究神经元之间的连接和相互作用。
他们发现神经元之间形成了复杂的网络,这些网络负责传递和处理信息。
通过对动物大脑进行解剖学和生理学研究,科学家们逐渐揭示了神经网络的结构和功能。
四、认知神经科学的兴起在20世纪中叶,认知心理学和神经科学的结合催生了认知神经科学的出现。
认知神经科学旨在研究大脑如何产生思维、记忆和意识等高级认知功能。
通过使用功能性磁共振成像(fMRI)等技术,科学家们开始揭示大脑不同区域在认知过程中的活动。
五、计算神经科学的发展20世纪末,计算机科学与神经科学的交叉研究推动了计算神经科学的发展。
计算神经科学致力于模拟和理解大脑的信息处理机制。
通过建立神经网络模型和进行计算模拟实验,科学家们逐渐揭示了大脑是如何进行信息处理和学习的。
六、脑成像技术的突破随着科学技术的不断进步,脑成像技术取得了重大突破。
功能性磁共振成像(fMRI)和脑电图(EEG)等技术使科学家们能够观察到大脑在不同任务和状态下的活动。
这些技术的发展为脑科学研究提供了重要的工具和手段。
七、脑科学的未来展望脑科学仍然是一个充满挑战和机遇的领域。
随着人工智能和机器学习的发展,脑科学与计算机科学的交叉研究将变得更加紧密。
同时,随着对神经系统的深入了解,我们对大脑疾病的治疗和预防也将有更深入的认识。
总结起来,脑科学研究经历了从古代的初步探索到现代的跨学科研究的发展历程。
大脑前额叶皮质的功能定位技术与研究方法大脑前额叶皮质是人类大脑中的重要结构之一,起着调控认知、情绪、决策等高级认知功能的关键作用。
为了深入了解前额叶皮质的功能定位,科学家们不断探索各种研究方法和技术。
本文将介绍一些常用的功能定位技术和研究方法。
一、电生理技术电生理技术是一种非侵入性的方法,通过记录大脑电活动来研究前额叶皮质的功能定位。
其中最常用的技术是脑电图(EEG)和事件相关电位(ERP)。
脑电图是通过放置电极在头皮上记录大脑电活动。
研究人员可以观察到特定频率和振幅的电活动,从而了解前额叶皮质在认知、情绪等方面的功能表现。
事件相关电位是通过与特定刺激或任务相关的大脑电活动来研究前额叶皮质的功能。
研究人员在被试者完成某项任务时记录大脑电活动,通过分析电位波形的特点,可以推断前额叶皮质的活动情况。
二、磁共振成像技术磁共振成像技术是一种基于磁场变化的非侵入性方法,可以提供高空间分辨率的大脑结构和功能信息。
其中,功能磁共振成像(fMRI)是研究前额叶皮质功能定位的常用技术。
fMRI通过测量血氧水平变化来间接反映大脑活动。
研究人员可以让被试者进行特定任务,如记忆、决策等,通过比较任务执行时的脑活动和休息状态下的脑活动,推断前额叶皮质在不同任务中的功能定位。
三、脑磁图技术脑磁图技术是一种记录脑电活动的方法,相比于脑电图技术,脑磁图技术具有更高的时间和空间分辨率。
研究人员可以通过放置敏感的传感器来记录前额叶皮质的磁场活动,从而了解其功能定位。
脑磁图技术常用的方法包括磁容性成像(MEG)和脑源定位(Source Localization)。
MEG可以测量脑区活动产生的磁场,通过分析磁场的空间和时间特征,确定前额叶皮质的功能定位。
脑源定位技术利用数学模型和计算算法推断脑电活动的源头位置,可以更准确地定位前额叶皮质的功能。
四、刺激性脑电技术刺激性脑电技术是一种以特定刺激为触发来研究前额叶皮质功能的方法。
其中最常用的方法是经颅磁刺激(TMS)和经颅直流电刺激(tDCS)。
脑功能成像技术在神经科学研究中的应用意义引言:神经科学研究是探索人类大脑奥秘的重要领域,而脑功能成像技术的出现为神经科学研究提供了全新的视角。
随着科技的不断进步,脑功能成像技术已经成为了研究大脑功能与结构的重要工具。
本文将探讨脑功能成像技术在神经科学研究中的应用意义,包括对认知功能的理解、精神障碍的诊断与治疗、脑机接口的发展等方面。
一、对认知功能的理解:脑功能成像技术包括功能磁共振成像(fMRI)、脑电图(EEG)以及磁脑电图(MEG)等多种方法,可以在活体状态下观测到大脑的活动。
通过这些技术,研究者可以研究不同认知任务下脑区的激活情况,从而揭示不同认知功能的大脑机制。
例如,在视觉认知任务中,研究者通过fMRI技术可以观察到视觉皮层相关区域的激活情况,从而了解大脑在感知图像、认知物体等方面的处理过程。
这种对认知功能的理解对于增进人类对大脑工作机制的认识具有重要意义。
二、精神障碍的诊断与治疗:脑功能成像技术在神经科学研究中还可以帮助诊断和治疗精神障碍。
精神障碍是一类影响大脑功能的疾病,传统上往往是通过病史、行为观察和心理测试等方式进行诊断。
然而,随着脑功能成像技术的出现,研究者们可以通过观察和分析大脑活动的变化来进行精神障碍的诊断和分类。
例如,研究发现,抑郁症患者的前额叶皮层活动存在异常,使用脑功能成像技术可以观测到这些变化,从而能够更准确地诊断抑郁症。
此外,脑功能成像技术还可以用于监测精神障碍患者在治疗过程中的大脑活动变化,为个性化治疗提供依据。
三、脑机接口的发展:脑功能成像技术的应用还推动了脑机接口(Brain-Computer Interface,BCI)的发展。
脑机接口是一种将人脑和外部设备连接起来的技术,可以通过解码大脑活动的模式来控制外部设备的运动。
脑功能成像技术可以提供高时空分辨率的脑活动信息,为脑机接口的精确控制提供支持。
目前,脑机接口已经应用于多个领域,如康复医学、虚拟现实技术等。
脑神经影像技术在认知心理学中的应用认知心理学是研究人类思维、知觉、记忆、学习和语言等认知过程的学科领域。
近年来,随着脑神经影像技术的发展和进步,它在认知心理学研究中扮演着越来越重要的角色。
本文将讨论脑神经影像技术在认知心理学中的应用,并探讨其对我们对人类思维和认知过程的理解所带来的影响。
一、功能性磁共振成像(fMRI)技术的应用功能性磁共振成像(Functional Magnetic Resonance Imaging,fMRI)技术是一种通过测量脑区血流变化来推断脑活动的非侵入性神经影像技术。
它通过对受试者进行特定任务或刺激后的脑血流变化进行监测和分析,可以确定与特定认知任务相关的脑区及其活动强度。
fMRI技术在认知心理学中的应用范围广泛。
例如,研究人员通过使用fMRI技术来研究工作记忆,这是一种短期记忆过程,与我们在高级思维任务中所涉及到的信息处理有关。
通过在fMRI扫描仪中让受试者进行工作记忆任务,研究人员可以确定与工作记忆相关的脑区以及其在不同任务条件下的激活模式,从而深入了解工作记忆的神经基础。
此外,fMRI技术还可用于研究人类的注意力、决策、情绪加工等认知功能。
通过测量不同认知任务下脑血流变化,我们可以揭示不同认知过程的神经机制,进一步理解认知心理学的相关问题。
二、脑电图(EEG)技术的应用脑电图(Electroencephalography,EEG)技术是一种通过记录头皮上的电活动来测量大脑神经元活动的方法。
通过放置电极在头皮上,我们可以获得脑电波信号,从而研究人类的认知活动。
EEG技术在认知心理学中的应用也非常广泛。
例如,当我们进行注意力任务时,不同任务类型的注意力需求会导致特定频率范围的脑电波发生变化。
通过记录和分析这些脑电波的变化,我们可以了解到不同注意力过程的神经机制。
此外,EEG技术还可以用于研究人类的睡眠过程、情绪加工、事件相关电位(ERP)等认知功能。
它不仅具有时间分辨率高、成本低廉等优点,还可以与其他神经影像技术如fMRI结合,提供更全面的认知过程的信息。
认知神经科学的研究方法和应用认知神经科学(Cognitive Neuroscience)是研究人类的思维、情感和行为如何与神经系统互动的跨学科领域。
它将行为科学、心理学、神经科学和计算机科学的方法和工具相结合,探索人类认知的物理和生理机制。
本文将介绍认知神经科学的研究方法和应用。
脑成像技术脑成像技术是认知神经科学的核心工具之一,用于测量暴露于特定刺激时,大脑不同区域的血流量、代谢率和神经元活动。
这些脑成像技术包括功能性磁共振成像(fMRI)、电位脑成像(ERP)和磁脑成像(MEG)等。
fMRI是一种非侵入性的技术,利用磁共振成像技术,测量血液中氧气含量的变化,来反映大脑不同区域的代谢率和血流量,其分辨率非常高。
ERP是一种用于记录脑内电信号的技术,可以分辨出从启动到完成任何认知过程所需的神经元时间序列。
MEG也类似于ERP,但是它利用弱的磁场来绘制出脑活动的空间图案。
脑成像技术可以应用于认知神经科学研究的方方面面,例如,运用fMRI技术,我们可以了解人类的视觉、听觉、触觉和语言处理等方面的极其复杂的脑动力学机制,进而认识人类如何感知、锁定和使用外界环境从而产生的行为。
行为学方法除了脑成像技术,实验心理学和神经科学中的一些传统测试也可以用于评估认知功能。
认知学家、心理学家和神经科学家可以利用这些行为学测试探究人类认知的各个方面。
如工作记忆测试,该测试涉及对短暂信息的记忆和处理。
它可以帮助我们了解大脑如何处理来自外界环境的信息,并且可以直接或间接地测量语言、注意和决策能力等。
还有抑制力测试,这是对认知控制机制的一种衡量方法,这项测试能测出人类面对干扰因素时的控制能力。
行为学方法和脑成像技术的结合使用,可以更好地深入地研究一些认知过程,同时,在临床上,这种方法可以通过发现因为认知障碍而受到损耗的连接来帮助人们更好地了解某些疾病,如阿尔茨海默病等。
计算建模方法计算建模融合了神经科学、心理学和计算机科学的思想,旨在使用计算机模型探索真实世界中的认知过程。
人脑认知科学研究综述人脑认知科学研究是一门极具前沿的学科领域,涉及到众多学科领域的交叉和融合,比如心理学、神经学、计算机科学等等。
让我们从人类视觉系统、工作记忆和意识三个方面,来简单探讨一下人脑认知科学研究的一些进展。
人类视觉系统视觉信号在人脑中的传递和处理是复杂而且关键的。
视觉信号由眼睛中的视网膜吸收,传递到大脑皮层的视觉处理中心进行解码和处理。
在此过程中,不同的神经元会对于不同种类、形状、方向、运动方向等因素的视觉信息作出不一样的反应。
研究表明,成年人的大脑可以提取视觉信息的丰富性和多样性,以更高级别的方式对这些信息进行加工分析,现在研究者们通过使用功能性核磁共振成像 (fMRI)技术,揭示了人脑视觉处理的一些重要的机制。
例如,研究者可以检测到大脑中特定区域的反应,这些区域对于视觉信息的不同属性有不同的响应。
同时,一些研究基于 fMRI 还发现人脑在观看运动的物体时,会对于其自身运动进行调整。
工作记忆人类工作记忆的能力是我们进行思考、记忆和执行任务的必要前提,是我们完成高级认知任务的一个重要机制。
工作记忆可以理解为一种临时的存储方式,它能够保留并操作新的信息,从而支持我们开展复杂的认知活动。
近年来,随着脑成像技术的发展,人们对于工作记忆进行的大量研究,这些研究采用不同的实验范式,例如n-back 任务范式和空间记忆(Spatial Memory)任务,这些任务能够评估工作记忆的各种方面、对其不同的过程进行分离。
通过这些实验及数据分析,我们可以了解人类在从外部世界接受信息、保留信息正过程中,工作记忆的特点和机制。
意识意识是我们思考、决策和行动规划的基础,是大脑高级认知功能运作的必要条件。
意识的研究仍然困难且晦涩难懂,很多人都无法理解。
意识的机制和运作机理尚不清楚,但是现在的研究表明,意识似乎与大脑中一些具有基础性的神经计算有关,这些计算的重要性至今仍在探讨。
研究发现,许多脑区域在意识生成和认知控制过程中发挥重要作用,这些区域之间的沟通和协作也有助于解释意识的综合表现。
脑成像技术在心理学研究中的应用进展引言:心理学研究的核心目标之一是了解人类大脑的功能和行为之间的关系。
过去几十年来,脑成像技术的发展为心理学研究提供了强大的工具。
通过非侵入式的方法,脑成像技术可以实时观察和测量大脑活动的变化,从而揭示心理过程和行为背后的神经机制。
本文将重点介绍脑成像技术在心理学研究中的应用进展。
我们将讨论功能磁共振成像(fMRI)、电脑层析断层扫描(PET)、脑电图(EEG)和磁脑图(MEG)等脑成像技术在心理学研究中的应用,以及这些研究对于我们理解心理学的贡献。
功能磁共振成像(fMRI)的应用:功能磁共振成像(fMRI)是最常用的脑成像技术之一。
它通过检测血液中的氧合水平变化来测量大脑的活动。
fMRI在心理学研究中的应用广泛,例如情绪研究、记忆研究和决策研究等。
通过fMRI,研究人员可以观察到情绪中枢在面对不同刺激时的激活模式,进一步揭示情绪与大脑活动之间的关系。
此外,fMRI还可以帮助深入理解记忆形成和记忆损害的机制,以及决策行为的神经基础。
通过分析fMRI数据,研究人员可以确定特定大脑区域的功能连接,并进行功能网络的建模和分析。
电脑层析断层扫描(PET)的应用:电脑层析断层扫描(PET)是一种利用放射性示踪剂测量脑部活动的影像技术。
与fMRI不同,PET可以提供关于大脑代谢和神经递质浓度的信息。
由于PET测量的是活动区域的代谢水平,因此在心理学研究中被用于探索认知功能和神经精神疾病等方面。
例如,通过比较健康人群和患有精神疾病的人群的PET扫描结果,研究人员可以揭示与各类心理疾病相关的神经生物学异常。
PET还常被用于研究脑区的特定功能,例如语言加工、注意力和感知等。
脑电图(EEG)的应用:脑电图(EEG)是一种测量脑电活动的技术。
脑电图通过在头皮上放置电极来记录大脑中神经元集团的电活动。
EEG具有高时序解析度,对于研究事件相关电位(ERP)等短暂神经活动非常有用。
在心理学研究中,EEG被广泛应用于认知研究和睡眠研究等领域。
设想一个放在你手中的奶油色物体,这是一个看起来象由两个半球组成的椭球状粘稠物,坐落在一根粗壮的茎上,在它的表面,有着各种各样深浅不一的皱褶,还可以区分出有着特定的颜色,形状和纹理的不同区域,这些区域以一定的方式互相交连折叠在一起。
这个外表奇怪的东西就是我们的大脑,那根粗壮的茎是脑干,皱褶是大脑的沟回,而彼此连接的区域是大脑的各种功能区结构。
确定这些脑区之间的连接方式和与之相应的心理功能,揭示大脑的工作机制,了解人类精神和智力的奥秘,正是千百年来人类最富吸引力也最具挑战意义的问题。
可喜的是,在今天我们终于开始有能力涉足于这个领域,尽管只是一小步小步地艰难探索,智慧女神的真实面貌还是正逐渐地呈现在我们面前。
其实,早在18世纪前叶,意大利医生和生物学家佛洛恩斯(Flourens)就已经通过观察和实验来研究脑。
他通过一定的方式,在不同的动物身上越来越多地摘除它们的脑区域,然后观察产生的结果。
他发现,摘除不同的脑区之后,并不是脑的特定功能受到损害,而是所有功能都逐渐减弱。
这样的事实清楚地表明,将不同的功能选择性地完全定位于脑的某一特定区域是不可能的。
于是,这种认为脑是均一的,没有专一功能区域的设想,就导致了脑的整体性活动概念出现。
与这种整体性脑功能活动想法相反,18世纪后期德国医生加尔(Gall)鼓吹的另一种鲜明对照的观点却久负盛名。
这种观点认为脑能够被分隔成若干固定的小室,各自有高度专一的功能。
加尔通过研究死后的人颅骨的物理特征,再与死者生前的性格特征匹配,发展出一套理论。
他和他的信徒检测颅骨的表面隆凸作为脑的特征,将头骨分成39个区域,相应地将人类复杂的心智功能也分成39种,包括“繁衍的本能”、“爱”、“友谊”、“谨慎”、“仁慈”、“希望”、“记忆”“数学概念”、“文字知觉”、“推理”、“比较”、“空间方位感”、“因果关系”、“时间知觉”、“大小知觉”等等,建立了曾经在西方广泛流传的颅相学(Phrenology)。
这种观点在当时的技术水平下,看似符合客观的科学测量标准,因此曾经在很长的一段时间里独领风骚。
但是,到19世纪后叶,对脑部损伤病人的临床观察有了很多新的发现。
法国医生布洛卡(Broca)检查了一个不会说话的病人,他可以理解语言,但在说话时只能发音“Tan”,不会发别的音。
几天后他去世,对他的大脑研究发现他大脑的损伤区域在左侧大脑半球前部,也就是脑功能结构中著名的布洛卡区。
这种病变现在被称为运动性失语症(Aphasia)。
对另一种语言障碍——感觉性失语症病人大脑的研究则发现,病人能够完全正确地发音,但说出的话语无伦次,语言的理解能力有障碍,损伤的区域在大脑下部的颞横回语言感觉区——韦尼克(Wernicke)区。
这些与颅相学预言完全不同的实际观察结果,逐渐揭示了把颅骨的表面隆凸作为衡量脑功能指标的荒唐无稽。
脑损伤的临床观察虽然把简单肤浅的颅相学从科学的研究中清理出去,对大脑功能的“狭隘的定位论”观点却没有得到什么改变。
很短的时间内,“概念中枢”、“阅读中枢”、“书写中枢”、“空间定向中枢”等等分别在大脑皮层中确定了位置。
尤其是在20世纪初,具有讽刺意味的是,人类自己发动的世界大战为人类观察研究自身的大脑提供了许多优秀的病例——大脑受弹伤的士兵。
在对这些病例的观察研究得到的大量资料加工整理后,1934年,德国精神病学家克雷斯特(Kleist)甚至绘出了详细的大脑皮质机能定位图。
然而,从本质上而言,这些图与加尔他们的颅相学图并没有很大的差别。
到20世纪三四十年代,把心理过程直接定位在大脑特定区域的机械论观点正在把心理活动的脑功能基础研究引入歧途。
事实上,正是对这种“狭隘的定位论”的怀疑使得象Sherrington(1934,1942)这样的杰出神经科学家在晚年不得不接受把心理过程与脑的基质割裂开来,承认它们特殊的“精神本性”。
而一直以来,反对“狭隘的定位论”的代表——英国著名的神经学家Jackson的假设:对于心理过程的复杂形式的脑组织来说,从它们的结构水平立场出发,要比从大脑有限部分的立场出发更为适当,则被Monakow、Goldstein等杰出研究者继承和发展。
20世纪的第二次世界大战,又为脑损伤的研究提供了大量研究的机会。
一门新兴的独立学科神经心理学,就是在二次大战伤亡最大的两个国家——前苏联和德国的摇篮中产生的。
前苏联杰出学者Luria在1973年发表的专著:《神经心理学原理》,就是这一学科产生的标志。
神经心理学诞生早期的研究仍然集中在脑损伤病人的心理功能障碍与脑损伤的定位和性质上。
直到80年代中期以前,研究的方法范式主要还是临床的神经病学或神经外科检查,神经心理测验和病人死后的脑病理解剖学检查。
在这个时期,神经心理测验是神经科学家们异常重视的研究方法,因为通过它能够相当满意地探测脑损伤的定位问题。
在80年代后期,由于技术的迅速发展,成熟的脑CT技术(computerized tommography 计算机断层扫描术)开始在临床医学诊断和研究中普遍应用,这种可以对病人产生很少损害的成像技术,可以更加方便和精确地确定脑损伤的位置和性质,传统的神经心理学开始吸收认知心理学的精细实验方法,技术和理论概念,逐渐从临床医学的轨道中脱离,转向认知神经科学的方向。
然而,脑CT技术是基于各种脑组织对X射线吸收程度的差异而成像的技术,它测量的只能是脑的结构像信息,因而只能通过结合病人的脑损伤定位观察和行为上的心理功能障碍测量来研究脑功能,对正常人的脑功能活动的研究探索有很大的困难。
这个时候,另外两种新技术的出现和发展,为脑功能定位认知研究开拓出崭新的方向。
这两种技术就是现在应用广泛的PET技术(positron emission tommography, 正电子发射断层扫描术)和fMRI技术(functional megnetic resonance imaging 功能核磁共振成像)。
在身体的所有器官中,脑对能量的消耗是最大的。
即使在安静的状态下,脑所消耗的氧气和葡萄糖的速率也是其他组织的10倍。
当某块脑区工作的时候,它需要的能量巨增。
因此,我们如果能够追踪反映这些能量变化的生理参数,我们就能知道当脑在从事某种作业和任务相关的功能活动时,哪一部分脑区最兴奋活跃或者工作最努力。
这就是PET和fMRI 的基本原理。
其中,PET使用半衰期很短的放射性标记物如18F-2-脱氧核糖、H215O等注入人体,这些放射性示踪物在人体内放出光子,计算机控制的闪烁探头,在脑部四周旋转探测和记录光子的出现的动态过程,计算脑内葡萄糖等相关物的代谢率,可以观察人脑认知时,脑部血流量、糖代谢率和氧消耗的变化等,由此检测脑部生理代谢活动与精神和心理活动的关系。
fMRI则不需要标记物,直接通过测量血液中氧浓度变化引起的血红蛋白的磁性改变,检测脑部兴奋区域与心理功能之间的关联。
在通常的条件下,PET可以在几十秒内,得到一幅清晰的图象,其功能像的空间分辨率是厘米量级,而fMRI可以在几百毫秒的时间分辨率内,检测毫米量级的脑组织活动。
伴随技术的发展,脑功能认知研究的科学概念和理论也在不断地发展。
美国1989年发行的《认知神经科学》专业期刊和1992年出版的《认知神经科学》专著,实际上已经标志了以阐明认知活动的脑机制为研究目的的脑功能认知研究的一门独立学科——认知神经科学的产生。
认知科学理论发展的历程中出现过四种不同的理论体系:物理符号论、联结理论、模块论和生态现实理论,它们在认知神经科学中都有相应的反映。
与人工智能的物理符号论和认知心理学的信息加工学说相应,在脑功能认知研究中占主流地位的是神经生理学的特征检测和功能柱理论。
这是Hubel和Weisel采用细胞微电极记录技术对视皮层细胞功能的研究结果。
他们发现在视网膜、外侧膝状体和大脑皮层中都存在对线段方位进行特征检测的细胞,在皮层上还发现了对颜色、方位和眼优势选择性反应的功能超柱存在。
他们这件因此而获得1981年诺贝尔生理和医学奖的奠基性工作,一直都是认知科学中的主导学术方向。
与人工神经网络研究中的联结理论和并行分布式处理概念相应,神经生理学中的神经元间群编码概念,则企图从神经元的时空结构中找到认知活动的神经基础。
在视觉认知模式识别中,该理论有不少有意义的工作。
但是,离真正了解神经元间群编码与单个神经元激活各自在认知活动中的意义和它们之间的关系,还有很多没有揭开的谜题。
受计算机软件与硬件的模块性组成启发,认知功能的模块性理论把大脑看成由功能和结构上都是高度专门化的相对独立的模块结合而成。
这种精细复杂的功能和结构的结合,就是认知活动的基础。
在运动系统和记忆的研究中,有不少实验发现支持该理论。
在认知活动中机体内部的信息加工过程与外部环境作用之间的关系一直是一个争论不休的问题。
Gibson的“生态光学”与“视知觉的生态理论”认为外界环境提供了足够的信息以直接产生知觉,强调的是生物体知觉中的不变性,反对知觉是对环境的特征检测的观点。
北京认知科学开放研究实验室提出的视知觉拓扑性质检测与功能层次理论,就是对Gibson 的理论和格式塔心理学的继承和发展。
神经生理学中通过对清醒动物的单细胞记录、多细胞记录、阵列电极记录等测量细胞活动的电生理反应,以及分子神经生物学中通过组织化学等方法测量细胞活动时信息传递的化学物质变化,是在分子和细胞水平的脑功能认知研究的生理成像方式。
它们在时间和空间分辨率上都可以达到相当的要求。
与之相比,在皮层水平上对人类大脑的各种无创性认知成像技术,都有各自的缺点。
即使在理想的情况下,fMRI也只能达到100毫秒的时间量级,并且,脑区域能量代谢的变化或者血流的变化,究竟与神经元的兴奋和抑制之间的确切关系是什么,也还是一个悬而未解的问题。
这些通过测量脑血流变化或含氧浓度变化而成的功能像,并不是实际意义上的脑功能活动发生的位置和时间,从而在根本上不可避免地带有一定的空间和时间差异。
有近百年历史的脑电图技术(EEG),在六七十年代发展出的一种被称为事件相关电位(event-related potential ERP)技术,能够通过实时记录脑功能活动时的头皮电位,测量认知活动引起的脑电变化,并可以通过偶极子定位模型,逆向求解出大致的脑内电活动的源定位。
但是,由于数学上这种逆向求解的困难和解的非唯一性,ERP的脑功能定位只能是对真实脑活动的一个相当粗略的估计。
如果能够通过某种方式有效地结合这两种成像技术,在时间与空间分辨率上同时达到一个更好的水平,在脑功能成像技术上将是一个不小的进步。
这也正是我们目前正极力发展的目标之一。
PET与fMRI在得到特定认知活动的脑功能成像时,采用的是一个状态与另一个对照状态相减的办法,认为相减后得到的兴奋区域就是与特定认知任务相关的脑区。