2019届江苏高考数学二轮复习解答题满分练2理
- 格式:docx
- 大小:74.76 KB
- 文档页数:6
江苏省连云港市2019年高考数学二模试卷(理科)(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知全集U=R,集合A={1,2,3,4,5},B=[3,十),则图中阴影部分所表示的集合为()A . {0,1,2}B . {0,1},C . {1,2}D . {1}2. (2分)(2017·衡阳模拟) 已知i是虚数单位,则复数在复平面内对应的点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)设随机变量服从正态分布,若,则的值为()A .B .C . 5D . 34. (2分)已知命题P:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题中为真命题的是()A .B .C .D .5. (2分)(2017·大庆模拟) 已知点F2 , P分别为双曲线的右焦点与右支上的一点,O为坐标原点,若2 |,且,则该双曲线的离心率为()A .B .C .D .6. (2分)一个几何体的三视图如图所示,则这个几何体的侧面积为()A .B . 2πC . 3πD . 4π7. (2分)执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是()A . 2B . 3C . 9D . 278. (2分)已知满足约束条件,当目标函数在约束条件下取到最小值时,的最小值为()A . 5B . 4C .D . 29. (2分)定义在(-1,1)上的函数f(x)满足:;当时,有f(x)>0;若,,;则P,Q,R的大小关系为()A . R>Q>PB . R>P>QC . P>R>QD . 不能确定10. (2分) (2016高三下·习水期中) 已知函数y=sin(πx+φ)﹣2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ=()A . -B . -C .D .11. (2分)(2020·合肥模拟) 某几何体是由一个半球挖去一个圆柱形成的,其三视图如图所示.已知半球的半径为,则当此几何体体积最小时,则当此几何体体积最小时,它的表面积等于()A .B .C .D .12. (2分) (2018高二下·科尔沁期末) 函数y=2x3-2x2在[-1,2]上的最大值为()A . -5B . 0C . -1D . 8二、填空题 (共4题;共4分)13. (1分) (2019高二下·静安期末) 的二项展开式中项的系数为________.14. (1分) (2019高三上·杨浦期中) 在中,内角、、的对边分别为、、,若,,则的面积的最大值等于________.15. (1分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没有去过C城市;乙说:我没有去过A城市;丙说:我们三人去过同一城市.由此可以判断乙去过的城市________.16. (1分)(2020·泰州模拟) 在平面直角坐标系中,已知点、在圆上,且满足,则的最小值是________.三、解答题 (共7题;共60分)17. (15分) (2016高一下·河南期末) 数列{an}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{an}的通项公式an;(3)设bn=n(n+1)an ,求数列{bn}的前n项和Sn .18. (10分)抽样调查某大型机器设备使用年限x和该年支出维修费用y(万元),得到数据如表使用年限x23456维修费用y 2.2 3.8 5.5 6.57.0部分数据分析如下 =25, yi=112.3, =90参考公式:线性回归直线方程为,(1)求线性回归方程;(2)由(1)中结论预测第10年所支出的维修费用.19. (5分) (2018高三上·晋江期中) 如图,四棱锥中,底面ABCD为平行四边形,,,底面ABCD.Ⅰ 证明:;Ⅱ 求平面PAD与平面PBC所成的锐二面角的大小.20. (10分)(2020·如皋模拟) 已知抛物线上的点到其焦点距离为3,过抛物线外一动点作抛物线的两条切线,切点分别为,且切点弦恒过点 .(1)求p和m;(2)求证:动点T在一条定直线上运动.21. (10分)已知函数(1)讨论函数的单调性。
第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。
填空题满分练(4)1.(2018·南通、徐州、扬州等六市模拟)已知复数z 1=a +i ,z 2=3-4i ,其中i 为虚数单位,若z 1z 2为纯虚数,则实数a 的值为________.答案 43解析 ∵复数z 1=a +i ,z 2=3-4i , ∴z 1z 2=a +i 3-4i =(a +i )(3+4i )(3-4i )(3+4i )=3a -4+(4a +3)i 25, ∵z 1z 2为纯虚数,∴3a -4=0且4a +3≠0,即a =43. 2.已知全集U =R ,集合A ={x ||x -1|<1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2x -5x -1≥1,则A ∩(∁U B )=________. 答案 {x |1≤x <2}解析 由题意得A ={x ||x -1|<1}={x |-1<x -1<1}={x |0<x <2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 2x -5x -1≥1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x -4x -1≥0={x |x <1或x ≥4}, ∴∁U B ={x |1≤x <4},∴A ∩(∁U B )={x |1≤x <2}.3.在等差数列{a n }中,a 4,a 7是函数f (x )=x 2-3x -18的两个零点,则{a n }的前10项和为________.答案 15解析 由题意得a 4,a 7是方程x 2-3x -18=0的两根,∴a 4+a 7=3,∴S 10=10(a 1+a 10)2=5(a 1+a 10)=5(a 4+a 7)=5×3=15. 4.在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长度的取值范围为________.答案 [6-2,6+2]解析 设BC 的中点为M (x ,y ).因为OB 2=OM 2+BM 2=OM 2+AM 2,所以4=x 2+y 2+(x -1)2+(y -1)2,化简得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32, 所以点M 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆,所以AM 的取值范围是⎣⎢⎡⎦⎥⎤6-22,6+22, 所以BC 的取值范围是[6-2,6+2].5.已知直线m ,n ,平面α,β,给出下列命题:①若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β;②若m ∥α,n ∥β,且m ∥n ,则α∥β;③若m ⊥α,n ∥β,且m ⊥n ,则α⊥β.其中正确的命题是________.(填序号)答案 ①解析 ①若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β,正确.∵n ⊥β,且m ⊥n ,可得出m ∥β或m ⊂β,又m ⊥α,故可得α⊥β.②若m ∥α,n ∥β,且m ∥n ,则α∥β,不正确.两平面有可能相交.③若m ⊥α,n ∥β,且m ⊥n ,则α⊥β,不正确.m ⊥α且m ⊥n ,可得出n ∥α或n ⊂α,又n ∥β,故不能得出α⊥β.6.甲、乙、丙、丁四个人到重庆旅游,朝天门、解放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有________种.答案 24解析 分两类求解.①甲单独一人时,则甲只能去另外两个景点中的一个,其余三人分为两组然后分别去剩余的两个景点,故方案有C 12C 23A 22=12(种);②甲与另外一人为一组到除瓷器口之外的两个景点中的一个,其余两人各去一个景点,故方案有C 13C 12A 22=12(种).由分类加法计数原理,可得总的方案数为24.7.函数y =f (x )为定义在R 上的奇函数,当x ≥0时,函数单调递增,若f (1)=1,则满足-1≤f (x +2)≤1的x 的取值范围是________.答案 [-3,-1]解析 函数y =f (x )为定义在R 上的奇函数,由f (1)=1,可知f (-1)=-1.当x ≥0时,函数单调递增,由y =f (x )为定义在R 上的奇函数,得y =f (x )在R 上单调递增. 则由-1≤f (x +2)≤1,可得-1≤x +2≤1,解得-3≤x ≤-1.8.如图所示的流程图输出的结果为510,则判断框内的条件是________.答案 n ≤8(或n <9)解析 由题意得该程序的功能是计算2+22+23+…+2n .∵2+22+23+ (2)=2(1-2n )1-2=2n +1-2, ∴当n =7时,2n +1-2=28-2=254,不合题意; 当n =8时,2n +1-2=29-2=510,符合题意.∴判断框中的条件为n ≤8或n <9.9.已知x ,y 满足约束条件⎩⎪⎨⎪⎧ x -3y +4≥0,x -2≤0,x +y ≥0,x ,y ∈R ,则x 2+y 2的最大值为________.答案 8 解析 画出不等式组表示的可行域如图阴影部分所示(含边界).x 2+y 2表示可行域内的点(x ,y )到原点距离的平方.由图形可得,可行域内的点A 或点B 到原点的距离最大,且A (2,-2),B (2,2),又OA =OB =22,∴(x 2+y 2)max =8.10.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC =AA 1,∠BAC =120°,则此直三棱柱的高是________.答案 2 2解析 设AB =AC =AA 1=x ,在△ABC 中,∠BAC =120°,则由余弦定理可得BC =3x .由正弦定理,可得△ABC 外接圆的半径为r =x ,∵球的表面积是40π,∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt△OBO ′中,有⎝ ⎛⎭⎪⎫12x 2+x 2=10,解得x =22,即AA 1=2 2.∴直三棱柱的高是2 2.11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右顶点分别为A ,B ,P 为双曲线左支上一点,△ABP 为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为________.答案 153解析 由题意知在等腰△ABP 中,AB =AP =2a ,设∠ABP =∠APB =θ,F 1为双曲线的左焦点,则∠F 1AP =2θ,其中θ必为锐角.∵△ABP 外接圆的半径为5a , ∴25a =2a sin θ, ∴sin θ=55,cos θ=255, ∴sin 2θ=2×55×255=45, cos 2θ=2×⎝ ⎛⎭⎪⎫2552-1=35. 设点P 的坐标为(x ,y ),则x =-a -AP cos 2θ=-11a 5, y =AP sin 2θ=8a 5, 故点P 的坐标为⎝ ⎛⎭⎪⎫-11a 5,8a 5.由点P 在双曲线上,得⎝ ⎛⎭⎪⎫-11a 52a 2-⎝ ⎛⎭⎪⎫8a 52b 2=1,整理得b 2a 2=23, ∴e =c a =1+b 2a 2=153. 12.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图在一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是________.答案 316解析 由七巧板的构造可知,△BIC ≌△GOH ,故黑色部分的面积与梯形EFOH 的面积相等,则S EFOH =34S △DOF =34×14S ABDF =316S ABDF , ∴所求的概率为P =S EFOH S ABDF =316. 13.在数列{a n }中,a 1=1,a n +1=S n +3n (n ∈N *,n ≥1),则数列{S n }的通项公式为________.答案 S n =3n -2n解析 ∵a n +1=S n +3n =S n +1-S n ,∴S n +1=2S n +3n ,∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1, 又S 13-1=13-1=-23, ∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列, ∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n , ∴S n =3n -2n.14.德国著名数学家狄利克雷(Dirichlet,1805—1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”:y =f (x )=⎩⎪⎨⎪⎧ 1,x ∈Q ,0,x ∈∁R Q ,其中R 为实数集,Q 为有理数集.则关于函数f (x )有如下四个命题:①f (f (x ))=0;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x +T )=f (x )对任意的x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是________.答案 3解析 当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0,∴当x 为有理数时,f (f (x ))=f (1)=1;当x 为无理数时,f (f (x ))=f (0)=1,∴无论x 是有理数还是无理数,均有f (f (x ))=1,故①不正确;∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x ∈R ,都有f (-x )=f (x ),故②正确;当T ∈Q 时,若x 是有理数,则x +T 也是有理数;若x 是无理数,则x +T 也是无理数,∴根据函数的表达式,任取一个不为零的有理数T ,f (x +T )=f (x )对x ∈R 恒成立,故③正确;取x 1=33,x 2=0,x 3=-33,f (x 1)=0,f (x 2)=1,f (x 3)=0,∴A ⎝ ⎛⎭⎪⎫33,0,B (0,1),C ⎝ ⎛⎭⎪⎫-33,0,△ABC 恰好为等边三角形,故④正确.。
填空题满分练(2)1.若复数z 满足1+iz -i =i(i 是虚数单位),则z =________.答案 1解析 由题设有z =1+ii+i =-i +1+i =1.2.已知集合A ={2,0,-2},B ={x |x 2-2x -3>0},集合P =A ∩B ,则集合P 的子集个数是________. 答案 2解析 由题设有B =(-∞,-1)∪(3,+∞), 故P =A ∩B ={-2}, 所以P 的子集的个数为2.3.已知cos α=17,α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫α-π3=________. 答案1314解析 ∵cos α=17,α∈⎝⎛⎭⎫0,π2, ∴sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,∴cos ⎝⎛⎭⎫α-π3=cos αcos π3+sin αsin π3=17×12+437×32=1314. 4.(2018·江苏省高考冲刺预测卷)已知某高级中学高一、高二、高三学生人数分别为880,860,820,现用分层抽样的方法从该校抽调128人,则在高二年级中抽调的人数为________. 答案 43解析 由题意可知,在高二年级中抽调的人数为128×860880+860+820=43.5.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-a 22)(a 2a 4-a 23)(a 3a 5-a 24)…(a 2015a 2017-a 22016)=________.答案 -1解析 根据斐波那契数列可知,a 1a 3-a 22=1,a 2a 4-a 23=-1,a 3a 5-a 24=1,a 4a 6-a 25=-1,…,所以根据计算的规律可得,当n 为偶数时,a n a n +2-a 2n +1=-1,当n 为奇数时,a n a n +2-a 2n +1=1,所以(a 1a 3-a 22)(a 2a 4-a 23)(a 3a 5-a 24)…(a 2 015a 2 017-a 22 016)=-1.6.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是________.(填序号)①函数f (x )的最小正周期为π2;②直线x =-π12是函数f (x )图象的一条对称轴;③函数f (x )在区间⎣⎡⎦⎤-5π12,π6上单调递增; ④将函数f (x )的图象向左平移π3个单位长度,得到函数g (x )的图象,则g (x )=2sin2x .答案 ④解析 A =2, T 2=2π3-π6=π2,即πω=π2,即ω=2, π2+2π32=7π12,当x =7π12时, 2×7π12+φ=π2+2k π,k ∈Z ,又|φ|<π,解得φ=-2π3,所以函数是f (x )=2sin ⎝⎛⎭⎫2x -2π3,函数的最小正周期为π;当x =-π12时, 2×⎝⎛⎭⎫-π12-2π3=-5π6,不是函数的对称轴;当x ∈⎣⎡⎦⎤-5π12,π6时,2x -2π3∈⎣⎡⎦⎤-3π2,-π3,f (x )先单调递减后单调递增;函数向左平移π3个单位长度后得到函数g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-2π3=2sin 2x ,所以④正确. 7.如图是一个输出一列数的算法流程图,则这列数的第三项是________.答案 30解析 第一次输出a =3,n =2;第二次输出a =3×2=6,n =3;第三次输出a =6×5=30,n=4.故这列数的第三项为30. 8.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y ≥4,x +2y ≤4,y ≤0,则z =3x -2y 的最小值是________.答案 6解析 不等式组对应的可行域如图阴影部分所示(含边界).当动直线y =32x -z2过点(2,0)时,z 取最小值6.9.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为x 2a 2+y 2b 2=1(a >b >0),测得Γ的离心率为32,则椭圆Γ的方程为________. 答案 x 216+y 24=1解析 由题意得4a +4b =24,即a +b =6①,由c a =32得a =2b ②,由①②解得a =4,b =2.所以椭圆Γ的方程为x 216+y 24=1.10.若曲线y =ln x +1的一条切线是y =ax +b ,则4a +e b 的最小值是________. 答案 4解析 设切点为(m ,ln m +1)(m >0),f ′(x )=1x ,f ′(m )=1m ,故切线方程为y -(ln m +1)=1m (x -m ),即y =1m x +ln m ,所以a =1m ,b =ln m,4a +e b =4m +m ≥24m ·m =4,当且仅当4m=m ,即m =2时取等号. 11.过点M ⎝⎛⎭⎫22,-22作圆x 2+y 2=1的切线l ,l 与x 轴的交点为抛物线E :y 2=2px (p >0)的焦点,l 与抛物线E 交于A ,B 两点,则AB 的中点到抛物线E 的准线的距离为________. 答案 4 2解析 由题意得,过点M ⎝⎛⎭⎫22,-22作圆x 2+y 2=1的切线l , 可得直线l 的方程为x -y -2=0, 此时直线l 与x 轴的交点坐标为(2,0),又点(2,0)与抛物线的焦点重合,即p2=2,解得p =22,即y 2=42x ,且准线方程为x =-2,联立方程组⎩⎨⎧y 2=42x ,x -y -2=0,整理得x 2-62x +2=0,Δ=(62)2-8>0, x 1,2=62±82=32±4,则x 1+x 2=62,所以x 1+x 22=32,所以AB 的中点到抛物线的准线的距离为 x 1+x 22+2=4 2. 12.已知圆心角为120°的扇形AOB 的圆心为O ,在其弧AB 上任取一点P ,则使∠AOP 和∠BOP 同时大于50°的概率为________. 答案 16解析 由几何概型的定义和几何概型的公式可知,使∠AOP 和∠BOP 能同时大于50°的概率为120°-50°-50°120°=20°120°=16.13.在四边形ABCD 中,AB =2,BC =CD =DA =1,设△ABD ,△BCD 的面积分别为S 1,S 2,则当S 21+S 22取最大值时,BD =________.答案102解析 设BD =b ,S 21+S 22=⎝⎛⎭⎫12×1×2×sin A 2+⎝⎛⎭⎫12×1×1×sin C 2=34-⎝⎛⎭⎫12cos 2A +14cos 2C =34-2b 4-10b 2+1316=34-2⎝⎛⎭⎫b 2-522+1216,所以当b 2=52,即b =102时,S 21+S 22取得最大值. 14.已知函数f (x )=⎩⎪⎨⎪⎧12018log x ,0<x <1,log 2018x ,x ≥1,若0<a <b ,且f (a )=f (b ),则4a 2+b 2+2a +b 的取值范围是________. 答案 [4+22,+∞)解析 先作出f (x )的图象如图所示,通过图象可知,0<a <1<b ,设f (a )=f (b )=t ,则⎩⎪⎨⎪⎧12018log a =t ,log 2 018b =t(t >0), 故⎩⎪⎨⎪⎧a =2 018-t,b =2 018t ,所以ab =1,2a +b =22 018t +2 018t , 而2 018t >0,所以2a +b =22 018t +2 018t ≥22,当且仅当2 018t =2时等号成立. 令m =2a +b ,则m ≥22,故4a 2+b 2+2a +b =(2a +b )2+(2a +b )-4=m 2+m -4=⎝⎛⎭⎫m +122-174, 因为y =⎝⎛⎭⎫m +122-174在[22,+∞)上单调递增, 所以4a 2`+b 2+2a +b =⎝⎛⎭⎫m +122-174≥4+2 2.。
【23份】江苏省2019年高考理科数学二轮复习精准提分目录附加题满分练 (2)附加题满分练1 (2)附加题满分练2 (5)附加题满分练3 (8)解答题满分练 (13)解答题满分练1 (13)解答题满分练2 (20)解答题满分练3 (26)解答题专项练 (33)1.立体几何 (33)2.三角函数与解三角形 (40)3.应用题 (45)4.解+析几何 (53)5.函数与导数 (60)6.数列 (67)填空题满分练 (76)填空题满分练(1) (76)填空题满分练(2) (81)填空题满分练(3) (86)填空题满分练(4) (92)填空题满分练(5) (98)填空题满分练(6) (105)填空题满分练(7) (111)填空题满分练(8) (118)压轴小题组合练 (124)压轴小题组合练(A) (124)压轴小题组合练(B) (130)压轴小题组合练(C) (138)附加题满分练附加题满分练11.如图,过点P 作圆O 的切线PC ,切点为C ,过点P 的直线与圆O 交于点A ,B (P A <PB ),且AB 的中点为D .若圆O 的半径为2,PC =4,圆心O 到直线PB 的距离为2,求线段P A 的长.解 连结OC ,OD ,因为O 为圆心,AB 中点为D , ∴OD ⊥AB ,又PC 为圆O 的切线,∴OC ⊥PC , 由条件可知OD =2,∴AB =2OA 2-OD 2=22,由切割线定理可得PC 2=P A ·PB , 即16=P A ·(P A +22), 解得P A =2 2.2.(2018·江苏省盐城中学调研)已知矩阵M =⎣⎢⎡⎦⎥⎤0 a b0满足:Ma i =λi a i ,其中λi (i =1,2)是互不相等的实常数,a i (i =1,2)是非零的平面列向量,λ1=1,a 2=⎣⎢⎡⎦⎥⎤11,求矩阵M . 解 由题意,λ1,λ2是方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ -a -b λ=λ2-ab =0的两根. 因为λ1=1,所以ab =1.又因为Ma 2=λ2a 2,所以⎣⎢⎡⎦⎥⎤0 a b 0 ⎣⎢⎡⎦⎥⎤11=λ2⎣⎢⎡⎦⎥⎤11,从而⎩⎪⎨⎪⎧a =λ2,b =λ2, 所以λ22=ab =1.因为λ1≠λ2,所以λ2=-1,从而a =b =-1,故矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ 0 -1-1 0.3.(2018·苏州、南通等六市模拟)在极坐标系中,求以点P ⎝⎛⎭⎫2,π3为圆心且与直线l: ρsin ⎝⎛⎭⎫θ-π3=2相切的圆的极坐标方程.解 以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xOy . 则点P 的直角坐标为()1,3.将直线l: ρsin ⎝⎛⎭⎫θ-π3=2的方程变形为: ρsin θcos π3-ρcos θsin π3=2,化为普通方程得3x -y +4=0.∴P ()1,3到直线l: 3x -y +4=0的距离为4()32+()-12=2.∴所求圆的普通方程为()x -12+()y -32=4,化为极坐标方程得ρ=4sin ⎝⎛⎭⎫θ+π6. 4.已知实数x >0,y >0,z >0,证明:⎝⎛⎭⎫1x +2y +3z ⎝⎛⎭⎫x 2+y 4+z 6≥92. 证明 因为x >0,y >0,z >0, 所以1x +2y +3z 3≥36xyz ,x 2+y 4+z 63≥ 3xyz48, 所以⎝⎛⎭⎫1x +2y +3z ⎝⎛⎭⎫x 2+y 4+z 6≥92.当且仅当x ∶y ∶z =1∶2∶3时,等号成立. 5.已知点A (1,2)在抛物线F :y 2=2px 上.(1)若△ABC 的三个顶点都在抛物线F 上,记三边AB ,BC ,CA 所在直线的斜率分别为k 1,k 2,k 3, 求1k 1-1k 2+1k 3的值;(2)若四边形ABCD 的四个顶点都在抛物线F 上,记四边AB ,BC ,CD ,DA 所在直线的斜率分别为k 1,k 2,k 3,k 4,求1k 1-1k 2+1k 3-1k 4的值.解 (1)由点A (1,2)在抛物线F 上,得p =2, ∴抛物线F :y 2=4x ,设B ⎝⎛⎭⎫y 214,y 1,C ⎝⎛⎭⎫y 224,y 2, ∴1k 1-1k 2+1k 3=y 214-1y 1-2-y 224-y 214y 2-y 1+1-y 2242-y 2=y 1+24-y 2+y 14+2+y 24=1.(2)另设D ⎝⎛⎭⎫y 234,y 3,则1k 1-1k 2+1k 3-1k 4=y 1+24-y 2+y 14+y 3+y 24-2+y 34=0.6.已知f n (x )=C 0n x n -C 1n (x -1)n +…+(-1)k C k n (x -k )n +…+(-1)n C n n (x -n )n,其中x ∈R ,n ∈N *,k ∈N ,k ≤n .(1)试求f 1(x ),f 2(x ),f 3(x )的值;(2)试猜测f n (x )关于n 的表达式,并证明你的结论.解 (1)f 1(x )=C 01x -C 11(x -1)=1,f 2(x )=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x -1)2+(x -2)2=2,f 3(x )=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6.(2)猜测f n (x )=n !,n ∈N *. 以下用数学归纳法证明.①当n =1时,f 1(x )=1,等式成立.②假设当n =m (m ≥1,m ∈N *)时,等式成立,即f m (x )=∑k =0m(-1)k C k m (x -k )m =m !.当n =m +1时,则f m +1(x )=∑k =0m +1(-1)k C k m +1·(x -k )m +1. 因为C k m +1=C k m +C k -1m ,k C k m +1=(m +1)·C k -1m ,其中k =1,2,…,m , 且C 0m +1=C 0m ,C m +1m +1=C m m ,所以f m +1(x )=∑k =0m +1(-1)k C k m +1(x -k )m +1 =x ∑k =0m +1(-1)kC k m +1(x -k )m-∑k =0m +1 (-1)k k C k m +1(x -k )m=x ∑k =0m(-1)kC k m (x -k )m +x ∑k =1m +1 (-1)k C k -1m (x -k )m -(m +1)∑k =1m +1(-1)k C k -1m (x -k )m=x ·m !+(-x +m +1)∑k =0m(-1)k C k m ·[(x -1)-k ]m=x ·m !+(-x +m +1)·m! =(m +1)·m !=(m +1)!. 即当n =m +1时,等式也成立.由①②可知,对n ∈N *,均有f n (x )=n !.附加题满分练21.(2018·江苏省盐城中学质检)已知AB 是圆O 的直径,P 是上半圆上的任意一点,PC 是∠APB 的平分线,E 是下半圆的中点.求证:直线PC 经过点E .证明 连结AE ,EB ,OE ,则∠AOE =∠BOE =90°. 因为∠APE 是圆周角,∠AOE 同弧上的圆心角, 所以∠APE =12∠AOE =45°.同理可得∠BPE =45°,所以PE 是∠APB 的平分线.又PC 也是∠APB 的平分线,∠APB 的平分线有且只有一条,所以PC 与PE 重合. 所以直线PC 经过点E .2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy 中,已知A ()0,0,B ()3,0,C ()2,2.设变换T 1, T 2对应的矩阵分别为M =⎣⎢⎡⎦⎥⎤1 00 2, N =⎣⎢⎡⎦⎥⎤2 00 1,求对△ABC 依次实施变换T 1, T 2后所得图形的面积.解 依题意,依次实施变换T 1, T 2所对应的矩阵NM = ⎣⎢⎡⎦⎥⎤2 00 1 ⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤2 00 2. 则⎣⎢⎡⎦⎥⎤2 00 2 ⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎡⎦⎥⎤2 00 2 ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤60, ⎣⎢⎡⎦⎥⎤2 00 2 ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤44.∴A ()0,0,B ()3,0,C ()2,2分别变为点A ′()0,0,B ′()6,0,C ′()4,4.∴所得图形的面积为12×6×4=12.3.已知两个动点P ,Q 分别在两条直线l 1:y =x 和l 2:y =-x 上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记OM →=OP →+OQ →,求动点M 的轨迹的普通方程.解 设M (x ,y ),则⎩⎪⎨⎪⎧x =sin θ+cos θ,y =sin θ-cos θ,两式平方相加得x 2+y 2=2.又x =2sin ⎝⎛⎭⎫θ+π4,y =2sin ⎝⎛⎭⎫θ-π4, θ∈[0,π], 所以x ∈[-1,2],y ∈[-1,2].所以动点M 轨迹的普通方程为x 2+y 2=2(x ,y ∈[-1,2]).4.(2018·江苏省盐城中学质检)已知a >0,b >0,证明:(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2. 证明 因为a >0,b >0,所以a 2+b 2+ab ≥33a 2·b 2·ab =3ab >0, ab 2+a 2b +1≥33ab 2·a 2b ·1=3ab >0, 所以(a 2+b 2+ab )(ab 2+a 2b +1)≥9a 2b 2.5.甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜,投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为25,乙每次投篮命中的概率为23,且各次投篮互不影响.现由甲先投. (1)求甲获胜的概率;(2)求投篮结束时甲的投篮次数X 的概率分布与数学期望.解 (1)设甲第i 次投中获胜的事件为A 1(i =1,2,3),则A 1,A 2,A 3彼此互斥. 甲获胜的事件为A 1+A 2+A 3. P (A 1)=25,P (A 2)=35×13×25=225,P (A 3)=⎝⎛⎭⎫352×⎝⎛⎭⎫132×25=2125.所以P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3)=25+225+2125=62125.(2)X 的所有可能取值为1,2,3. 则P (X =1)=25+35×23=45,P (X =2)=225+35×13×35×23=425,P (X =3)=⎝⎛⎭⎫352×⎝⎛⎭⎫132×1=125. 即X 的概率分布为所以数学期望E (X )=1×45+2×425+3×125=3125.6.设n 个正数a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n (n ∈N *且n ≥3). (1)当n =3时,证明:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3;(2)当n =4时,不等式a 1a 2a 3+a 2a 3a 4+a 3a 4a 1+a 4a 1a 2≥a 1+a 2+a 3+a 4也成立,请你将其推广到n (n ∈N *且n ≥3)个正数a 1,a 2,…,a n 的情形,归纳出一般性的结论并用数学归纳法证明. 证明 (1)因为a n (n ∈N *且n ≥3)均为正实数,左—右=12⎝⎛⎭⎫a 1a 3a 2+a 1a 2a 3-2a 1+12⎝⎛⎭⎫a 2a 3a 1+a 1a 2a 3-2a 2+12⎝⎛⎭⎫a 2a 3a 1+a 1a 3a 2-2a 3≥12⎝⎛⎭⎫2a 1a 3a 2×a 1a 2a 3-2a 1+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 2a 3-2a 2+12⎝⎛⎭⎫2a 2a 3a 1×a 1a 3a 2-2a 3=0,所以原不等式a 2a 3a 1+a 1a 3a 2+a 1a 2a 3≥a 1+a 2+a 3成立.(2)归纳的不等式为:a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3). 记F n =a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2-(a 1+a 2+…+a n ),当n =3(n ∈N *)时,由(1)知,不等式成立; 假设当n =k (k ∈N *且k ≥3)时,不等式成立,即F k =a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a 1+a k a 1a 2-(a 1+a 2+…+a k )≥0.则当n =k +1时,F k +1=a 1a 2a 3+a 2a 3a 4+…+a k -2a k -1a k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-(a 1+a 2+…+a k +a k +1)=F k +a k -1a k a k +1+a k a k +1a 1+a k +1a 1a 2-a k -1a k a 1-a k a 1a 2-a k +1=F k +a k -1a k ⎝ ⎛⎭⎪⎫1a k +1-1a 1+a k +1⎝⎛⎭⎫a k a 1-1+a 1a 2(a k +1-a k )≥0+a 2k ⎝ ⎛⎭⎪⎫1a k +1-1a 1+a k +1⎝⎛⎭⎫a k a 1-1+a 1a k (a k +1-a k )=(a k +1-a k )⎝ ⎛⎭⎪⎫a k a 1+a 1a k -a k +1+a k a k +1, 因为a k +1≥a k ,a k a 1+a 1a k ≥2,a k +1+a k a k +1≤a k +1+a k +1a k +1=2,所以F k +1≥0,所以当n =k +1时,不等式成立.综上所述,不等式a 1a 2a 3+a 2a 3a 4+…+a n -2a n -1a n +a n -1a n a 1+a n a 1a 2≥a 1+a 2+…+a n (n ∈N *且n ≥3)成立.附加题满分练31.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,BF 是⊙O 的切线,连结CF 交⊙O 于D ,交AB 于E .若BC =BF =4,CE ∶ED =6∶5,求⊙O 的半径.解 如图,连结BD ,因为BF 是⊙O 的切线,所以∠DBF =∠BCF ,因为BC =BF ,所以∠BCF =∠BFC , 所以∠DBF =∠BFC ,所以BD =DF ,又∠BEF +∠BFC =90°,∠EBD +∠DBF =90°, 所以∠BEF =∠EBD ,所以BD =ED ,所以ED =DF . 设CE =6x ,ED =5x (x >0),则DF =5x , 因为BF =4,根据切割线定理知BF 2=DF ·CF , 所以16=5x ×16x ,解得x =55, 所以EF =ED +DF =25,因为BF 为⊙O 的切线,所以AB ⊥BF , 所以BE 2+BF 2=EF 2,所以BE =2,根据相交弦定理知AE ·BE =CE ·ED ,得AE =3, 所以AB =5,因为AB 为⊙O 的直径,所以⊙O 的半径为52.2.若二阶矩阵M 满足⎣⎢⎢⎡⎦⎥⎥⎤-212 2-1M =⎣⎢⎡⎦⎥⎤-3 0 4 -1,求曲线4x 2+4xy +y 2-12x +12y =0在矩阵M 所对应的变换作用下得到的曲线的方程.解 记矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-2 12 2 -1,det(A )=(-2)×(-1)-2×12=1≠0, 故A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 -12-2 -2,所以M =A -1⎣⎢⎢⎡⎦⎥⎥⎤-3 0 4 -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 -12-2 -2⎣⎢⎢⎡⎦⎥⎥⎤-3 0 4 -1=⎣⎢⎢⎡⎦⎥⎥⎤ 112-2 2,即矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 12-2 2. 设曲线4x 2+4xy +y 2-12x +12y =0上任意一点P (x ,y )在矩阵M 对应的变换作用下得到点P ′(x ′,y ′).所以⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎤ 1 12-2 2 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x +12y -2x +2y , 所以⎩⎪⎨⎪⎧x ′=x +12y ,y ′=-2x +2y ,所以⎩⎪⎨⎪⎧x =4x ′-y ′6,y =2x ′+y ′3,又点P (x ,y )在曲线4x 2+4xy +y 2-12x +12y =0上,代入整理得2x ′2+3y ′=0, 由点P (x ,y )的任意性可知,所求曲线的方程为2x 2+3y =0.3.已知直线的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=22,圆M 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =-2+2sin θ(其中θ为参数).(1)将直线的极坐标方程化为直角坐标方程; (2)求圆M 上的点到直线的距离的最小值. 解 (1)极点为直角坐标原点O , ρsin ⎝⎛⎭⎫θ+π4=ρ⎝⎛⎭⎫22sin θ+22cos θ=22, ∴ρsin θ+ρcos θ=1,其直角坐标方程为x +y -1=0.(2)将圆的参数方程化为普通方程为x 2+(y +2)2=4,圆心为M (0,-2), ∴点M 到直线的距离为d =|0-2-1|2=32=322,∴圆上的点到直线距离的最小值为32-42.4.已知函数f (x )=|x +m |+|x -2|(m >0)的最小值为4,正实数a ,b 满足1a +1b = 3.求证:1a 2+2b2≥m .证明 易知|x +m |+|x -2|≥|(x +m )-(x -2)|=|m +2|, 故由f (x )的最小值为4得|m +2|=4,又m >0,所以m =2.又⎝⎛⎭⎫1a 2+2b 2⎣⎡⎦⎤12+⎝⎛⎭⎫122≥⎝ ⎛⎭⎪⎫1a ×1+2b ×122=3,当且仅当a =32,b =3时等号成立, 故1a 2+2b2≥2=m ,即结论成立.5.如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =2,AB ⊥AC ,M 是棱BC 的中点,点P 在线段A 1B 上.(1)若P 是线段A 1B 的中点,求直线MP 与直线AC 所成角的大小; (2)若N 是CC 1的中点,直线A 1B 与平面PMN 所成角的正弦值为77,求线段BP 的长度. 解 分别以AB ,AC ,AA 1所在直线为x 轴,y轴,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),A 1(0,0,2),M (1,1,0). (1)若P 是线段A 1B 的中点,则P (1,0,1),MP →=(0,-1,1),AC →=(0,2,0). 所以cos 〈MP →,AC →〉=MP →·AC →||MP →·||AC→=-22.又〈MP →,AC →〉∈[0,π],所以〈MP →,AC →〉=3π4.所以直线MP 与直线AC 所成的角的大小为π4.(2)由N (0,2,1),得MN →=(-1,1,1). 设P (x ,y ,z ),BP →=λBA 1,0≤λ≤1,则(x -2,y ,z )=λ(-2,0,2),所以⎩⎪⎨⎪⎧x =2-2λ,y =0,z =2λ,所以P (2-2λ,0,2λ),所以MP →=(1-2λ,-1,2λ).设平面PMN 的法向量n =(x 1,y 1,z 1), 则n ⊥MN →,n ⊥MP →,所以⎩⎪⎨⎪⎧-x 1+y 1+z 1=0,(1-2λ)x 1-y 1+2λz 1=0,取n =⎝⎛⎭⎫1+12λ,12λ,1. 因为BA 1=(-2,0,2),设直线A 1B 与平面PMN 所成的角为θ.由sin θ=||cos 〈n ,BA 1〉=|n ·BA 1|||n ·||BA 1=⎪⎪⎪⎪(-2)×⎝⎛⎭⎫1+12λ+2⎝⎛⎭⎫1+12λ2+⎝⎛⎭⎫12λ2+1·22=77,得λ=14(舍负). 所以BP →=14BA 1,所以BP =14BA 1=22.6.已知⎝⎛⎭⎫1+12x n 展开式的各项依次记为a 1(x ),a 2(x ),a 3(x ),…,a n (x ),a n +1(x ).设F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)·a n +1(x ).(1)若a 1(x ),a 2(x ),a 3(x )的系数依次成等差数列,求n 的值; (2)求证:对任意x 1,x 2∈[0,2],恒有|F (x 1)-F (x 2)|≤2n -1(n +2)-1.(1)解 依题意a k (x )=C k -1n⎝⎛⎭⎫12x k -1,k =1,2,3,…,n +1, a 1(x ),a 2(x ),a 3(x )的系数依次为C 0n ·⎝⎛⎭⎫120=1,C 1n ·12=n 2,C 2n ·⎝⎛⎭⎫122=n (n -1)8, 所以2×n2=1+n (n -1)8,解得n =8或n =1(舍去).(2)证明 F (x )=a 1(x )+2a 2(x )+3a 3(x )+…+na n (x )+(n +1)a n +1(x )=C 0n +2C 1n ⎝⎛⎭⎫12x +3C 2n ⎝⎛⎭⎫12x 2+…+n C n -1n ⎝⎛⎭⎫12x n -1+(n +1)C n n ⎝⎛⎭⎫12x n , F (2)=C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , 设S n =C 0n +2C 1n +3C 2n +…+n C n -1n +(n +1)C n n , 则S n =(n +1)C n n +n C n -1n +…+3C 2n +2C 1n +C 0n , 考虑到C k n =C n -k n ,将以上两式相加得 2S n =(n +2)(C 0n +C 1n +C 2n +…+C n -1n +C n n ),所以S n =2n -1(n +2),又当x ∈[0,2]时,F ′(x )>0恒成立,从而F (x )是[0,2]上的单调递增函数,所以对任意x 1,x 2∈[0,2],|F (x 1)-F (x 2)|≤F (2)-F (0)=2n -1(n +2)-1.解答题满分练解答题满分练11.如图,已知直角梯形ABCD 与等腰直角三角形ABE 所在的平面互相垂直,AB ∥CD ,AB ⊥BC ,AB =2CD =2BC ,EA ⊥EB .(1)求证:AB ⊥DE ;(2)在线段EA 上是否存在点F ,使得EC ∥平面FBD ?若存在,求出EFEA 的值;若不存在,请说明理由.(1)证明 取AB 的中点O ,连结OE ,OD .因为EB =EA ,所以OE ⊥AB .因为四边形ABCD 为直角梯形,AB =2CD =2BC ,AB ⊥BC , 所以四边形OBCD 为正方形, 所以AB ⊥OD .又OD ∩OE =O ,OE ,OD ⊂平面EOD , 所以AB ⊥平面EOD , 又DE ⊂平面EOD , 所以AB ⊥DE .(2)解 连结CA 交BD 于点M ,由AB ∥CD 可得CM AM =CD AB =12.假设线段EA 上存在点F ,使得EC ∥平面FBD ,又平面ACE ∩平面FBD =FM , 故EC ∥FM ,从而EF F A =CM AM =12,故EF EA =13,所以当EF EA =13时,EC ∥平面FBD .2.(2018·江苏省常州市三校联考)已知a =()1+cos ωx ,-1, b =()3,sin ωx ( ω>0),函数f (x )=a ·b ,函数f (x )的最小正周期为2π. (1)求函数f (x )的表达式;(2)设θ∈⎝⎛⎭⎫0,π2,且f ()θ=3+65,求cos θ的值. 解 (1)f (x )=a ·b =3()1+cos ωx -sin ωx = 3-2sin ⎝⎛⎭⎫ωx -π3, ∵为函数f (x )的最小正周期为2π, ∴2πω=2π, 解得ω=1. ∴f (x )=3-2sin ⎝⎛⎭⎫x -π3 . (2) 由f (θ)=3+65,得sin ⎝⎛⎭⎫θ-π3=-35. ∵θ∈⎝⎛⎭⎫0,π2 ∴θ-π3∈⎝⎛⎭⎫-π3,π6, ∴cos ⎝⎛⎭⎫θ-π3=45, ∴cos θ=cos ⎝⎛⎭⎫θ-π3+π3 =cos ⎝⎛⎭⎫θ-π3cos π3-sin ⎝⎛⎭⎫θ-π3sin π3 =45×12-⎝⎛⎭⎫-35×32=4+3310.3.某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时, y 取得最大值?解 (1)扇环的圆心角为θ,则30=θ(10+x )+2(10-x ), ∴θ=10+2x 10+x(0<x <10).(2)由(1)可得花坛的面积为12θ(102-x 2)=(5+x )(10-x )=-x 2+5x +50(0<x <10),装饰总费用为9θ(10+x )+8(10-x )=170+10x ,∴花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x =-x 2-5x -5010(17+x ),令t =17+x ,则y =3910-110⎝⎛⎭⎫t +324t ≤3910-110·2·t ·324t =310,当且仅当t =324t , 即t =18时取等号,此时x =1,θ=1211.答 当x =1时,花坛的面积与装饰总费用的比最大.4.(2018·江苏六市模拟)如图,在平面直角坐标系xOy 中,B 1,B 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴端点,P 是椭圆上异于点B 1,B 2的一动点.当直线PB 1的方程为y =x +3时,线段PB 1的长为4 2.(1)求椭圆的标准方程;(2)设点Q 满足: QB 1⊥PB 1, QB 2⊥PB 2.求证:△PB 1B 2与△QB 1B 2的面积之比为定值.(1)解 设P ()x 0,y 0.在y =x +3中,令x =0,得y =3,从而b =3.由⎩⎪⎨⎪⎧x 2a 2+y 29=1,y =x +3得x 2a 2+()x +329=1.∴x 0=-6a 29+a 2.∵PB 1=x 20+()y 0-32=2||x 0,∴42=2·6a 29+a 2,解得a 2=18. ∴椭圆的标准方程为x 218+y 29=1.(2)证明 设P (x 0,y 0),Q (x 1,y 1). 方法一 直线PB 1的斜率为1PB k =y 0-3x 0,由QB 1⊥PB 1,则直线QB 1的斜率为1QB k =-x 0y 0-3.于是直线QB 1的方程为y =-x 0y 0-3x +3.同理, QB 2的方程为y =-x 0y 0+3x -3. 联立两直线方程,消去y ,得x 1=y 20-9x 0.∵P ()x 0,y 0在椭圆x 218+y 29=1上,∴x 2018+y 209=1,从而y 20-9=-x 202. ∴x 1=-x 02.∴1212PB B QB B S S=⎪⎪⎪⎪x 0x 1=2.方法二 设直线PB 1, PB 2的斜率为k, k ′,则直线PB 1的方程为y =kx +3. 由QB 1⊥PB 1,直线QB 1的方程为y =-1k x +3.将y =kx +3代入x 218+y 29=1,得()2k 2+1x 2+12kx =0,∵P 是椭圆上异于点B 1, B 2的点, ∴x 0≠0,从而x 0=-12k2k 2+1.∵P ()x 0,y 0在椭圆x 218+y 29=1上,∴x 2018+y 209=1,从而y 20-9=-x 202. ∴k ·k ′=y 0-3x 0·y 0+3x 0=y 20-9x 20=-12,得k ′=-12k .由QB 2⊥PB 2,得直线QB 2的方程为y =2kx -3. 联立⎩⎪⎨⎪⎧y =-1k x +3,y =2kx -3,得x =6k 2k 2+1,即x 1=6k2k 2+1.∴1212PB B QB B S S=⎪⎪⎪⎪x 0x 1=⎪⎪⎪⎪⎪⎪⎪⎪-12k2k 2+16k 2k 2+1=2. 5.设函数f (x )=x -a sin x (a >0).(1)若函数y =f (x )是R 上的单调增函数,求实数a 的取值范围; (2)设a =12,g (x )=f (x )+b ln x +1()b ∈R ,b ≠0, g ′(x )是g (x )的导函数.①若对任意的x >0,g ′(x )>0,求证:存在x 0,使g (x 0)<0; ②若g (x 1)=g (x 2) (x 1≠x 2),求证: x 1x 2<4b 2.(1)解 由题意,得 f ′()x =1-a cos x ≥0对x ∈R 恒成立. ∵a >0,∴1a ≥cos x 对x ∈R 恒成立, ∵(cos x )max =1, ∴1a≥1,从而0<a ≤1. (2)证明 ①g ()x =x -12sin x +b ln x +1,则g ′(x )=1-12cos x +bx.若b <0,则存在-b2>0,使g ′⎝⎛⎭⎫-b 2=-1-12cos ⎝⎛⎭⎫-b 2<0,不合题意. ∴b >0. 取x 0=3eb-,则0<x 0<1.此时g ()x 0=x 0-12sin x 0+b ln x 0+1<1+12+b ln 3e b -+1=-12<0.∴存在x 0>0,使g ()x 0<0.②依题意,不妨设0<x 1<x 2,令x 2x 1=t ,则t >1.由(1)知函数y =x -sin x 单调递增, 则x 2-sin x 2>x 1-sin x 1, 从而x 2-x 1>sin x 2-sin x 1. ∵g (x 1)=g (x 2),∴x 1-12sin x 1+b ln x 1+1=x 2-12sin x 2+b ln x 2+1,∴-b (ln x 2-ln x 1)=x 2-x 1-12(sin x 2-sin x 1)>12()x 2-x 1.∴-2b >x 2-x 1ln x 2-ln x 1>0.下面证明x 2-x 1ln x 2-ln x 1>x 1x 2,即证明t -1ln t >t ,只要证明ln t -t -1t <0. (*)设h ()t =ln t -t -1t ()t >1, 则h ′()t =-()t -122t t<0在()1,+∞上恒成立.∴h (t )在()1,+∞上单调递减,故h (t )<h (1)=0, 从而(*)式得证.∴-2b >x 1x 2,即x 1x 2<4b 2.6.已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)n b(n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求{a n }和{b n }的通项公式;(2)设c n =1a n -1b n (n ∈N *),记数列{c n }的前n 项和为S n .(i)求S n ;(ii)求正整数k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)∵a 1a 2a 3…a n =(2)n b(n ∈N *),① 当n ≥2,n ∈N *时,a 1a 2a 3…a n -1=(2)1n b -,②由①②知a n =(2)1n n b b --,令n =3,则有a 3=(2)32b b -.∵b 3=6+b 2,∴a 3=8.∵{a n }为等比数列,且a 1=2,设{a n } 的公比为q , ∴则q 2=a 3a 1=4,由题意知a n >0,∴q >0,∴q =2. ∴a n =2n (n ∈N *).又由a 1a 2a 3…a n =(2)n b(n ∈N *),得 21×22×23…×2n =(2)n b, 即(1)22n n +=(2)n b,∴b n =n (n +1)(n ∈N *).(2)(i)∵c n =1a n -1b n =12n -1n (n +1)=12n -⎝ ⎛⎭⎪⎫1n -1n +1, ∴S n =c 1+c 2+c 3+…+c n=12-⎝⎛⎭⎫11-12+122-⎝⎛⎭⎫12-13+…+12n -⎝ ⎛⎭⎪⎫1n -1n +1 =12+122+…+12n -⎝ ⎛⎭⎪⎫1-1n +1 =1-12n -1+1n +1=1n +1-12n .(ii)∵c 1=0,c 2>0,c 3>0,c 4>0, 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1,而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1,∴当n ≥5时,c n <0.综上,对任意的n ∈N *恒有S 4≥S n ,故k =4.解答题满分练21.如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧面P AD ⊥底面ABCD, P A ⊥PC ; (1)求证:平面P AB ⊥平面PCD ; (2)若过点B 的直线l 垂直于平面PCD , 求证: l ∥平面P AD .证明 (1)因为ABCD 为矩形,所以CD ⊥AD ,因为侧面P AD ⊥底面ABCD ,侧面P AD ∩底面ABCD =AD, CD ⊂平面ABCD ,所以CD ⊥平面P AD ,因为AP ⊂平面P AD ,所以P A ⊥CD ,又P A ⊥PC, PC ∩CD =C, CD ,PC ⊂平面PCD , 所以AP ⊥平面PCD ,又AP ⊂平面P AB ,所以平面P AB ⊥平面PCD . (2)由(1)知,AP ⊥平面PCD ,又l ⊥平面PCD , 所以l ∥P A ,又l ⊄平面P AD, AP ⊂平面P AD ,所以l ∥平面P AD .2.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且满足cos B cos C +b2a +c =0 .(1)求角B 的值;(2)若c =2,AC 边上的中线BD =32,求△ABC 的面积. 解 (1)cos B cos C +b 2a +c =0⇔cos B cos C +sin B2sin A +sin C =0,所以cos B (2sin A +sin C )+sin B cos C =0, 所以2sin A cos B +cos B sin C +sin B cos C =0, 所以2sin A cos B +sin(B +C )=0, 所以sin A (2cos B +1)=0, 因为sin A ≠0,所以cos B =-12.所以B =2π3.(2)延长BD 到E ,使BD =DE ,易知四边形AECB 为平行四边形,在△BEC 中,EC =2,BE =2BD = 3 ,因为∠ABC =2π3,所以∠BCE =π3 ,由余弦定理得,BE 2=EC 2+BC 2-2EC ·BC ·cos ∠BCE , 即3=22+a 2-2·2a ·cos π3,即a 2-2a +1=0, 解得a =1,S △ABC =12ac sin B =12×1×2×32=32.3.某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xOy .(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小.现隧道口的最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?(隧道口截面面积公式为S =23lh )解 (1)设抛物线的方程为y =-ax 2(a >0),则抛物线过点⎝⎛⎭⎫10,-32, 代入抛物线方程得a =3200,令y =-6,解得x =±20,则隧道设计的拱宽l 是40米.(2)抛物线最大拱高为h 米,h ≥6,抛物线过点⎝⎛⎭⎫10,-⎝⎛⎭⎫h -92, 代入抛物线方程得a =h -92100.令y =-h ,则-h -92100x 2=-h ,解得x 2=100hh -92,则⎝⎛⎭⎫l 22=100h h -92,h =92l 2l 2-400,∵h ≥6,∴92l 2l 2-400≥6,即20<l ≤40,∴S =23lh =23l ·92l 2l 2-400=3l 3l 2-400,20<l ≤40,∴S ′=9l 2(l 2-400)-3l 3·2l (l 2-400)2=3l 2(l 2-1 200)(l 2-400)2=3l 2(l +203)(l -203)(l 2-400)2,当20<l <203时,S ′<0;当203<l ≤40时,S ′>0, 即S 在(20,203)上单调递减,在(203,40]上单调递增, ∴当l =203时,S 取得最小值,此时l =203,h =274.答 当拱高为274米,拱宽为203米时,使得隧道口截面面积最小.4.已知圆C 与y 轴相切,圆心在直线2x -y =0上,且直线x -y =0被圆C 截得的弦长为2 2. (1)求圆C 的标准方程;(2)已知两定点A (0,1),B (0,-1),P 为圆C 上的动点,求P A 2+PB 2的取值范围. 解 (1)由已知可设圆心C (a,2a ),则r =|a |. 圆心到直线x -y =0的距离d =|a -2a |2=|a |2,则⎝⎛⎭⎫|a |22+(2)2=|a |2,解得a =±2,从而所求圆C 的标准方程为(x -2)2+(y -4)2=4 或(x +2)2+(y +4)2=4. (2)设P (x ,y ),则P A 2+PB 2=x 2+(y -1)2+x 2+(y +1)2=2(x 2+y 2)+2, 要求P A 2+PB 2的取值范围,只需求x 2+y 2的取值范围,而x 2+y 2的几何意义为圆C 上的点P (x ,y )到原点O (0,0)的距离的平方. 由圆心C 到原点O 的距离OC =25,知点P (x ,y )到原点O 的距离的最大值,最小值分别为25+2,25-2,则x 2+y 2的取值范围为[24-85,24+85],故P A 2+PB 2的取值范围为[50-165,50+165].5.已知函数f (x )=a ln x +bx (a ,b ∈R )在x =12处取得极值,且曲线y =f (x )在点(1,f (1))处的切线与直线x -y +1=0垂直. (1)求实数a ,b 的值;(2)若关于x 的不等式f (x )≥x 2-3x +k 有大于0的实数解,求实数k 的取值范围; (3)若对于任意的x ∈[1,+∞),不等式f (x )≤(m -2)x -mx 恒成立,求实数m 的取值范围.解 (1)f ′(x )=ax+b ,由题设可知f ′(1)=-1且f ′⎝⎛⎭⎫12=0,即⎩⎪⎨⎪⎧ a +b =-1,2a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-2.代回检验可得,满足题意.所以实数a ,b 的值分别为1和-2.(2)由(1)可知f (x )=ln x -2x ,所以不等式f (x )≥x 2-3x +k 即x 2-x -ln x +k ≤0.令g (x )=x 2-x -ln x +k (x >0),则g ′(x )=2x -1-1x =2x 2-x -1x =(2x +1)(x -1)x,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,则g (x )min =g (1)=k . 因此,欲使不等式f (x )≥x 2-3x +k 有大于0的实数解,则k ≤0. 即实数k 的取值范围是(-∞,0].(3)对于任意的x ∈[1,+∞),f (x )≤(m -2)x -mx 恒成立,等价于ln x -m ⎝⎛⎭⎫x -1x ≤0在x ∈[1,+∞)上恒成立.设h (x )=ln x -m ⎝⎛⎭⎫x -1x (x ≥1), 则h ′(x )=1x -m ⎝⎛⎭⎫1+1x 2=-mx 2+x -m x 2. 若m ≤0,则h ′(x )>0,h (x )在[1,+∞)上为增函数, h (x )≥h (1)=0, 这与题设h (x )≤0矛盾.若m >0,方程-mx 2+x -m =0的判别式Δ=1-4m 2.(i)当Δ≤0,即m ≥12时,h ′(x )≤0,所以h (x )在[1,+∞)上单调递减,所以h (x )≤h (1)=0,即不等式成立;(ii)当0<m <12时,设方程-mx 2+x -m =0的两根为x 1,x 2(x 1<x 2),x 1=1-1-4m 22m∈(0,1),x 2=1+1-4m 22m∈(1,+∞),当x ∈[1,x 2)时,h ′(x )>0,h (x )单调递增,h (x )≥h (1)=0,与题设矛盾. 综上所述,m ≥12.即实数m 的取值范围是⎣⎡⎭⎫12,+∞.6.(2018·江苏泰州中学模拟)已知数列{}a n ,{}b n ,S n 为数列{}a n 的前n 项和,向量x =(1,b n ),y =(a n -1,S n ),x ∥y .(1)若b n =2,求数列{}a n 的通项公式; (2)若b n =n2,a 2=0.①证明:数列{}a n 为等差数列;②设数列{}c n 满足c n =a n +3a n +2,问是否存在正整数l ,m (l <m ,且l ≠2,m ≠2),使得c l ,c 2,c m成等比数列?若存在,求出l ,m 的值;若不存在,请说明理由. (1)解 由x =(1,b n ),y =(a n -1,S n ),x ∥y , 得:S n =(a n -1)b n ,若b n =2,则S n =2a n -2.①当n =1时,S 1=2a 1-2,即a 1=2, 又S n +1=2a n +1-2,②②-①得:S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,所以a n +1a n =2,又a 1=2,所以{}a n 是首项为2,公比为2的等比数列. 所以a n =2n .(2)①证明 因为b n =n2,则2S n =na n -n ,③当n =1时,2S 1=a 1-1,即a 1=-1, 又2S n +1=(n +1)a n +1-(n +1),④④-③得:2S n +1-2S n =(n +1)a n +1-na n -1, 即(n -1)a n +1-na n -1=0,⑤ 又na n +2-(n +1)a n +1-1=0,⑥⑥-⑤得:na n +2-2na n +1+na n =0,即a n +2+a n =2a n +1,所以数列{}a n 为等差数列. ②解 因为a 1=-1,a 2=0,数列{a n }为等差数列, 所以数列{}a n 是首项为-1,公差为1的等差数列. a n =-1+(n -1)×1=n -2,所以c n =n +1n,假设存在正整数l ,m (l <m ,且l ≠2,m ≠2),使得c l ,c 2,c m 成等比数列, 即c 22=c l c m , 可得94=l +1l ·m +1m,整理得5lm -4l =4m +4,即l =4m +45m -4,由4m +45m -4≥1,得1≤m ≤8, 一一代入检验⎩⎪⎨⎪⎧m =1,l =8或⎩⎪⎨⎪⎧m =2,l =2或⎩⎪⎨⎪⎧m =3,l =1611或⎩⎪⎨⎪⎧m =4,l =54或⎩⎪⎨⎪⎧m =5,l =87或⎩⎪⎨⎪⎧ m =6,l =1413或⎩⎪⎨⎪⎧m =7,l =3231或⎩⎪⎨⎪⎧m =8,l =1.又l ,m 为正整数,l <m ,且l ≠2,m ≠2, 所以存在l =1,m =8符合题意.解答题满分练31.已知函数f ()x =a ·b ,其中a =(2cos x ,-3sin 2x ),b =(cos x,1),x ∈R . (1)求函数y =f (x )的单调减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f ()A =-1,a =7且向量m =(3,sin B )与向量n =(2,sin C )共线,求△ABC 的面积.解 (1)f (x )=2cos 2x -3sin 2x =cos 2x -3sin 2x +1=2cos ⎝⎛⎭⎫2x +π3+1, 令2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),∴函数y =f (x )的单调减区间为⎣⎡⎦⎤-π6+k π,π3+k π(k ∈Z ). (2)∵f (A )=-1,∴2cos ⎝⎛⎭⎫2A +π3+1=-1,即cos ⎝⎛⎭⎫2A +π3=-1,∴2A +π3=π+2k π(k ∈Z ), ∴A =π3+k π(k ∈Z ),又∵0<A <π, ∴A =π3,∵a =7,∴由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①∵向量m =(3,sin B )与n =(2,sin C )共线, ∴2sin B =3sin C ,由正弦定理得2b =3c ,②由①②得b =3,c =2,∴S △ABC =12bc ·sin A =12×2×3×32=332.2.(2018·常州市武进区期中)如图所示,四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,且AB =2,AD =4,AP =4,F 是线段BC 的中点. (1)求证:平面P AF ⊥平面PDF ;(2)若E 是线段AB 的中点,在线段AP 上是否存在一点G ,使得EG ∥平面PDF ?若存在,求出线段AG 的长度;若不存在,说明理由.(1)证明 ∵P A ⊥平面ABCD, DF ⊂平面ABCD, ∴P A ⊥DF ,又∵在底面ABCD 中, AF =DF =22,AD =4, ∴AF 2+DF 2=AD 2, ∴AF ⊥DF ,∵AP ∩AF =A ,AF ⊂平面P AF ,AP ⊂平面P AF , ∴DF ⊥平面P AF ,∵DF ⊂平面PDF , ∴平面P AF ⊥平面PDF .(2)解 方法一 假设在线段AP 上存在点G ,使得EG ∥平面PDF .延长AB 交DF 的延长线于点M ,连结PM .∵F 是线段BC 的中点,底面ABCD 是矩形, ∴MB =AB,∵EG ∥平面PDM, EG ⊂平面P AM ,平面P AM ∩平面PDM =PM , ∴EG ∥PM ,∵AE =14AM, ∴AG =14AP =1,故在线段AP 上存在点G ,使得EG ∥平面PDF , 此时AG =1.方法二 假设在线段AP 上存在点G ,使得EG ∥平面PDF .取DF 的中点I ,连结EI ,过点G 作AD 的平行线交PD 于点H ,连结GH ,HI . ∵E 是线段AB 的中点,∴EI 是梯形ABFD 的中位线, ∴EI =3,EI ∥GH ,∵EG ∥平面PDF , EG ⊂平面GEIH , 平面GEIH ∩平面PDF =IH , ∴EG ∥IH ,∴四边形GEIH 是平行四边形, ∴EI =GH =3,∴PG =34AP =3, ∴AG =1,故在线段AP 上存在点G ,使得EG ∥平面PDF , 此时AG =1.3.如图,某生态园将一块三角形地ABC 的一角APQ 开辟为水果园,已知角A 为2π3,AB ,AC 的长度均大于200米,现在边界AP ,AQ 处建围墙,在PQ 处围竹篱笆.(1)若围墙AP ,AQ 总长度为200米,如何操作可使得三角形地块APQ 的面积最大? (2)已知竹篱笆长为50 3 米, AP 段围墙高1米, AQ 段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围. 解 (1)设AP =x 米,则AQ =(200-x )米, 所以S △APQ =12x ()200-x sin 2π3=34x ()200-x ≤34⎝⎛⎭⎫20022=2 500 3 (平方米), 当且仅当x =200-x 时,取等号.即AP =AQ =100 米, S max =2 500 3 平方米. (2)由正弦定理AP sin ∠AQP =AQ sin ∠APQ =PQ sin A ,得AP =100sin ∠AQP ,AQ =100sin ∠APQ ,故围墙总造价y =100()AP +2AQ =10 000(sin ∠AQP +2sin ∠APQ )=10 0003cos ∠AQP , 因为0<∠AQP <π3, ∴12<cos ∠AQP <1,所以y ∈ ()5 0003,10 0003.答 围墙总造价的取值范围为()5 0003,10 0003(元).4.(2018·盐城模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,并且椭圆经过点P ⎝⎛⎭⎫1,32,直线l 的方程为x =4. (1)求椭圆的方程;(2)已知椭圆内一点E (1,0),过点E 作一条斜率为k 的直线与椭圆交于A ,B 两点,交直线l于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求出λ的值;若不存在,请说明理由.解 (1)因为椭圆的离心率为32, 所以b 2a 2=1-⎝⎛⎭⎫322=14,又椭圆过点P ⎝⎛⎭⎫1,32,所以1a 2+34b 2=1,所以a 2=4,b 2=1,所以椭圆方程为x 24+y 2=1.(2)由题意知直线AB 的斜率存在,设直线AB 的方程为y =k (x -1),令x =4,则y =3k ,所以点M (4,3k ),设A (x 1,y 1),B (x 2,y 2), 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=k (x 1-1)-32x 1-1+k (x 2-1)-32x 2-1=2k -32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32⎣⎢⎡⎦⎥⎤x 1+x 2-2x 1x 2-(x 1+x 2)+1.由⎩⎪⎨⎪⎧y =k (x -1),x 2+4y 2=4,可得()1+4k 2x 2-8k 2x +4k 2-4=0.所以x 1,2=4k 2±23k 2+11+4k2, 所以x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,所以k 1+k 2=2k -32·8k 21+4k 2-24k 2-41+4k 2-8k 21+4k 2+1 =2k -33. 又因为k 3=3k -323=k -36,所以k 1+k 2=2k 3,所以存在λ=2,使得k 1+k 2=2k 3. 5.已知函数f (x )= x -bx,g (x )= 2a ln x .(1)若b =0,函数f (x )的图象与函数g (x )的图象相切,求a 的值;(2)若a >0, b =-1,函数F (x )=xf (x )+g (x )满足对任意x 1,x 2∈(]0,1(x 1≠x 2),都有||F ()x 1-F ()x 2<3⎪⎪⎪⎪1x 1-1x 2恒成立,求a 的取值范围; (3)若b =1,函数G (x )=f (x )+ g (x ),且G (x )有两个极值点x 1,x 2,其中x 1∈⎝⎛⎦⎤0,13,求G ()x 1-G ()x 2的最小值.解 (1)若b =0,函数f (x )=x 的图象与g (x )=2a ln x 的图象相切,设切点为(x 0,2a ln x 0), 则切线方程为y =2ax 0x -2a +2a ln x 0,所以⎩⎪⎨⎪⎧ 2a x 0=1,-2a +2a ln x 0=0得⎩⎪⎨⎪⎧x 0=e ,a =e 2.所以a =e 2. (2)当a >0,b =-1时,F (x )=x 2+1+2a ln x ,F ′(x )=2x +2ax >0,所以F (x )在(0,1]上单调递增.不妨设0<x 1<x 2≤1,原不等式⇔F (x 2)-F (x 1)<3⎝⎛⎭⎫1x 1-1x 2,即F (x 2)+ 3x 2< F (x 1)+3x 1. 设h (x )=F (x )+3x = x 2+1+2a ln x +3x ,x ∈(0,1],则原不等式⇔h (x )在(0,1]上单调递减,即h ′(x )=2x +2a x -3x 2≤0在(0,1]上恒成立,所以2a ≤3x-2x 2在(0,1]上恒成立.设y =3x -2x 2,它在(0,1]上单调递减,所以y min =3-2=1,所以2a ≤1,又a >0,所以0<a ≤12.(3)若b =1,函数G (x )=f (x )+g (x )=x -1x+2a ln x ,G ′(x )= x 2+2ax +1x 2(x >0),由题意知x 1,x 2是x 2+2ax +1=0的两根, 所以x 1,2=-2a ±4a 2-42,x 2=1x 1,2a =-x 1-1x 1,G (x 1)-G (x 2)=G (x 1)-G ⎝⎛⎭⎫1x 1=2⎣⎡⎦⎤x 1-1x 1-⎝⎛⎭⎫x 1+1x 1ln x 1. 令H (x )=2⎣⎡⎦⎤x -1x -⎝⎛⎭⎫x +1x ln x ,x ∈⎝⎛⎦⎤0,13, H ′(x )=2⎝⎛⎭⎫1x 2-1ln x =2()1+x()1-x ln x x 2,当x ∈⎝⎛⎦⎤0,13时,H ′(x )<0, H (x )在⎝⎛⎦⎤0,13上单调递减,H (x )的最小值为H ⎝⎛⎭⎫13=20ln 3-163. 即G (x 1)-G (x 2) 的最小值为20ln 3-163. 6.(2018·常州市武进区期中)已知数列{}a n 中, a 1=3,前n 项和S n 满足a n +1=2S n +3(n ∈N *). (1) 求数列{}a n 的通项公式; (2)记b n =a n()a n -1()a n +1-1,求数列{}b n 的前n 项和T n ;(3)是否存在整数对()m ,n (其中m ∈Z ,n ∈N *)满足a 2n -()m +2a n +7m +5=0?若存在,求出所有的满足题意的整数对()m ,n ,若不存在,请说明理由. 解 (1)当n ≥2时,a n +1=2S n +3与a n =2S n -1+3相减, 得a n +1-a n =2()S n -S n -1=2a n ,即a n +1=3a n (n ≥2), 在a n +1=2S n +3中,令n =1可得,a 2=9,即a 2=3a 1. 故a n +1=3a n (n ∈N *),故数列{}a n 是首项为3,公比为3的等比数列,其通项公式为a n =3n (n ∈N *). (2)由(1) 知,b n =a n()a n-1()a n +1-1=3n()3n-1()3n +1-1=12⎝ ⎛⎭⎪⎫13n -1-13n +1-1, 则T n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫12-18+⎝⎛⎭⎫18-126+…+⎝ ⎛⎭⎪⎫13n -1-13n +1-1=12⎝⎛⎭⎪⎫12-13n +1-1(n ∈N *). (3)a 2n -()m +2a n +7m +5=0,即32n -()m +23n +7m +5=0,则m =32n -2×3n +53n -7=()3n -7()3n +5+403n -7=()3n+5+403n -7,若存在整数对()m ,n ,则403n -7必须是整数,其中3n -7只能是40的因数,可得n =1时, m =-2; n =2时, m =34; n =3时, m =34. 综上所有的满足题意的整数对为()-2,1, ()34,2, ()34,3.解答题专项练1.立体几何1.(2018·江苏省金陵中学月考)如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,平面P AD ⊥平面ABCD ,AP =AD ,点M 在棱PD 上, AM ⊥PD ,点N 是棱PC 的中点,求证:(1) MN ∥平面P AB ; (2) AM ⊥平面PCD .证明 (1)因为在△P AD 中, AP =AD ,AM ⊥PD , 所以点M 是棱PD 的中点. 又点N 是棱PC 的中点, 所以MN 是△PDC 的中位线, 所以MN ∥DC .因为底面ABCD 是矩形, 所以AB ∥DC ,。
填空题满分练(1)1.复数z =x +(x +2)i(其中i 为虚数单位,x ∈R )满足2+iz是纯虚数,则|z |=________.答案:253解: 根据题意可设2+iz=b i(b ∈R 且b ≠0),∴2+i =[x +(x +2)i]×b i =-b (x +2)+xb i ,∴⎩⎪⎨⎪⎧2=-b (x +2),1=xb ,解:得x =-23,∴z =-23+43i ,∴|z |=253.2.(2018·南通、徐州、扬州等六市模拟)已知集合U ={-1,0,1,2,3},A ={-1,0,2},则∁U A =________. 答案: {1,3}解: ∵集合U ={-1,0,1,2,3},A ={-1,0,2}, ∴∁U A ={1,3}.3.某工厂生产A ,B ,C ,D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样的方法抽出一个容量为n 的样本,若样本中A 种型号有16件,那么此样本的容量n 为________. 答案: 88解: 根据分层抽样的特点,样本中A 种型号产品应是样本容量的22+3+5+1=211,所以样本的容量n =16÷211=88.4.在△ABC 中,a ,b ,c 分别是A ,B ,C 的对边,已知2sin A =3cos A ,且有a 2-c 2=b 2-mbc ,则实数m =__________.答案: 1解: ∵2sin A =3cos A ,∴2sin 2A =3cos A , ∴2cos 2A +3cos A -2=0, ∴cos A =12或cos A =-2(舍).由a 2-c 2=b 2-mbc ,得cos A =m 2,∴m 2=12,∴m =1.5.已知等差数列{}a n 满足a 3+a 5=14, a 2a 6=33,则a 1a 7=________. 答案: 13解: 由题意得a 2+a 6=a 3+a 5=14, a 2a 6=33,所以a 2=3,a 6=11或a 2=11,a 6=3. 当a 2=3,a 6=11时,d =11-36-2=2,a 1=1,a 7=13,∴a 1a 7=13;当a 2=11,a 6=3时,d =3-116-2=-2,a 1=13,a 7=1,∴a 1a 7=13.6.在△ABC 中,点D 满足BC →=3BD →,则AD →=________.(用AB →,AC →表示) 答案: 23AB →+13AC →解: 因为BC →=3BD →, 所以AC →-AB →=3(AD →-AB →), 即AD →=23AB →+13AC →.7.给出30个数:1, 2, 4, 7, 11, 16,…,要计算这30个数的和.如图给出了该问题的流程图,那么图中①处和②处分别填入____________.答案: i ≤30和p =p +i 解: 由于要计算30个数的和,故循环要执行30次,由于循环变量的初值为1,步长为1,故终值应为30, 即①中应填写i ≤30. 又由第1个数是1,第2个数比第1个数大1,即1+1=2, 第3个数比第2个数大2,即2+2=4, 第4个数比第3个数大3,即4+3=7,…, 故②中应填写p =p +i .8.已知实数x, y 满足约束条件⎩⎪⎨⎪⎧x -y -3≤0,x +y -2≥0,-x +2y -2≤0,则z =(x -1)2+y 2的最小值为________. 答案: 12解: 作出不等式组表示的平面区域如图中阴影部分所示(含边界),易知z 表示可行域内的点(x ,y )到点(1,0)的距离的平方,所以z min =⎝ ⎛⎭⎪⎫|1+0-2|12+122=12.9.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为(2,0),且双曲线C 的离心率为22,则双曲线C 的渐近线方程为________. 答案: y =±7x解: 依题意知,双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为(2,0),∴c =2,∵双曲线的离心率为22,∴c a =2a =22,∴a =22, ∵c 2=a 2+b 2,∴b =142, ∴渐近线方程为y =±b ax =±7x .10.已知圆柱M 的底面半径为2,高为6,圆锥N 的底面直径和母线长相等.若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为________.答案: 6解: 设圆锥N 的底面半径为r ,则它的母线长为2r ,高为3r ,由圆柱M 与圆锥N 的体积相同,得4π×6=13πr 2×3r ,解:得r =23,因此圆锥N 的高h =3r =6.11.将圆的一组n 等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录k (k ≤n )个点的颜色,称为该圆的一个“k 阶段序”,当且仅当两个k 阶段序对应位置上的颜色至少有一个不相同时,称为不同的k 阶段序.若某圆的任意两个“k 阶段序”均不相同,则称该圆为“k 阶魅力圆”,则“3阶魅力圆”中最多可有的等分点个数为________. 答案: 8解: “3阶段序”中,每个点的颜色有两种选择,故“3阶段序”共有2×2×2=8(种),一方面,n 个点可以构成n 个“3阶段序”,故“3阶魅力圆”中的等分点的个数不多于8个;另一方面,若n =8,则必须包含全部共8个“3阶段序”,不妨从(红,红,红)开始按逆时针方向确定其它各点颜色,显然“红,红,红,蓝,蓝,蓝,红,蓝”符合条件,故“3阶魅力圆”中最多可有8个等分点.12.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交椭圆于A ,B 两点,直线AF 2与椭圆的另一个交点为C ,若AF 2→=2F 2C →,则椭圆的离心率为________. 答案:55解: 设C (x ,y ),由AF 2→=2F 2C →,得 ⎩⎪⎨⎪⎧|y |b 2a =12,x =2c ,∴C ⎝⎛⎭⎪⎫2c ,±b 22a .又C 为椭圆上一点, ∴(2c )2a2+⎝ ⎛⎭⎪⎫±b 22a 2b2=1,解:得e =55. 13.已知函数f (x )是定义在R 上的奇函数,且当x <0时,f (x )=(x +1)e x,则对任意m ∈R ,函数F (x )=f (f (x ))-m 的零点个数至多有________个. 答案: 3解: 当x <0时,f ′(x )=(x +2)e x,由此可知f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增,f (-2)=-e -2,f (-1)=0,且f (x )<1.又f (x )是R 上的奇函数,f (0)=0,而当x ∈(-∞,-1)时,f (x )<0,所以f (x )的图象如图所示.令t =f (x ),则当t ∈(-1,1)时,方程f (x )=t 至多有3个根,当t ∉(-1,1)时,方程f (x )=t 没有根,而对任意m ∈R ,方程f (t )=m 至多有一个根t ∈(-1,1),从而函数F (x )=f (f (x ))-m 的零点个数至多有3个.14.已知正四面体P -ABC 的棱长均为a ,O 为正四面体P -ABC 的外接球的球心,过点O 作平行于底面ABC 的平面截正四面体P -ABC ,得到三棱锥P -A 1B 1C 1和三棱台ABC -A 1B 1C 1,那么三棱锥P -A 1B 1C 1的外接球的表面积为________. 答案:27π32a 2解: 设底面△ABC 的外接圆半径为r , 则asinπ3=2r ,所以r =33a . 所以正四面体的高为a 2-⎝⎛⎭⎪⎫33a 2=63a , 设正四面体的外接球半径为R , 则R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫63a -R 2,∴R =64a .因为64∶63=3∶4, 所以三棱锥P -A 1B 1C 1的外接球的表面积为 4π×⎝⎛⎭⎪⎫64a 2×⎝ ⎛⎭⎪⎫342=27π32a 2. 填空题满分练(2)1.若复数z 满足1+iz -i =i(i 是虚数单位),则z =________.答案: 1解: 由题设有z =1+ii+i =-i +1+i =1.2.已知集合A ={2,0,-2},B ={x |x 2-2x -3>0},集合P =A ∩B ,则集合P 的子集个数是________. 答案: 2解: 由题设有B =(-∞,-1)∪(3,+∞), 故P =A ∩B ={-2}, 所以P 的子集的个数为2.3.已知cos α=17,α∈⎝ ⎛⎭⎪⎫0,π2,则cos ⎝ ⎛⎭⎪⎫α-π3=________.答案:1314解: ∵cos α=17,α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫172=437, ∴cos ⎝⎛⎭⎪⎫α-π3=cos αcos π3+sin αsin π3=17×12+437×32=1314.4.(2018·江苏省高考冲刺预测卷)已知某高级中学高一、高二、高三学生人数分别为880,860,820,现用分层抽样的方法从该校抽调128人,则在高二年级中抽调的人数为________. 答案: 43解: 由题意可知,在高二年级中抽调的人数为128×860880+860+820=43.5.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,则(a 1a 3-a 22)(a 2a 4-a 23)(a 3a 5-a 24)…(a 2015a 2017-a 22016)=________. 答案: -1解: 根据斐波那契数列可知,a 1a 3-a 22=1,a 2a 4-a 23=-1,a 3a 5-a 24=1,a 4a 6-a 25=-1,…, 所以根据计算的规律可得,当n 为偶数时,a n a n +2-a 2n +1=-1, 当n 为奇数时,a n a n +2-a 2n +1=1,所以(a 1a 3-a 22)(a 2a 4-a 23)(a 3a 5-a 24)…(a 2 015a 2 017-a 22 016)=-1.6.已知函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是________.(填序号)①函数f (x )的最小正周期为π2; ②直线x =-π12是函数f (x )图象的一条对称轴;③函数f (x )在区间⎣⎢⎡⎦⎥⎤-5π12,π6上单调递增; ④将函数f (x )的图象向左平移π3个单位长度,得到函数g (x )的图象,则g (x )=2sin2x .答案: ④解: A =2, T 2=2π3-π6=π2,即πω=π2,即ω=2, π2+2π32=7π12,当x =7π12时, 2×7π12+φ=π2+2k π,k ∈Z ,又|φ|<π,解:得φ=-2π3,所以函数是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -2π3,函数的最小正周期为π;当x =-π12时, 2×⎝ ⎛⎭⎪⎫-π12-2π3=-5π6,不是函数的对称轴;当x ∈⎣⎢⎡⎦⎥⎤-5π12,π6时,2x -2π3∈⎣⎢⎡⎦⎥⎤-3π2,-π3,f (x )先单调递减后单调递增;函数向左平移π3个单位长度后得到函数g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π3-2π3=2sin 2x ,所以④正确.7.如图是一个输出一列数的算法流程图,则这列数的第三项是________.答案: 30解: 第一次输出a =3,n =2;第二次输出a =3×2=6,n =3;第三次输出a =6×5=30,n =4.故这列数的第三项为30.8.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y ≥4,x +2y ≤4,y ≤0,则z =3x -2y 的最小值是________.答案: 6解: 不等式组对应的可行域如图阴影部分所示(含边界).当动直线y =32x -z2过点(2,0)时,z 取最小值6.9.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为x 2a 2+y 2b2=1(a >b >0),测得Γ的离心率为32,则椭圆Γ的方程为________. 答案:x 216+y 24=1 解: 由题意得4a +4b =24,即a +b =6①,由c a =32得a =2b ②,由①②解:得a =4,b =2.所以椭圆Γ的方程为x 216+y 24=1.10.若曲线y =ln x +1的一条切线是y =ax +b ,则4a +e b的最小值是________. 答案: 4解: 设切点为(m ,ln m +1)(m >0),f ′(x )=1x ,f ′(m )=1m,故切线方程为y -(ln m +1)=1m(x -m ),即y =1m x +ln m ,所以a =1m ,b =ln m,4a +e b=4m +m ≥24m·m =4,当且仅当4m=m ,即m =2时取等号. 11.过点M ⎝⎛⎭⎪⎫22,-22作圆x 2+y 2=1的切线l ,l 与x 轴的交点为抛物线E :y 2=2px (p >0)的焦点,l 与抛物线E 交于A ,B 两点,则AB 的中点到抛物线E 的准线的距离为________. 答案: 4 2解: 由题意得,过点M ⎝⎛⎭⎪⎫22,-22作圆x 2+y 2=1的切线l ,可得直线l 的方程为x -y -2=0, 此时直线l 与x 轴的交点坐标为(2,0),又点(2,0)与抛物线的焦点重合,即p2=2,解:得p =22,即y 2=42x ,且准线方程为x =-2,联立方程组⎩⎨⎧y 2=42x ,x -y -2=0,整理得x 2-62x +2=0,Δ=(62)2-8>0,x 1,2=62±82=32±4,则x 1+x 2=62,所以x 1+x 22=32,所以AB 的中点到抛物线的准线的距离为x 1+x 22+2=4 2.12.已知圆心角为120°的扇形AOB 的圆心为O ,在其弧AB 上任取一点P ,则使∠AOP 和∠BOP 同时大于50°的概率为________. 答案: 16解: 由几何概型的定义和几何概型的公式可知,使∠AOP 和∠BOP 能同时大于50°的概率为120°-50°-50°120°=20°120°=16.13.在四边形ABCD 中,AB =2,BC =CD =DA =1,设△ABD ,△BCD 的面积分别为S 1,S 2,则当S 21+S 22取最大值时,BD =________.答案:102解: 设BD =b ,S 21+S 22=⎝ ⎛⎭⎪⎫12×1×2×sin A 2+⎝ ⎛⎭⎪⎫12×1×1×sin C 2=34-⎝ ⎛⎭⎪⎫12cos 2A +14cos 2C =34-2b 4-10b 2+1316=34-2⎝ ⎛⎭⎪⎫b 2-522+1216, 所以当b 2=52,即b =102时,S 21+S 22取得最大值.14.已知函数f (x )=⎩⎪⎨⎪⎧12018log x ,0<x <1,log 2018x ,x ≥1,若0<a <b ,且f (a )=f (b ),则4a 2+b 2+2a +b 的取值范围是________.答案: [4+22,+∞)解: 先作出f (x )的图象如图所示,通过图象可知,0<a <1<b ,设f (a )=f (b )=t ,则⎩⎪⎨⎪⎧12018log a =t ,log 2 018b =t(t >0),故⎩⎪⎨⎪⎧a =2 018-t,b =2 018t,所以ab =1,2a +b =22 018t +2 018t, 而2 018t>0,所以2a +b =22 018t +2 018t ≥22,当且仅当2 018t=2时等号成立.令m =2a +b ,则m ≥22,故4a 2+b 2+2a +b =(2a +b )2+(2a +b )-4=m 2+m -4=⎝ ⎛⎭⎪⎫m +122-174,因为y =⎝ ⎛⎭⎪⎫m +122-174在[22,+∞)上单调递增,所以4a 2`+b 2+2a +b =⎝ ⎛⎭⎪⎫m +122-174≥4+2 2.填空题满分练(3)1.(2018·江苏省高考冲刺预测卷)已知全集为R ,集合A ={x |2x ≥4},B ={x |x 2-3x ≥0},则A ∩(∁R B )=________. 答案: [2,3)解: A ={x |2x ≥4}={x |x ≥2},B ={x |x 2-3x ≥0}={x |x ≤0或x ≥3},∁R B =(0,3),则A ∩(∁RB )=[2,3).2.已知i 为虚数单位,复数1+a i2-i(a ∈R )为纯虚数,则a 的值为________. 答案: 2解: 因为1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=(2-a )+(2a +1)i5为纯虚数,所以⎩⎪⎨⎪⎧2-a =0,2a +1≠0,所以a =2.3.中国人在很早就开始研究数列,中国古代数学著作《九章算术》、《算法统宗》中都有大量古人研究数列的记载.现有数列题目如下:数列{a n }的前n 项和S n =14n 2,n ∈N *,等比数列{b n }满足b 1=a 1+a 2,b 2=a 3+a 4,则b 3=________.(用数字表示) 答案: 9解: 由题意可得b 1=a 1+a 2=S 2=14×22=1,b 2=a 3+a 4=S 4-S 2=14×42-14×22=3,则等比数列的公比q =b 2b 1=31=3,故b 3=b 2q =3×3=9.4.设向量a =(3,1),b =(x ,-3),c =(1,-3),若b ∥c ,则a -b 与b 的夹角为________.(用度数表示) 答案: 150°解: ∵b ∥c ,∴-3x =(-3)×1,∴x =3, ∴b =(3,-3),a -b =(0,4).∴a -b 与b 的夹角θ的余弦值cos θ=-124×23=-32,又∵0°≤θ≤180°, ∴θ=150°.5.设变量x ,y 满足线性约束条件⎩⎪⎨⎪⎧y ≥0,x -y +3≥0,x +y -3≥0,则z =2x -y 的取值范围是________.答案: [-3,+∞)解: 不等式组对应的可行域如图阴影部分所示(含边界),目标函数z =2x -y 经过点(0,3)时有最小值,且最小值为-3,由图可得,无最大值,则z =2x -y 的取值范围是[)-3,+∞.6.将矩形ABCD 绕边AB 旋转一周得到一个圆柱,AB =3,BC =2,圆柱上底面圆心为O ,△EFG 为下底面圆的一个内接直角三角形,则三棱锥O -EFG 体积的最大值是________. 答案: 4解: 设Rt△EFG 的两条直角边分别为a ,b ,则a 2+b 2=16,三棱锥O -EFG 的高为3,从而V O -EFG =13S △EFG ·3=12ab ≤a 2+b24=4,当且仅当a =b =22时等号成立,故三棱锥O -EFG的体积的最大值为4.7.(2018·江苏省高考冲刺预测卷)执行如图所示的流程图,输出的S 为________.答案: 17解: 开始时,S =27,i =1,第一次循环,S =47,i =2,第二次循环,S =17,i =3,第三次循环,S =27,i =4,第四次循环,S =47,i =5,第五次循环,S =17,5<5不满足条件,输出S =17.8.某高中在今年的期末考试历史成绩中随机抽取n 名考生的笔试成绩,作出其频率分布直方图如图所示,已知成绩在[75,80)中的学生有1名,若从成绩在[75,80)和[90,95)两组的所有学生中任取2名进行问卷调查,则2名学生的成绩都在[90,95)中的概率为________.答案: 35解: 因为成绩在[75,80)的频率为5×0.01=0.05,所以n =10.05=20, 成绩在[90,95)的频率为1-5×(0.01+0.02+0.06+0.07)=0.2, 所以成绩在[90,95)中的学生人数为20×0.2=4,所以成绩在[75,80)中有1个人,设为a ,成绩在[90,95)中有4个人,设为A ,B ,C ,D , 从5个人中任意取2个人有(a ,A ),(a ,B ),(a ,C ),(a ,D ),(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共10个基本事件,2名学生成绩都在[90,95)的事件有(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D ),共6个基本事件, 所以由古典概型的概率公式,得所求概率为610=35.9.将函数f (x )=23cos 2x -2sin x cos x -3的图象向左平移t (t >0)个单位长度,所得图象对应的函数为奇函数,则t 的最小值为________. 答案:π6解: f (x )=23cos 2x -2sin x cos x -3=23×1+cos 2x 2-sin 2x -3=2cos ⎝⎛⎭⎪⎫2x +π6,平移后函数y =2cos ⎝ ⎛⎭⎪⎫2x +2t +π6为奇函数,所以2t +π6=k π+π2,k ∈Z ,解:得t =k π2+π6,k ∈Z ,所以当k =0时,t 有最小值π6.10.如图,已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象关于点M (2,0)对称,且f (x )的图象上相邻的最高点与最低点之间的距离为4,将f (x )的图象向右平移13个单位长度,得到函数g (x )的图象,则g (x )的单调递增区间为____________.答案: ⎣⎢⎡⎦⎥⎤4k -23,4k +43(k ∈Z ) 解: 由图知A =3,不妨设两个相邻的最高点和最低点分别为P ,Q ,过P 作PH ⊥x 轴于点H ,如图所示.令HM =m (m >0),则m 2+(3)2=4,得m =1,所以P (1,3),Q (3,-3),设函数f (x )的最小正周期为T ,则T 2=2,T =4=2πω,ω=π2,所以f (x )=3sin ⎝ ⎛⎭⎪⎫π2x +φ, 将(2,0)代入得π+φ=π+2k π(k ∈Z ), 因为|φ|<π2,所以φ=0,f (x )=3sin π2x ,所以g (x )=3sin ⎣⎢⎡⎦⎥⎤π2⎝ ⎛⎭⎪⎫x -13=3sin ⎝ ⎛⎭⎪⎫π2x -π6.由2k π-π2≤π2x -π6≤2k π+π2(k ∈Z ),解:得4k -23≤x ≤4k +43()k ∈Z .所以g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤4k -23,4k +43k ∈Z .11.已知抛物线C :y 2=4x ,过焦点F 且斜率为3的直线与C 相交于P ,Q 两点,且P ,Q 两点在准线上的投影分别为M ,N 两点,则S △MFN =________.答案:833解: 设P (x 1,y 1),Q (x 2,y 2),所以S △MFN =12×p ×|y 1-y 2|=12×2×|y 1-y 2|=|y 1-y 2|,直线方程是y =3(x -1),与抛物线方程联立,消去x , 整理得3y 2-4y -43=0,所以y 1+y 2=43,y 1y 2=-4,所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=163+16=833. 12.在△ABC 中,a, b, c 分别为内角A, B, C 的对边,且2ab sin C =3()b 2+c 2-a 2,若a=13,c =3,则△ABC 的面积为________. 答案: 3 3解: 由题意得2ab sin C 2bc =3·b 2+c 2-a 22bc ,即a sin Cc=3cos A ,由正弦定理得sin A =3cos A, 所以tan A =3,A =π3.由余弦定理得13=32+b 2-2×3b cos π3,解:得b =4,故面积为12bc sin A =12×4×3×32=3 3.13.如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F 1,左、右顶点分别为A ,B ,M 在双曲线上且在x 轴的上方,MF 1⊥x 轴,直线MA ,MB 与y 轴分别交于P ,Q 两点,若OP =eOQ (e 为双曲线的离心率),则e =________.答案:2+1解: 由已知得,A (-a,0),B (a,0),F 1(-c,0),M ⎝⎛⎭⎪⎫-c ,b 2a . 由△BOQ ∽△BF 1M 可得,OQ MF 1=OBBF 1,即OQ b 2a=a a +c ,解:得OQ =b 2a +c . 由△AOP ∽△AF 1M 可得,OP MF 1=OA AF 1, 即OP b 2a=a c -a ,解:得OP =b 2c -a . 由已知得OP =eOQ ,可得b 2c -a=e ×b 2a +c,所以a +c =e (c -a ),即1+e =e (e -1), 整理得e 2-2e =1,又e >1,所以e =2+1.14.设函数g (x )=e x+3x -a (a ∈R ,e 为自然对数的底数),定义在R 上的连续函数f (x )满足:f (-x )+f (x )=x 2,且当x <0时,f ′(x )<x ,若∃x 0∈{x |f (x )+2≥f (2-x )+2x },使得g ()g ()x 0=x 0,则实数a 的取值范围为________.答案:(]-∞,e +2解: 设F (x )=f (x )-x 22,则F ′(x )=f ′(x )-x ,所以当x <0时,F ′(x )<0,故函数F (x )=f (x )-x 22是()-∞,0上的单调递减函数,又由f (-x )+f (x )=x 2可知,F (-x )+F (x )=f (-x )+f (x )-2×x 22=0,则函数F (x )=f (x )-x 22是奇函数,所以函数F (x )=f (x )-x 22是()-∞,+∞上的单调递减函数.由题设中f (x )+2≥f ()2-x +2x 可得F (x )≥F ()2-x ,解:得x ≤1,由g (g (x 0))=x 0,得g (x 0)=x 0,所以问题转化为x =e x+3x -a 在(]-∞,1上有解:,即a =e x+2x 在(]-∞,1上有解:,令h (x )=e x+2x ,x ∈(-∞,1], 则h ′(x )=e x+2>0,故h (x )=e x+2x 在(]-∞,1上单调递增,则h (x )≤h (1)=e +2,即a ≤e+2.填空题满分练(4)1.(2018·南通、徐州、扬州等六市模拟)已知复数z 1=a +i ,z 2=3-4i ,其中i 为虚数单位,若z 1z 2为纯虚数,则实数a 的值为________. 答案: 43解: ∵复数z 1=a +i ,z 2=3-4i ,∴z 1z 2=a +i 3-4i =(a +i )(3+4i )(3-4i )(3+4i )=3a -4+(4a +3)i 25, ∵z 1z 2为纯虚数,∴3a -4=0且4a +3≠0,即a =43.2.已知全集U =R ,集合A ={x ||x -1|<1},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x -5x -1≥1,则A ∩(∁U B )=________. 答案: {x |1≤x <2}解: 由题意得A ={x ||x -1|<1}={x |-1<x -1<1}={x |0<x <2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2x -5x -1≥1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -4x -1≥0={x |x <1或x ≥4}, ∴∁U B ={x |1≤x <4}, ∴A ∩(∁U B )={x |1≤x <2}.3.在等差数列{a n }中,a 4,a 7是函数f (x )=x 2-3x -18的两个零点,则{a n }的前10项和为________. 答案: 15解: 由题意得a 4,a 7是方程x 2-3x -18=0的两根, ∴a 4+a 7=3,∴S 10=10(a 1+a 10)2=5(a 1+a 10)=5(a 4+a 7)=5×3=15.4.在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长度的取值范围为________. 答案: [6-2,6+2] 解: 设BC 的中点为M (x ,y ). 因为OB 2=OM 2+BM 2=OM 2+AM 2, 所以4=x 2+y 2+(x -1)2+(y -1)2,化简得⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=32,所以点M 的轨迹是以⎝ ⎛⎭⎪⎫12,12为圆心,62为半径的圆,所以AM 的取值范围是⎣⎢⎡⎦⎥⎤6-22,6+22,所以BC 的取值范围是[6-2,6+2]. 5.已知直线m ,n ,平面α,β,给出下列命题: ①若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β; ②若m ∥α,n ∥β,且m ∥n ,则α∥β; ③若m ⊥α,n ∥β,且m ⊥n ,则α⊥β. 其中正确的命题是________.(填序号) 答案: ①解: ①若m ⊥α,n ⊥β,且m ⊥n ,则α⊥β,正确.∵n ⊥β,且m ⊥n ,可得出m ∥β或m ⊂β,又m ⊥α,故可得α⊥β. ②若m ∥α,n ∥β,且m ∥n ,则α∥β,不正确. 两平面有可能相交.③若m ⊥α,n ∥β,且m ⊥n ,则α⊥β,不正确.m ⊥α且m ⊥n ,可得出n ∥α或n ⊂α,又n ∥β,故不能得出α⊥β.6.甲、乙、丙、丁四个人到重庆旅游,朝天门、解:放碑、瓷器口三个景点,每个人只去一个景点,每个景点至少有一个人去,则甲不到瓷器口的方案有________种. 答案: 24解: 分两类求解:.①甲单独一人时,则甲只能去另外两个景点中的一个,其余三人分为两组然后分别去剩余的两个景点,故方案有C 12C 23A 22=12(种);②甲与另外一人为一组到除瓷器口之外的两个景点中的一个,其余两人各去一个景点,故方案有C 13C 12A 22=12(种).由分类加法计数原理,可得总的方案数为24.7.函数y =f (x )为定义在R 上的奇函数,当x ≥0时,函数单调递增,若f (1)=1,则满足-1≤f (x +2)≤1的x 的取值范围是________. 答案: [-3,-1]解: 函数y =f (x )为定义在R 上的奇函数,由f (1)=1,可知f (-1)=-1.当x ≥0时,函数单调递增,由y =f (x )为定义在R 上的奇函数,得y =f (x )在R 上单调递增. 则由-1≤f (x +2)≤1,可得-1≤x +2≤1, 解:得-3≤x ≤-1.8.如图所示的流程图输出的结果为510,则判断框内的条件是________.答案: n ≤8(或n <9)解: 由题意得该程序的功能是计算2+22+23+ (2). ∵2+22+23+ (2)=2(1-2n)1-2=2n +1-2,∴当n =7时,2n +1-2=28-2=254,不合题意;当n =8时,2n +1-2=29-2=510,符合题意.∴判断框中的条件为n ≤8或n <9.9.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -3y +4≥0,x -2≤0,x +y ≥0,x ,y ∈R ,则x 2+y 2的最大值为________.答案: 8解: 画出不等式组表示的可行域如图阴影部分所示(含边界).x 2+y 2表示可行域内的点(x ,y )到原点距离的平方.由图形可得,可行域内的点A 或点B 到原点的距离最大,且A (2,-2),B (2,2),又OA =OB =22, ∴(x 2+y 2)max =8.10.设直三棱柱ABC -A 1B 1C 1的所有顶点都在同一个球面上,且球的表面积是40π,AB =AC=AA 1,∠BAC =120°,则此直三棱柱的高是________. 答案: 2 2解: 设AB =AC =AA 1=x , 在△ABC 中,∠BAC =120°, 则由余弦定理可得BC =3x .由正弦定理,可得△ABC 外接圆的半径为r =x , ∵球的表面积是40π, ∴球的半径为R =10.设△ABC 外接圆的圆心为O ′,球心为O ,在Rt△OBO ′中,有⎝ ⎛⎭⎪⎫12x 2+x 2=10,解:得x =22,即AA 1=2 2.∴直三棱柱的高是2 2.11.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点分别为A ,B ,P 为双曲线左支上一点,△ABP为等腰三角形且外接圆的半径为5a ,则双曲线的离心率为________. 答案:153解: 由题意知在等腰△ABP 中,AB =AP =2a ,设∠ABP =∠APB =θ,F 1为双曲线的左焦点,则∠F 1AP =2θ,其中θ必为锐角. ∵△ABP 外接圆的半径为5a , ∴25a =2asin θ,∴sin θ=55,cos θ=255, ∴sin 2θ=2×55×255=45, cos 2θ=2×⎝⎛⎭⎪⎫2552-1=35. 设点P 的坐标为(x ,y ), 则x =-a -AP cos 2θ=-11a 5, y =AP sin 2θ=8a5,故点P 的坐标为⎝ ⎛⎭⎪⎫-11a 5,8a 5.由点P 在双曲线上,得⎝ ⎛⎭⎪⎫-11a 52a 2-⎝ ⎛⎭⎪⎫8a 52b 2=1,整理得b 2a 2=23,∴e =c a=1+b 2a 2=153. 12.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图在一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是________.答案:316解: 由七巧板的构造可知,△BIC ≌△GOH ,故黑色部分的面积与梯形EFOH 的面积相等, 则S EFOH =34S △DOF =34×14S ABDF =316S ABDF ,∴所求的概率为P =S EFOH S ABDF =316. 13.在数列{a n }中,a 1=1,a n +1=S n +3n(n ∈N *,n ≥1),则数列{S n }的通项公式为________. 答案: S n =3n-2n解: ∵a n +1=S n +3n=S n +1-S n , ∴S n +1=2S n +3n,∴S n +13n +1=23·S n 3n +13, ∴S n +13n +1-1=23⎝ ⎛⎭⎪⎫S n 3n -1, 又S 13-1=13-1=-23, ∴数列⎩⎨⎧⎭⎬⎫S n 3n -1是首项为-23,公比为23的等比数列,∴S n 3n -1=-23×⎝ ⎛⎭⎪⎫23n -1=-⎝ ⎛⎭⎪⎫23n, ∴S n =3n-2n.14.德国著名数学家狄利克雷(Dirichlet,1805—1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数”:y =f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,0,x ∈∁R Q ,其中R 为实数集,Q 为有理数集.则关于函数f (x )有如下四个命题:①f (f (x ))=0;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x +T )=f (x )对任意的x ∈R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数是________. 答案: 3解: 当x 为有理数时,f (x )=1;当x 为无理数时,f (x )=0,∴当x 为有理数时,f (f (x ))=f (1)=1;当x 为无理数时,f (f (x ))=f (0)=1,∴无论x 是有理数还是无理数,均有f (f (x ))=1,故①不正确;∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x ∈R ,都有f (-x )=f (x ),故②正确;当T ∈Q 时,若x 是有理数,则x +T 也是有理数;若x 是无理数,则x +T 也是无理数,∴根据函数的表达式,任取一个不为零的有理数T ,f (x +T )=f (x )对x ∈R 恒成立,故③正确;取x 1=33,x 2=0,x 3=-33,f (x 1)=0,f (x 2)=1,f (x 3)=0,∴A ⎝⎛⎭⎪⎫33,0,B (0,1),C ⎝ ⎛⎭⎪⎫-33,0,△ABC 恰好为等边三角形,故④正确. 填空题满分练(5)1.i 是虚数单位,(1-i)z =2i ,则|z |=________. 答案:2解: 由题意知z =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则|z |=(-1)2+12= 2. 2.已知集合P ={x |-1≤x <2},集合Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤52,则P ∩Q =________. 答案: (0,2) 解: P ∩Q =(0,2).3.已知e 1,e 2是夹角为90°的两个单位向量,且a =3e 1-e 2,b =2e 1+e 2,则a ,b 的夹角为________.(用度数表示) 答案: 45°解: ∵e 1,e 2是夹角为90° 的两个单位向量, ∴||e 1||=e 2=1,e 1·e 2=0, ∴||a =()3e 1-e 22=9||e 12-6e 1·e 2+||e 22=10,||b =()2e 1+e 22=4||e 12+4e 1·e 2+||e 22=5,a ·b =()3e 1-e 2·()2e 1+e 2=6||e 12-||e 22=5,设a 与b 的夹角为θ, 则cos θ=a ·b ||a ||b =510×5=22,∵0°≤θ≤180°, ∴θ=45°.4.已知整数x ,y 满足⎩⎪⎨⎪⎧2x +y -7≥0,x +2y -5>0,则3x +4y 的最小值是________.答案: 16解: 可行域如图所示,令z =3x +4y ,当动直线3x +4y -z =0过点A 时,z 有最小值.又由⎩⎪⎨⎪⎧2x +y -7=0,x +2y -5=0,得⎩⎪⎨⎪⎧x =3,y =1,故A (3,1),但点A (3,1)不在可行域内,故当直线过可行域内的整点(4,1)时,z 有最小值16.5.已知一个样本为x,1,y,5,若该样本的平均数为2,则它的方差的最小值为________. 答案: 3解: 样本x ,1,y ,5的平均数为2,故x +y =2,故s 2=14[(x -2)2+(y -2)2+10]=52+14(x2+y 2)≥52+14×(x +y )22=52+14×2=3,当且仅当x =y =1时取等号,故方差的最小值是3.6.(2018·江苏省盐城市东台中学模拟)下面求2+5+8+…+2018的值的伪代码中,正整数m 的最大值为________. I ←2S ←0While I <m S ←S +I I ←I +3 EndWhile Print S 答案: 2021解: 由伪代码知,这是当型循环结构的算法, 由于累加项的步长为3, 循环变量I 的终值为2018, 故2018<m <2022,由于m 是正整数,所以最大值为2021.7.(2018·江苏省高考冲刺预测卷)已知关于实数x ,y 的不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0构成的平面区域为Ω,若∃(x 0,y 0)∈Ω,使得(x 0-1)2+(y 0-4)2≤m ,则实数m 的取值范围是________. 答案: [20,+∞)解: 作出不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0表示的可行域如图阴影部分所示(含边界).(x 0-1)2+(y 0-4)2表示可行域内一点与点(1,4)之间的距离的平方和, ∵点(1,4)到直线x +2y -19=0的距离为25, 故[(x 0-1)2+(y 0-4)2]min =20, 故实数m 的取值范围是[20,+∞).8.已知函数f (x )=2sin(ωx +φ)(x ∈R ,ω>0,|φ|<π)的部分图象如图所示,若将函数f (x )的图象向右平移π6个单位长度得到函数g (x )的图象,则函数g (x )=________.答案: 2sin ⎝⎛⎭⎪⎫2x +π3 解: ∵由图象知,14T =π6-⎝ ⎛⎭⎪⎫-π12=π4,∴T =π,ω=2.∵2sin ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-π12+φ=2,∴2×⎝ ⎛⎭⎪⎫-π12+φ=2k π+π2,k ∈Z .∵|φ|<π,∴φ=2π3,则f (x )=2sin ⎝⎛⎭⎪⎫2x +2π3.f (x )的图象向右平移π6个单位长度后得到的图象解:式为g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+2π3=2sin ⎝⎛⎭⎪⎫2x +π3.9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=8x 有相同的焦点F ,过点F 且垂直于x 轴的直线l 与抛物线交于A, B 两点,与双曲线交于C, D 两点,当AB =2CD 时,双曲线的离心率为________. 答案:5+12解: 由题意知F (2,0), c =2,∵过点F 且垂直于x 轴的直线l 与抛物线交于A ,B 两点,与双曲线交于C, D 两点, 在y 2=8x 中,令x =2,则y 2=16,即y =±4. ∴AB =8,∴CD =4,将x =2代入到双曲线的方程,可得y =±b 4a 2-1,则2b4a 2-1=4.∵a 2+b 2=c 2=4,∴a =5-1, ∴双曲线的离心率为e =c a=25-1=5+12.10.已知△ABC 的顶点A ∈平面α,点B ,C 在平面α的同侧,且AB =2,AC =3,若AB ,AC 与α所成的角分别为π3,π6,则线段BC 长度的取值范围为________.答案: [1,7]解: 如图,过B ,C 作平面的垂线,垂足分别为M ,N , 则四边形BMNC 为直角梯形.在平面BMNC 内,过C 作CE ⊥BM 交BM 于点E . 又BM =2sin∠BAM =2sinπ3=3,AM =2cos π3=1, CN =3sin∠CAN =3sinπ6=32,AN =3cos π6=32, 所以BE =BM -CN =32,故BC 2=MN 2+34. 又AN -AM ≤MN ≤AM +AN , 即12=AN -AM ≤MN ≤AM +AN =52, 所以1≤BC 2≤7,即1≤BC ≤7.11.已知数列{a n }是各项均为正整数的等差数列,公差d ∈N *,且{a n }中任意两项之和也是该数列中的一项,若a 1=6m,其中m 为给定的正整数,则d 的所有可能取值的和为__________. 答案: 12(2m +1-1)(3m +1-1)解: ∵公差d 是a 1=6m 的约数, ∴d =2i·3j(i ,j =0,1,2,…,m ),∴d 的所有可能取值之和为∑i =0m2i ·∑j =0m3j =12(2m +1-1)·(3m +1-1).12.已知点M 为单位圆x 2+y 2=1上的动点,点O 为坐标原点,点A 在直线x =2上,则AM →·AO →的最小值为________. 答案: 2解: 设A (2,t ),M (cos θ,sin θ),则AM →=(cos θ-2,sin θ-t ),AO →=(-2,-t ), 所以AM →·AO →=4+t 2-2cos θ-t sin θ. 又(2cos θ+t sin θ)max =4+t 2, 故AM →·AO →≥4+t 2-4+t 2.令s =4+t 2,则s ≥2,又4+t 2-4+t 2=s 2-s ≥2, 当s =2,即t =0时等号成立,故(AM →·AO →)min =2.13.已知函数f (x )=x 2-2mx +m +2,g (x )=mx -m ,若存在实数x 0∈R ,使得f (x 0)<0且g (x 0)<0同时成立,则实数m 的取值范围是________. 答案: (3,+∞)解: 当m >0,x <1时,g (x )<0, 所以f (x )<0在(-∞,1)上有解:,则⎩⎪⎨⎪⎧f (1)<0,m >0或⎩⎪⎨⎪⎧ m >0,Δ>0,f (1)≥0,m <1,即m >3或⎩⎪⎨⎪⎧m >0,m 2-m -2>0,3-m ≥0,m <1,故m >3.当m <0,x >1时,g (x )<0,所以f (x )<0在(1,+∞)上有解:, 所以⎩⎪⎨⎪⎧f (1)<0,m <0,此不等式组无解:.综上,m 的取值范围为(3,+∞).14.已知实数a >0,函数f (x )=⎩⎪⎨⎪⎧e x -1+a2,x <0,ex -1+a 2x 2-()a +1x +a 2,x ≥0,若关于x 的方程f (-f (x ))=e -a +a2有三个不等的实根,则实数a 的取值范围是________.答案: ⎝⎛⎭⎪⎫2,2+2e 解: 当x <0时,f (x )为增函数, 当x ≥0时,f ′(x )=ex -1+ax -a -1, f ′(x )为增函数,令f ′(x )=0,解:得x =1,故函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 最小值为f (1)=0.由此画出函数f (x )的图象如图所示.令t =-f (x ),因为f (x )≥0,所以t ≤0,则有⎩⎪⎨⎪⎧f ()t =e-a+a2,f ()t =et -1+a2,解:得-a =t -1,所以t =-a +1,所以f (x )=a -1. 所以方程要有三个不同的实数根,则需a 2<a -1<1e +a 2,解:得2<a <2e+2.填空题满分练(6)1.已知全集U =R ,N ={x |x (x +3)<0},M ={x |x <-1},则图中阴影部分表示的集合是________.答案: {x |-1≤x <0}2.(2018·江苏省高考冲刺预测卷)若复数z =1-i2-i ,则z 的虚部为________.答案: -15解: z =1-i 2-i =(1-i )(2+i )(2-i )(2+i )=3-i5,其虚部为-15.3.已知数列{a n }满足:对于∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=________.答案:132解: 由于a n ·a m =a n +m (m ,n ∈N *),且a 1=12.令m =1,得12a n =a n +1,所以数列{a n }是公比为12,首项为12的等比数列.因此a 5=a 1q 4=⎝ ⎛⎭⎪⎫125=132.4.如图所示,一家面包销售店根据以往某种面包的销售记录绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.答案: 9解: 这家面包店一个月内日销售量不少于150个的天数为(0.004+0.002)×50×30=9.5.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是________. 答案: ⎝⎛⎭⎪⎫3-12,12 解: 由题意可得PF 1=F 1F 2=2c ,再由椭圆的定义可得PF 2=2a -PF 1=2a -2c . 设∠PF 1F 2=θ,又60°<∠PF 1F 2<120°, ∴-12<cos θ<12.在△PF 1F 2中,由余弦定理可得cos θ=c 2-a 2+2ac 2c2, 由-12<cos θ<12,可得e 的取值范围是⎝ ⎛⎭⎪⎫3-12,12.6.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =yx -3的最小值是________.答案: -2解: 画出满足约束条件的可行域,如图中阴影部分所示(含边界),联立⎩⎪⎨⎪⎧x -2y +2=0,x -y =0,解:得A (2,2),z =y x -3的几何意义为可行域内的点与定点P (3,0)的连线的斜率. ∵k PA =2-02-3=-2,∴z =y x -3的最小值是-2.7.已知△ABC 的三个内角A ,B ,C 依次成等差数列,BC 边上的中线AD =7,AB =2,则S △ABC =________. 答案: 3 3解: ∵A ,B ,C 成等差数列,∴B =60°,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD ·cos B ,即7=4+BD 2-2BD ,∴BD =3或-1(舍去),可得BC =6,∴S △ABC =12AB ·BC ·sin B =12×2×6×32=3 3.8.已知三棱锥P -ABC 内接于球O ,PA =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为________. 答案: 12π解: 由于三条侧棱相等,根据三角形面积公式可知,当PA ,PB ,PC 两两垂直时,侧面积之和最大.此时PA ,PB ,PC 可看成正方体一个顶点的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3·22=12,故球的表面积为4πR 2=12π.9.给出如图所示的流程图,若输入的x 的值为-5,则输出的y 值是________.答案: 0解: 由流程图知,若输入的x 的值为-5,⎝ ⎛⎭⎪⎫12-5=25=32>2,程序继续运行x =-3,⎝ ⎛⎭⎪⎫12-3=23=8>2,程序继续运行x =-1,⎝ ⎛⎭⎪⎫12-1=2,不满足⎝ ⎛⎭⎪⎫12x>2,∴执行y =log 2x 2=log 21=0.10.若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是⎝ ⎛⎭⎪⎫π8,0,则f (x )的最小正周期是________.答案: π解: 由f (x )=a 2+b 2sin(ωx +φ)⎝⎛⎭⎪⎫tan φ=b a 图象的对称轴方程为x =π4ω可知,π4+φ=π2+k π,k ∈Z ,解:得φ=π4+k π,k ∈Z ,即ba=tan φ=1,所以a =b .又f ′(x )=a ωcos ωx -b ωsin ωx 的对称中心为⎝ ⎛⎭⎪⎫π8,0,则f ′⎝ ⎛⎭⎪⎫π8=0,即a ω⎝⎛⎭⎪⎫cosωπ8-sin ωπ8=0,所以ωπ8=π4+k π,k ∈Z ,解:得ω=2+8k ,k ∈Z ,又因为0<ω<5,所以ω=2,所以T =2πω=π.11.在正三角形ABC 内任取一点P ,则点P 到A ,B ,C 的距离都大于该三角形边长一半的概率为________. 答案: 1-3π6解: 满足条件的正三角形ABC 如图所示.设边长为2,其中正三角形ABC 的面积S △ABC =34×4= 3. 满足到正三角形ABC 的顶点A ,B ,C 的距离至少有一个小于等于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆, 则S 阴影=12π,则使取到的点到三个顶点A ,B ,C 的距离都大于1的概率P =1-3π6. 12.已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是________. 答案:2+1解: 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,x 2+(y +2)2=1,则点M 的轨迹是以C 为圆心,1为半径的圆. ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,其几何意义表示圆x 2+(y +2)2=1上的点与点P (-1,-1)间的距离.又点P (-1,-1)在圆C 的外部,∴|OA →+OB →+OM →|max =|PC →|+1=(0+1)2+(-2+1)2+1=2+1.13.已知P 为函数y =4x的图象上任一点,过点P 作直线PA ,PB 分别与圆x 2+y 2=1相切于A ,B 两点,直线AB 交x 轴于M 点,交y 轴于N 点,则△OMN 的面积为________.答案: 18解: 不妨设点P 在第一象限,P ⎝ ⎛⎭⎪⎫x 0,4x 0,则PO 2=x 20+16x 20,PA 2=PB 2=PO 2-12=x 20+16x 20-1,故以P 为圆心,PA 为半径的圆的方程为()x -x 02+⎝⎛⎭⎪⎫y -4x2=x 20+16x 20-1,联立x 2+y 2=1,两圆方程作差可得直线AB 的方程为x 0x +4x 0y -1=0,故M ⎝ ⎛⎭⎪⎫1x 0,0,N ⎝ ⎛⎭⎪⎫0,x 04, 所以△OMN 的面积为12·1x 0·x 04=18.14.函数y =f (x )的定义域为D ,若∀x ∈D ,∃a ∈[1,2],使得f (x )≥ax 恒成立,则称函数y =f (x )具有性质P ,现有如下函数:①f (x )=ex -1;②f (x )=2cos 2⎝⎛⎭⎪⎫x -π4-1(x ≤0); ③f (x )=⎩⎪⎨⎪⎧ln (1-x ),x <0,(x -1)3+1,x ≥0.则具有性质P 的函数f (x )为________.(填序号) 答案: ①② 解: ①设φ(x )=ex -1-x (x ∈R ),则φ′(x )=ex -1-1.当x >1时,φ′(x )>0;当x <1时,φ′(x )<0.。
限时练2(时间:45分钟,满分:80分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022北京,1)已知全集U={x|3<x<3},集合A={x|2<x≤1},则∁U A=()A.(2,1]B.(3,2)∪[1,3)C.[2,1)D.(3,2]∪(1,3)2.(2023全国甲,理2)若复数(a+i)(1a i)=2,则a=()A.1B.0C.1D.23.(2023全国甲,理6)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A.0.8B.0.6C.0.5D.0.44.(2023四川泸州三模)执行下图所示的程序框图,若输入N的值为8,则输出S的值为()A. B. C.0 D.5.(2023江西南昌二模)已知函数f(x)=2sin x,命题p:∃x1,x2∈(0,π),使得f(x1)+f(x2)=2,命题q:∀x1,x2∈(),当x1<x2时,都有f(x1)<f(x2),则下列命题中为真命题的是()A.p∨qB.p∧qC.p∧( q)D.( p)∧( q)6.(2023河南郑州三模)若向量a,b满足|a|=|b|=|a+b|,则向量b与向量ab的夹角为()A.30°B.60°C.120°D.150°7.(2023安徽黄山二模)先后掷两次骰子,落在水平桌面后,记正面朝上的点数分别为x,y,设事件A=“x+y为奇数”,事件B=“x,y满足x+y<6”,则概率P(B|A)=()A. B. C. D.8.(2023山东泰安一模)若的二项展开式中x6的系数是16,则实数a的值是()A.2B.1C.1D.29.(2023河南郑州一模)记△ABC的内角A,B,C的对边分别为a,b,c,已知角C=,b sin(+A)a sin(+B)=c,则角B=()A. B. C. D.10.在直三棱柱ABCA1B1C1中,已知AB⊥BC,AB=BC=2,CC1=2,则异面直线AC1与A1B1所成的角为()A.30°B.45°C.60°D.90°11.(2023河北张家口一模)已知实数a,b,c满足log a2=e,b=,ln c=,则()A.log c a>log a bB.a c1>b a1C.log a c<log b cD.c a>b c12.已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,点P在第二象限内,且满足|F1P|=a,()·=0,线段F1P与双曲线C交于点Q,若|F1P|=3|F1Q|,则C的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分.13.(2023宁夏银川一中一模改编)已知函数f(x)=对任意x1,x2∈R,且x1≠x2,都有>0成立,则a的取值范围是.14.在△ABC中,a,b,c分别是角A,B,C的对边,且2sin A sin C=1+2cos A cos C,a+c=3sin B,则b的最小值为.15.(2022浙江,17)设点P在单位圆的内接正八边形A1A2…A8的边A1A2上,则+…+的取值范围是.16.(2023河北邯郸二模)已知O为坐标原点,椭圆C:=1(a>b>0)的右焦点为F,上顶点为B,线段BF的中垂线交C于M,N两点,交y轴于点P,=2,△BMN的周长为16,则椭圆的标准方程为.限时练21.D解析∵U={x|3<x<3},∴∁U A=(3,2]∪(1,3),故选D.2.C解析由(a+i)(1a i)=2,可得a+i a2i+a=2,即2a+(1a2)i=2,所以解得a=1.故选C.3.A解析从该校的学生中任取一名学生,记A表示事件:“取到的学生爱好滑冰”,B表示事件:“取到的学生爱好滑雪”.由题设知P(A)=0.6,P(B)=0.5,P(A∪B)=0.7.由P(A∪B)=P(A)+P(B)P(AB),得P(AB)=P(A)+P(B)P(A∪B)=0.6+0.50.7=0.4.所求的概率为P(A|B)==0.8.4.C解析程序运行可得S=sin+sin+sin+sin+sin+sin+sin+sin+1++01+0=0.故选C.5.A解析命题p:当0<x<π时,0<sin x≤1,所以1<2sin x≤2,即1<f(x)≤2,则∀x1,x2∈(0,π),f(x1)+f(x2)>2,故命题p为假命题;命题q:当<x<时,由复合函数的单调性得f(x)=2sin x在()上是增函数,所以当<x1<x2<时,f(x1)<f(x2),故命题q为真命题.则命题p∨q为真,故A正确;命题p∧q为假,故B错误;命题p∧( q)为假,故C错误;命题( p)∧( q)为假,故D错误.故选A. 6.D解析由题意|a+b|2=(a+b)2=|a|2+2a·b+|b|2=|a|2=|b|2,所以2a·b=|a|2,所以|ab|=|a|.b(ab)=|b||ab|cos<b,ab>=|a|2cos<b,ab>,又b(ab)=b·ab2=|a|2|a|2=|a|2,所以|a|2cos<b,ab>=|a|2,cos<b,ab>=,又0°≤<b,ab>≤180°,所以<b,ab>=150°.故选D.7.B解析用(x,y)表示先后掷两次骰子分别得到的点数,基本事件的个数为6×6=36.记事件C=“x+y为奇数,且x+y<6”,所以事件A包含的基本事件的个数为3×3×2=18,事件C包含的基本事件个数为(1,2),(1,4),(2,3),(2,1),(4,1),(3,2),共6个,根据古典概率公式知,P(A)=,P(C)=P(AB)=,P(B|A)=故选B.8.D解析(x)8的二项展开式的通项公式为T r+1=x8r·()r=(a)r x82r,0≤r≤8,r∈N*.令82r=6,得到r=1.由x6的系数是16,得到(a)1=16,解得a=2.故选D.9.C解析由题意及正弦定理,得sin B·sin(+A)sin A sin(+B)=sin C,整理得(sin B cos A sin A cos B)=,即sin(BA)=1.因为A,B∈(0,),所以BA∈(),所以BA=又B+A=,所以B=故选C.10.C解析由题画图(图略),连接AC1,BC1,又AB∥A1B1,则∠BAC1为异面直线AC1与A1B1所成的角或其补角.∵AB⊥BC,且三棱柱为直三棱柱,∴AB⊥CC1,BC∩CC1=C,∴AB⊥平面BCC1B1,∴AB⊥BC1,又AB=BC=2,CC1=2,∴BC1==2,∴tan∠BAC1=,∴∠BAC1=60°.故选C.11.D解析由log a2=e,得a e=2,∴a=又b=,函数y=2x在R上是增函数,∴a<b<20=1.由ln c=>0,得c>1,∴c>1>b>a>0,∴y=log c x在(0,+∞)上是增函数,y=log a x在(0,+∞)上是减函数,故log c a<log c1=0,log a b>log a1=0,∴log c a<log a b,A错;由c1>0,得a c1<1.∵a1<0,∴b a1>1,故a c1<b a1,B错;∵log a c=,log b c=,且log c a<log c b<0,,即log a c>log b c,C错;∵c a>c0=1,b c<b0=1,故c a>b c,D对.故选D.12.C解析取线段F1P的中点E,连接F2E,因为()=0,所以F2E⊥F1P,所以△F1F2P是等腰三角形,且|F2P|=|F1F2|=2c,在Rt△F1EF2中,cos∠F2F1E=,连接F2Q,又|F1Q|=,点Q在双曲线C上,由|F2Q||F1Q|=2a,则|F2Q|=,在△F1QF2中,cos∠F2F1Q=,整理得12c2=17a2,所以离心率e=故选C.13.(1,2]解析因为对任意x1≠x2,都有>0成立,所以f(x)在定义域内是增函数,所以解得1<a≤2,即a的取值范围是(1,2].14解析因为2sin A sin C=1+2cos A cos C,整理可得cos(A+C)=因为A+B+C=π,所以cos B=又因为0<B<π,所以B=由余弦定理可得b2=a2+c2ac=(a+c)23ac,又因为a+c=3sin B=,所以b2=3ac3()2=,当且仅当a=c=时等号成立,所以b的最小值为15.[12+2,16]解析如图,以圆心为原点,A3A7所在直线为x轴,A1A5所在直线为y轴建立平面直角坐标系,则A1(0,1),A2(),A3(1,0),A4(,),A5(0,1),A6(,),A7(1,0),A8().设P(x,y),则+…+=8(x2+y2)+8.因为cos22.5°≤|OP|≤1,所以x2+y2≤1,故所求取值范围为[12+2,16].16=1解析设椭圆的半焦距为c.如图,由=2,得点P在线段BO上,且|BP|=b,|PO|=b.连接PF,由点P在线段BF的中垂线上,得|BP|=|PF|.在Rt△POF中,由勾股定理得|OP|2+|OF|2=|PF|2,所以(b)2+c2=(b)2,整理得b2=3c2,所以a2c2=3c2,即a2=4c2,所以a=2c.在Rt△BOF中,cos∠BFO=,所以∠BFO=设直线MN交x轴于点F',交BF于点H,在Rt△HFF'中,有|FF'|==a=2c,所以F'为椭圆C的左焦点.又|MB|=|MF|,|NB|=|NF|,所以△BMN的周长等于△FMN的周长.又△FMN的周长为4a,所以4a=16,解得a=4,所以c=2,b2=a2c2=12.故答案为=1.。
江苏省南通市2019届高三第二次高考模拟测试数学试卷与答案(Word版)2019届高三第二次调研测试 数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合{13}=A a ,,,{45}=B ,.若A B =I {4},则实数a 的值为 ▲ .【答案】42. 复数2i 2i z =+(i 为虚数单位)的实部为 ▲ .【答案】253. 某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP 平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为 ▲ . 【答案】354. 从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为 ▲ .【答案】235. 执行如图所示的伪代码,则输出的S 的值为 ▲ .【答案】306. 函数y =的定义域为 ▲ .【答案】[2)+∞,7. 将函数2sin3y x =的图象向左平移π12个单位长度得到()y f x =的图象,则()π3f 的值为 ▲ . 【答案】8. 在平面直角坐标系xOy中,已知双曲线22221(00)y x a b a b -=>>,的右顶点(20)A ,到渐近线的,则b 的值为 ▲ . 【答案】29. 在△ABC 中,已知C = 120°,sin B = 2 sin A ,且△ABC 的面积为AB 的长为 ▲ . 【答案】10.设P ,A ,B ,C 为球O 表面上的四个点,PA ,PB ,PC 两两垂直,且PA = 2 m ,PB = 3 m ,PC = 4 m ,则球O 的表面积为 ▲ m 2.11.定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ .【答案】512.已知关于x 的不等式20ax bx c ++>( a ,b ,c ∈R ) 的解集为{ x | 3 < x < 4},则25c a b ++的最小值为 ▲ . 【答案】13.在平面直角坐标系xOy 中,已知点A ,B 在圆224x y +=上,且AB =P (3,-1), ()16PO PA PB ⋅+=uu u r uu r uu r,设AB 的中点M 的横坐标为x 0,则x 0的所有值为 ▲ . 【答案】115, 14.已知集合{|21}{|88}N N A x x k k B x x k k **==-∈==-∈,,,,从集合A中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若967S T +≤,则n m 2+的 最大值为 ▲ .二、解答题:本大题共6小题,共计90分. 15. (本小题满分14分)在平面直角坐标系中,设向量 a =(cos sin )αα,,b= ()ππsin()cos()66αα++,,其中π02α<<. (1)若a ∥b ,求α的值; (2)若1tan 27α=-,求⋅a b 的值. 【解】(1)因为a ∥b , 所以ππcos cos()sin sin()066αααα+-+=,……………………………………………2分所以πcos(2)06α+=. …………………………………………………………………4分因为π02α<<,所以ππ7π2666α<+<. 于是ππ262α+=,解得π6α=. ………………………………………………………6分(2)因为π02α<<,所以02πα<<,又1tan 207α=-<,故π2π2α<<.因为sin 21tan 2cos 27ααα==-,所以cos27sin20αα=-<, 又22sin 2cos 21αα+=, 解得sin 2cos2αα==.……………………………………………………10分因此,⋅a b πππcos sin()+sin cos()sin(2)666ααααα=++=+…………………………12分ππsin 2cos cos 2sin 66αα=+(12+⋅=. ……………………………………14分 16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E .求证:(1)DE ∥平面ABB 1A 1;(2)BC 1⊥平面A 1B 1C .【证明】(1)因为三棱柱ABC -A 1B 1C 1为直三棱柱,A B C A 1 B 1C 1 ED (第16题)所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.………………3分又AB⊂平面ABB1 A1,DE⊄平面ABB1 A1,所以DE∥平面ABB1A1.………………………………………………………………6分(2)因为三棱柱ABC-A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1⊂平面A1B1C1,所以BB1⊥A1B1.………………………………………8分又A1B1⊥B1C1,BB1,B1C1⊂平面BCC1B1,BB1∩B1C1 = B1,所以A1B1⊥平面BCC1B1.……………………………………………………………10分又因为BC1⊂平面BCC1B1,所以A1B1⊥BC1.………………………………………12分又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A 1B 1∩B 1C = B 1,A 1B 1,B 1C ⊂平面A 1B 1C , 所以BC 1⊥平面A 1B 1C .………………………………………………………………14分 17. (本小题满分14分)图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构 成,其中前后两坡屋面ABFE 和CDEF 是全等的等腰梯形,左右两坡屋面EAD 和FBC 是全 等的三角形.点F 在平面ABCD 和BC 上的射影分别为H ,M .已知HM = 5 m ,BC = 10 m , 梯形ABFE 的面积是△FBC 面积的2.2倍.设∠FMH = θπ(0)4θ<<. (1)求屋顶面积S 关于θ的函数关系式; (2)已知上部屋顶造价与屋顶面积成正比,比例系数为k (k 为正的常数),下部主体造价与其高度成正比,比例系数为16 k .现欲造一栋上、下总高度为6 m 的别墅,试问:当θ为何值时,总造价最低?E F【解】(1)由题意FH ⊥平面ABCD ,FM ⊥BC , 又因为HM ⊂平面ABCD ,得FH ⊥HM .…………2分在Rt △FHM 中,HM = 5,FMH θ∠=,所以5cos FM θ=.……………………………………4分因此△FBC 的面积为1525102cos cos θθ⨯⨯=. 从而屋顶面积22=+V 梯形FBCABFE S SS 252516022 2.2cos cos cos θθθ=⨯+⨯⨯=.所以S 关于θ的函数关系式为160cos S θ=(π04θ<<). ………………………………6分 (2)在Rt △FHM 中,5tan =FH θ,所以主体高度为65tan =-h θ. ……………8分所以别墅总造价为16=⋅+⋅y S k h k160(65tan )16cos =⋅+-⋅k kθθ16080sin 96cos cos =-+k k k θθθ()2sin 8096cos -=⋅+k kθθ…………………………………………10分记2sin ()cos -=f θθθ,π04θ<<, A BC D E F H Mθ所以2sin 1()cos f θθθ-'=2, 令()0'=f θ,得1sin 2=θ,又π04θ<<,所以π6=θ.………………………………12分 列表:所以当π6=θ时,()f θ有最小值. 答:当θ为π6时该别墅总造价最低. …………………………………………………14分18.(本小题满分16分)如图,在平面直角坐标系xOy 中,已知椭圆C 1:2214x y +=,椭圆C 2:22221(0)y x a b a b +=>>,C 2与C 11,离心率相同. (1)求椭圆C 2的标准方程;(2)设点P 为椭圆C 2上一点.① 射线PO 与椭圆C 1依次交于点A B ,,求证:PA PB为定值; ② 过点P 作两条斜率分别为12k k ,的直线12l l ,,且直线12l l ,与椭圆C 1均有且只有一个公共点,求证:12k k ⋅为定值.【解】(1)设椭圆C 2的焦距为2c ,由题意,a =,c a=222a b c =+, 解得b ,因此椭圆C 2的标准方程为22182y x +=. ……………………………3分 (2)①1°当直线OP 斜率不存在时,1PA =,1PB ,则3PA PB ==- ……………………………4分2°当直线OP为y kx =,代入椭圆C 1所以22441Axk=+,同理22841Pxk =+所以222P A xx =,由题意,PAx x 与同号,所以PAx=,从而||||3||||P A P A PB P A x x x x PA PBxx x x --====--+所以3PA PB=-为定值. …………………………………………………(第18题)…………8分②设0()P x y ,,所以直线1l 的方程为010()y yk x x -=-,即1100y k x k y x =+-,记10t k yx =-,则1l 的方程为1y k x t =+,代入椭圆C 1的方程,消去y ,得22211(41)8440k x k tx t +++-=,因为直线1l 与椭圆C 1有且只有一个公共点, 所以22211(8)4(41)(44)0k t k t =-+-=V ,即221410kt -+=,将100t k y x =-代入上式,整理得,222010010(4)210x k x y k y --+-=, ……………12分同理可得,222020020(4)210xk x y k y --+-=,所以12k k ,为关于k 的方程2220000(4)210xk x y k y --+-=的两根,从而20122014y k k x -⋅=-.……………………………………………………………………14分又点在0()P x y ,椭圆C 2:22182y x +=上,所以220124yx =-,所以2012201211444x k k x --⋅==--为定值. ………………………………………………16分19.(本小题满分16分)已知函数21()2ln 2f x x xax a =+-∈,R.(1)当3a =时,求函数()f x 的极值;(2)设函数()f x 在0x x =处的切线方程为()y g x =,若函数()()y f x g x =-是()0+∞,上的单调增函数,求0x 的值;(3)是否存在一条直线与函数()y f x =的图象相切于两个不同的点?并说明理由.【解】(1)当3a =时,函数21()2ln 32f x x x x=+-的定义域为()0+∞,.则2232()3x x f x x xx-+'=+-=,令()f x '0=得,1x =或2x =. ………………………………………………………2分列表:所以函数()f x 的极大值为5(1)2f =-;极小值为(2)2ln 24f =-. ………………4分(2)依题意,切线方程为0()()()(0)y f x x x f x x '=-+>,从而0()()()()(0)g x f x x x f x x'=-+>,记()()()p x f x g x =-,则0()()()()()p x f x f x f x x x '=---在()0+∞,上为单调增函数,所以0()()()0p x f x f x '''=-≥在()0+∞,上恒成立,即0022()0p x x x x x '=-+-≥在()0+∞,上恒成立. …………………………………8分法一:变形得()02()0x x x x --≥在()0+∞,上恒成立 ,所以2xx =,又00x >,所以0x = (10)分法二:变形得022x x x x ++≥在()0+∞,上恒成立 ,因为2x x+≥x =时,等号成立), 所以002x x +,从而(20x ≤,所以0x =10分(3)假设存在一条直线与函数()f x 的图象有两个不同的切点111()T x y ,,222()T x y ,,不妨120x x <<,则1T 处切线1l 的方程为:111()()()y f x f x x x '-=-,2T 处切线2l 的方程为:222()()()y f x f x x x '-=-. 因为1l ,2l 为同一直线,所以12111222()()()()()().f x f x f x x f x f x x f x ''=⎧⎨''-=-⎩,……………………12分即()()11212221111122222122212122ln 2ln .22x a x a x x x x ax x x a x x ax x x a x x ⎧+-=+-⎪⎪⎨⎪+--+-=+--+-⎪⎩,整理得,122211222112ln 2ln .22x x x x x x =⎧⎪⎨-=-⎪⎩, ………………………………………………14分 消去2x 得,22112122ln 022x x x +-=.① 令212x t =,由120x x <<与122x x=,得(01)t ∈,,记1()2ln p t t tt=+-,则222(1)21()10t p t t t t -'=--=-<,所以()p t 为(01),上的单调减函数,所以()(1)0p t p >=. 从而①式不可能成立,所以假设不成立,从而不存在一条直线与函数()f x 的图象有两个 不同的切点. ……………………………………………………………………………16分20.(本小题满分16分)已知数列{}na 的各项均不为零.设数列{}na 的前n项和为S n ,数列{}2na 的前n 项和为T n ,且2340n n n SS T -+=,n *∈N .(1)求12a a ,的值;(2)证明:数列{}na 是等比数列;(3)若1()()0nn na naλλ+--<对任意的n *∈N 恒成立,求实数λ的所有值.【解】(1)因为2340nn n S S T -+=,*n ∈N .令1n =,得22111340aa a -+=,因为10a ≠,所以11a =.令2n =,得()()()22222314110a a a +-+++=,即22220aa +=,因为2a ≠,所以212a =-.……………………………………………………………3分(2)因为2340nn n S S T -+=,①所以2111340n n n SS T +++-+=, ②②-①得,()21111340n n n n n S S a a a +++++-+=,因为10n a +≠,所以()11340n n n S S a +++-+=,③ …………………………………5分所以()1340(2)nn nS S a n -+-+=≥, ④当2n ≥时,③-④得,()1130n nn na a a a ++++-=,即112n naa +=-,因为0na≠,所以112n na a+=-.又由(1)知,11a =,212a=-,所以2112aa=-,所以数列{}na 是以1为首项,12-为公比的等比数列. ……………………………8分 (3)由(2)知,()112n na -=-. 因为对任意的*n ∈N ,()()10n n na na λλ+--<恒成立, 所以λ的值介于()112n n --和()12nn -之间. 因为()()111022n nn n --⋅-<对任意的*n ∈N 恒成立,所以0λ=适合. ……………10分若0λ>,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有12n n λ-<恒成立.记2()(4)2n n p n n =≥,因为22211(1)21(1)()0222n n n n n n n p n p n +++-+++-=-=<, 所以()(4)1p n p =≤,即212nn ≤,所以12nn n ≤(*), 从而当25n n λ≥且≥时,有122n n nλ-≥≥,所以λ>不符. ………………………13分若0λ<,当n 为奇数时,()()11122nn n n λ--<<-恒成立,从而有2nn λ-<恒成立.由(*)式知,当15n n λ≥且≥-时,有12nn n λ-≥≥,所以0λ<不符.综上,实数λ的所有值为0. ………………………………………………………………16分 21.【选做题】A .[选修4-2:矩阵与变换](本小题满分10分)已知m ,n ∈R ,向量11⎡⎤=⎢⎥⎣⎦α是矩阵12m n ⎡⎤=⎢⎥⎣⎦M 的属于特征值3的一个特征向量,求矩阵M及另一个特征值.【解】由题意得,3=,M αα即11132123m m n n +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎣⎦,所以2 1.m n ==,即矩阵1221⎡⎤⎢⎥⎣⎦=M . …………………………………………………5分矩阵M 的特征多项式()212()14021f λλλλ--==--=--,解得矩阵M的另一个特征值为1λ-= (10)分B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为1x t y t=+⎧⎨=⎩,( t 为参数),椭圆C 的参数方程 为)(sin cos 2为参数,θθθ⎪⎩⎪⎨⎧==y x .设直线l 与椭圆C 交于A ,B 两点,求线段AB 的长.【解】由题意得,直线l 的普通方程为10x y --=.①椭圆C 的普通方程为2212x y +=.② …………………………………………………4分由①②联立,解得A (01),-,B ()4133,, ……………………………………………8分所以AB =.…………………………………………………10分C .[选修4-5:不等式选讲](本小题满分10分)已知x ,y ,z 均是正实数,且,164222=++z y x求证:6x y z ++≤.【证】由柯西不等式得,()()()222222212112x y z x y z ⎡⎤⎡⎤++++++⎢⎥⎣⎦⎣⎦≥……………5分因为222416xy z ++=,所以()2916364x y z ++⨯=≤,所以,6x y z ++≤,当且仅当“2x y z==”时取等号. …………………………10分【必做题】第22题、第23题,每小题10分,共计20分.22.(本小题满分10分)如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 平面ABCD ,AB = 1,AP = AD = 2.(1)求直线PB 与平面PCD 所成角的正弦值; (2)若点M ,N 分别在AB ,PC 上,且⊥MN 平面PCD ,试确定点M ,N 的位置.【解】(1)由题意知,AB ,以{}AB AD AP uu u r uuu r uu u r,,直角坐标系A xyz -,则(100)(120)(020)(002)B C D P ,,,,,,,,,,,.从而(102)(122)(0PB PC PD =-=-=,,,,,,uu r uu u r uu u r 设平面PCD 的法向量(x =n 则00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n uu u ruu u r ,,即220220x y z y z +-=⎧⎨-=⎩,,不妨取1y =,则01x z ==,.(第22题)所以平面PCD 的一个法向量为(011)=n ,,. ………………………………………3分设直线PB 与平面PCD 所成角为θ,所以sin cos PB PB PB θ⋅=〈〉==⋅n n nuu ruu ruu r,即直线PB 与平面PCD所成角的正弦值为.……………………………………5分 (2)设(00)M a ,,,则(00)MA a =-,,,uuu r设PN PC λ=,uuu r uu u r则()22PN λλλ=,,-,uuu r而(002)AP =,,,uu u r所以(222)MN MA AP PN a λλλ=++=--uuu r uuu r uu u r uuu r,,. ……………………………………8分由(1)知,平面PCD 的一个法向量为(011)=n ,,,因为MN ⊥平面PCD ,所以MN uuu r∥n .所以0222a λλλ-=⎧⎨=-⎩,,解得,1122a λ==,. 所以M 为AB 的中点,N 为PC 的中点. …………………………………………10分 23.(本小题满分10分)已知*12(4)n a a a n n ∈N L ≥,,,,均为非负实数,且122n a a a +++=L .证明:(1)当4n =时,12233441+++1a aa a a a a a ≤;(2)对于任意的*4n n ∈N ≥,,122311++++1n n n a a a a a a a a -≤L .证明:(1)当4n =时,因为1a ,2a ,…,4a 均为非负实数,且12342a aa a +++=,所以122334412134313124+++=(+)+(+)(+)(+)a a a a a a a a a a a a a a a a a a =………………………2分23124(+)+(+)=12a a a a ⎡⎤⎢⎥⎣⎦≤.………………………………………………………………4分(2)①当4n =时,由(1)可知,命题成立; ②假设当(4)n k k =≥时,命题成立,即对于任意的4k ≥,若1x ,2x ,…,kx 均为非负实数,且12+++2kx x x=L ,则122311++++1k kk x x x x x x x x -≤L .则当+1n k =时,设12+1++++2k k a a a a =…,并不妨设{}+112+1max k k k a a a a a =,,…,,.令()1122311+k k k k x a a xa x a x a -+====,,,,则12+++2kx x x=…. 由归纳假设,知122311++++1k k k x x x x x x x x -L ≤.………………………………………8分因为123a a a ,,均为非负实数,且+11k aa ≥,所以121123112+()()k k x x x x a a a aa a +=+++23111312122311k k k a a a a a a a a a a a a a a +++=+++++≥.所以1212311223113411(+)+(++)()()k k kk k k x x x x x x xx a a a a a a a a a a -+++++++L L ≥≥,即1223+1+11++++1kk k a a a a a aa a L ≤,也就是说,当+1n k =时命题也成立. 所以,由①②可知,对于任意的4n ≥,122311++++1n n n a a a a a a a a -…≤.…………10分。
填空题满分练(6)1.已知全集U =R ,N ={x |x (x +3)<0},M ={x |x <-1},则图中阴影部分表示的集合是________.答案 {x |-1≤x <0}2.(2018·江苏省高考冲刺预测卷)若复数z =1-i 2-i ,则z 的虚部为________.答案 -15解析 z =1-i 2-i =(1-i )(2+i )(2-i )(2+i )=3-i5,其虚部为-15.3.已知数列{a n }满足:对于∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=________.答案132解析 由于a n ·a m =a n +m (m ,n ∈N *),且a 1=12.令m =1,得12a n =a n +1,所以数列{a n }是公比为12,首项为12的等比数列.因此a 5=a 1q 4=⎝⎛⎭⎫125=132.4.如图所示,一家面包销售店根据以往某种面包的销售记录绘制了日销售量的频率分布直方图.若一个月以30天计算,估计这家面包店一个月内日销售量不少于150个的天数为________.答案 9解析 这家面包店一个月内日销售量不少于150个的天数为(0.004+0.002)×50×30=9.5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是________. 答案 ⎝⎛⎭⎪⎫3-12,12解析 由题意可得PF 1=F 1F 2=2c ,再由椭圆的定义可得PF 2=2a -PF 1=2a -2c . 设∠PF 1F 2=θ,又60°<∠PF 1F 2<120°, ∴-12<cos θ<12.在△PF 1F 2中,由余弦定理可得cos θ=c 2-a 2+2ac 2c 2,由-12<cos θ<12,可得e 的取值范围是⎝ ⎛⎭⎪⎫3-12,12. 6.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =yx -3的最小值是________.答案 -2解析 画出满足约束条件的可行域,如图中阴影部分所示(含边界),联立⎩⎪⎨⎪⎧x -2y +2=0,x -y =0,解得A (2,2),z =yx -3的几何意义为可行域内的点与定点P (3,0)的连线的斜率. ∵k P A =2-02-3=-2,∴z =yx -3的最小值是-2. 7.已知△ABC 的三个内角A ,B ,C 依次成等差数列,BC 边上的中线AD =7,AB =2,则S △ABC =________. 答案 3 3解析 ∵A ,B ,C 成等差数列,∴B =60°,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD ·cos B ,即7=4+BD 2-2BD , ∴BD =3或-1(舍去),可得BC =6,∴S △ABC =12AB ·BC ·sin B =12×2×6×32=3 3.8.已知三棱锥P -ABC 内接于球O ,P A =PB =PC =2,当三棱锥P -ABC 的三个侧面的面积之和最大时,球O 的表面积为________. 答案 12π解析 由于三条侧棱相等,根据三角形面积公式可知,当P A ,PB ,PC 两两垂直时,侧面积之和最大.此时P A ,PB ,PC 可看成正方体一个顶点的三条侧棱,其外接球直径为正方体的体对角线,即4R 2=3·22=12,故球的表面积为4πR 2=12π.9.给出如图所示的流程图,若输入的x 的值为-5,则输出的y 值是________.答案 0解析 由流程图知,若输入的x 的值为-5,⎝⎛⎭⎫12-5=25=32>2,程序继续运行x =-3,⎝⎛⎭⎫12-3=23=8>2, 程序继续运行x =-1,⎝⎛⎭⎫12-1=2, 不满足⎝⎛⎭⎫12x >2,∴执行y =log 2x 2=log 21=0.10.若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是⎝⎛⎭⎫π8,0,则f (x )的最小正周期是________. 答案 π解析 由f (x )=a 2+b 2sin(ωx +φ)⎝⎛⎭⎫tan φ=b a 图象的对称轴方程为x =π4ω可知,π4+φ=π2+k π,k ∈Z ,解得φ=π4+k π,k ∈Z ,即ba=tan φ=1,所以a =b .又f ′(x )=aωcos ωx -bωsin ωx 的对称中心为⎝⎛⎭⎫π8,0,则f ′⎝⎛⎭⎫π8=0,即aω⎝⎛⎭⎫cos ωπ8-sin ωπ8=0,所以ωπ8=π4+k π,k ∈Z ,解得ω=2+8k ,k ∈Z ,又因为0<ω<5,所以ω=2,所以T =2πω=π.11.在正三角形ABC 内任取一点P ,则点P 到A ,B ,C 的距离都大于该三角形边长一半的概率为________. 答案 1-3π6解析 满足条件的正三角形ABC 如图所示.设边长为2,其中正三角形ABC 的面积S △ABC =34×4= 3. 满足到正三角形ABC 的顶点A ,B ,C 的距离至少有一个小于等于1的平面区域如图中阴影部分所示,其加起来是一个半径为1的半圆, 则S 阴影=12π,则使取到的点到三个顶点A ,B ,C 的距离都大于1的概率P =1-3π6. 12.已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是________. 答案2+1解析 设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1,∴x 2+(y +2)2=1,x 2+(y +2)2=1,则点M 的轨迹是以C 为圆心,1为半径的圆. ∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1),则|OA →+OB →+OM →|=(x +1)2+(y +1)2,其几何意义表示圆x 2+(y +2)2=1上的点与点P (-1,-1)间的距离.又点P (-1,-1)在圆C 的外部,∴|OA →+OB →+OM →|max =|PC →|+1=(0+1)2+(-2+1)2+1=2+1.13.已知P 为函数y =4x 的图象上任一点,过点P 作直线P A ,PB 分别与圆x 2+y 2=1相切于A ,B 两点,直线AB 交x 轴于M 点,交y 轴于N 点,则△OMN 的面积为________. 答案 18解析 不妨设点P 在第一象限,P ⎝⎛⎭⎫x 0,4x 0,则PO 2=x 20+16x 20, P A 2=PB 2=PO 2-12=x 20+16x 20-1, 故以P 为圆心,P A 为半径的圆的方程为()x -x 02+⎝⎛⎭⎫y -4x 02=x 20+16x 20-1, 联立x 2+y 2=1,两圆方程作差可得直线AB 的方程为x 0x +4x 0y -1=0,故M ⎝⎛⎭⎫1x 0,0,N ⎝⎛⎭⎫0,x 04, 所以△OMN 的面积为12·1x 0·x 04=18.14.函数y =f (x )的定义域为D ,若∀x ∈D ,∃a ∈[1,2],使得f (x )≥ax 恒成立,则称函数y =f (x )具有性质P ,现有如下函数:①f (x )=e x -1;②f (x )=2cos 2⎝⎛⎭⎫x -π4-1(x ≤0); ③f (x )=⎩⎪⎨⎪⎧ln (1-x ),x <0,(x -1)3+1,x ≥0. 则具有性质P 的函数f (x )为________.(填序号) 答案 ①②解析 ①设φ(x )=e x -1-x (x ∈R ),则φ′(x )=e x -1-1.当x >1时,φ′(x )>0;当x <1时,φ′(x )<0. ∴φ(x )min =φ(1)=0,所以e x -1-x ≥0,e x -1≥x ,故∃a =1,使f (x )≥ax 在R 上恒成立,①中函数f (x )具有性质P ; ②易知f (x )=2cos 2⎝⎛⎭⎫x -π4-1=sin 2x (x ≤0). 令φ(x )=f (x )-2x =sin 2x -2x (x ≤0), 则φ′(x )=2cos 2x -2.∴φ′(x )≤0,∴φ(x )在(-∞,0]上是减函数, ∴φ(x )min =φ(0)=0,故f (x )≥2x 恒成立. ∴∃a =2,使得f (x )≥ax 在(-∞,0]上恒成立, ②中函数f (x )具有性质P ;③作函数y =f (x )与直线y =ax 的图象,显然当y =ax 过点O (0,0),A (1,1),B (2,2)时,斜率a =1.根据图象知,不存在a ∈[1,2],使f (x )≥ax 恒成立. 因此③中函数f (x )不具有性质P . 综上可知,具有性质P 的函数为①②.。
2019届江苏高考数学二轮复习附加题满分练2理(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届江苏高考数学二轮复习附加题满分练2理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届江苏高考数学二轮复习附加题满分练2理(word版可编辑修改)的全部内容。
附加题满分练21.(2018·江苏省盐城中学质检)已知AB是圆O的直径,P是上半圆上的任意一点,PC是∠APB 的平分线,E是下半圆的中点.求证:直线PC经过点E。
证明连结AE,EB,OE,则∠AOE=∠BOE=90°。
因为∠APE是圆周角,∠AOE同弧上的圆心角,所以∠APE=错误!∠AOE=45°.同理可得∠BPE=45°,所以PE是∠APB的平分线。
又PC也是∠APB的平分线,∠APB的平分线有且只有一条,所以PC与PE重合。
所以直线PC经过点E。
2.(2018·苏州、南通等六市模拟)在平面直角坐标系xOy中,已知A错误!,B错误!,C错误!。
设变换T1,T2对应的矩阵分别为M=错误!,N=错误!,求对△ABC依次实施变换T1, T2后所得图形的面积。
解依题意,依次实施变换T1,T2所对应的矩阵NM=错误!错误!=错误!.则错误!错误!=错误!,错误!错误!=错误!,错误!错误!=错误!。
∴A错误!,B错误!,C错误!分别变为点A′错误!,B′错误!,C′错误!。
∴所得图形的面积为错误!×6×4=12.3。
已知两个动点P,Q分别在两条直线l1:y=x和l2:y=-x上运动,且它们的横坐标分别为角θ的正弦,余弦,θ∈[0,π],记错误!=错误!+错误!,求动点M的轨迹的普通方程。
解答题满分练21.如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,侧面PAD ⊥底面ABCD, PA ⊥PC ; (1)求证:平面PAB ⊥平面PCD ; (2)若过点B 的直线l 垂直于平面PCD , 求证:l ∥平面PAD .证明 (1)因为ABCD 为矩形,所以CD ⊥AD ,因为侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD, CD ⊂平面ABCD ,所以CD ⊥平面PAD , 因为AP ⊂平面PAD ,所以PA ⊥CD ,又PA ⊥PC, PC ∩CD =C, CD ,PC ⊂平面PCD , 所以AP ⊥平面PCD ,又AP ⊂平面PAB ,所以平面PAB ⊥平面PCD . (2)由(1)知,AP ⊥平面PCD ,又l ⊥平面PCD , 所以l ∥PA ,又l ⊄平面PAD, AP ⊂平面PAD ,所以l ∥平面PAD .2.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 所对的边,且满足cos B cos C +b 2a +c =0 .(1)求角B 的值;(2)若c =2,AC 边上的中线BD =32,求△ABC 的面积. 解 (1)cos B cos C +b 2a +c =0⇔cos B cos C +sin B2sin A +sin C =0,所以cos B (2sin A +sin C )+sin B cos C =0, 所以2sin A cos B +cos B sin C +sin B cos C =0, 所以2sin A cos B +sin(B +C )=0, 所以sin A (2cos B +1)=0, 因为sin A ≠0,所以cos B =-12.所以B =2π3.(2)延长BD 到E ,使BD =DE ,易知四边形AECB 为平行四边形,在△BEC 中,EC =2,BE =2BD =3,因为∠ABC =2π3,所以∠BCE =π3,由余弦定理得,BE 2=EC 2+BC 2-2EC ·BC ·cos∠BCE ,即3=22+a 2-2·2a ·cos π3, 即a 2-2a +1=0, 解得a =1,S △ABC =12ac sin B =12×1×2×32=32. 3.某隧道设计为双向四车道,车道总宽20米,要求通行车辆限高4.5米,隧道口截面的拱线近似地看成抛物线形状的一部分,如图所示建立平面直角坐标系xOy .(1)若最大拱高h 为6米,则隧道设计的拱宽l 是多少?(2)为了使施工的土方工程量最小,需隧道口截面面积最小.现隧道口的最大拱高h 不小于6米,则应如何设计拱高h 和拱宽l ,使得隧道口截面面积最小?(隧道口截面面积公式为S =23lh )解 (1)设抛物线的方程为y =-ax 2(a >0),则抛物线过点⎝ ⎛⎭⎪⎫10,-32,代入抛物线方程得a =3200,令y =-6,解得x =±20,则隧道设计的拱宽l 是40米.(2)抛物线最大拱高为h 米,h ≥6,抛物线过点⎝ ⎛⎭⎪⎫10,-⎝ ⎛⎭⎪⎫h -92, 代入抛物线方程得a =h -92100.令y =-h ,则-h -92100x 2=-h ,解得x 2=100hh -92,则⎝ ⎛⎭⎪⎫l 22=100h h -92,h =92l 2l 2-400,∵h ≥6,∴92l 2l 2-400≥6,即20<l ≤40,∴S =23lh =23l ·92l 2l 2-400=3l3l 2-400,20<l ≤40,∴S ′=9l 2(l 2-400)-3l 3·2l (l 2-400)2=3l 2(l 2-1 200)(l 2-400)2=3l 2(l +203)(l -203)(l 2-400)2, 当20<l <203时,S ′<0;当203<l ≤40时,S ′>0, 即S 在(20,203)上单调递减,在(203,40]上单调递增, ∴当l =203时,S 取得最小值,此时l =203,h =274.答 当拱高为274米,拱宽为203米时,使得隧道口截面面积最小.4.已知圆C 与y 轴相切,圆心在直线2x -y =0上,且直线x -y =0被圆C 截得的弦长为2 2. (1)求圆C 的标准方程;(2)已知两定点A (0,1),B (0,-1),P 为圆C 上的动点,求PA 2+PB 2的取值范围. 解 (1)由已知可设圆心C (a,2a ),则r =|a |. 圆心到直线x -y =0的距离d =|a -2a |2=|a |2,则⎝⎛⎭⎪⎫|a |22+(2)2=|a |2,解得a =±2, 从而所求圆C 的标准方程为(x -2)2+(y -4)2=4 或(x +2)2+(y +4)2=4. (2)设P (x ,y ),则PA 2+PB 2=x 2+(y -1)2+x 2+(y +1)2=2(x 2+y 2)+2, 要求PA 2+PB 2的取值范围,只需求x 2+y 2的取值范围,而x 2+y 2的几何意义为圆C 上的点P (x ,y )到原点O (0,0)的距离的平方. 由圆心C 到原点O 的距离OC =25,知点P (x ,y )到原点O 的距离的最大值,最小值分别为25+2,25-2,则x 2+y 2的取值范围为[24-85,24+85],故PA 2+PB 2的取值范围为[50-165,50+165].5.已知函数f (x )=a ln x +bx (a ,b ∈R )在x =12处取得极值,且曲线y =f (x )在点(1,f (1))处的切线与直线x -y +1=0垂直. (1)求实数a ,b 的值;(2)若关于x 的不等式f (x )≥x 2-3x +k 有大于0的实数解,求实数k 的取值范围; (3)若对于任意的x ∈[1,+∞),不等式f (x )≤(m -2)x -m x恒成立,求实数m 的取值范围. 解 (1)f ′(x )=a x+b ,由题设可知f ′(1)=-1且f ′⎝ ⎛⎭⎪⎫12=0, 即⎩⎪⎨⎪⎧a +b =-1,2a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-2.代回检验可得,满足题意. 所以实数a ,b 的值分别为1和-2.(2)由(1)可知f (x )=ln x -2x ,所以不等式f (x )≥x 2-3x +k 即x 2-x -ln x +k ≤0. 令g (x )=x 2-x -ln x +k (x >0),则g ′(x )=2x -1-1x =2x 2-x -1x =(2x +1)(x -1)x,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增,则g (x )min =g (1)=k . 因此,欲使不等式f (x )≥x 2-3x +k 有大于0的实数解,则k ≤0. 即实数k 的取值范围是(-∞,0].(3)对于任意的x ∈[1,+∞),f (x )≤(m -2)x -m x恒成立,等价于ln x -m ⎝ ⎛⎭⎪⎫x -1x ≤0在x ∈[1,+∞)上恒成立.设h (x )=ln x -m ⎝⎛⎭⎪⎫x -1x (x ≥1),则h ′(x )=1x-m ⎝ ⎛⎭⎪⎫1+1x 2=-mx 2+x -m x2. 若m ≤0,则h ′(x )>0,h (x )在[1,+∞)上为增函数,h (x )≥h (1)=0,这与题设h (x )≤0矛盾.若m >0,方程-mx 2+x -m =0的判别式Δ=1-4m 2.(i)当Δ≤0,即m ≥12时,h ′(x )≤0,所以h (x )在[1,+∞)上单调递减,所以h (x )≤h (1)=0,即不等式成立;(ii)当0<m <12时,设方程-mx 2+x -m =0的两根为x 1,x 2(x 1<x 2),x 1=1-1-4m 22m ∈(0,1),x 2=1+1-4m22m ∈(1,+∞),当x ∈[1,x 2)时,h ′(x )>0,h (x )单调递增,h (x )≥h (1)=0,与题设矛盾. 综上所述,m ≥12.即实数m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 6.(2018·江苏泰州中学模拟)已知数列{}a n ,{}b n ,S n 为数列{}a n 的前n 项和,向量x =(1,b n ),y =(a n -1,S n ),x ∥y .(1)若b n =2,求数列{}a n 的通项公式; (2)若b n =n2,a 2=0.①证明:数列{}a n 为等差数列; ②设数列{}c n 满足c n =a n +3a n +2,问是否存在正整数l ,m (l <m ,且l ≠2,m ≠2),使得c l ,c 2,c m 成等比数列?若存在,求出l ,m 的值;若不存在,请说明理由. (1)解 由x =(1,b n ),y =(a n -1,S n ),x ∥y , 得:S n =(a n -1)b n ,若b n =2,则S n =2a n -2.①当n =1时,S 1=2a 1-2,即a 1=2, 又S n +1=2a n +1-2,②②-①得:S n +1-S n =2a n +1-2a n , 即a n +1=2a n ,所以a n +1a n=2,又a 1=2, 所以{}a n 是首项为2,公比为2的等比数列. 所以a n =2n.(2)①证明 因为b n =n2,则2S n =na n -n ,③当n =1时,2S 1=a 1-1,即a 1=-1, 又2S n +1=(n +1)a n +1-(n +1),④④-③得:2S n +1-2S n =(n +1)a n +1-na n -1, 即(n -1)a n +1-na n -1=0,⑤ 又na n +2-(n +1)a n +1-1=0,⑥⑥-⑤得:na n +2-2na n +1+na n =0,即a n +2+a n =2a n +1,所以数列{}a n 为等差数列.②解 因为a 1=-1,a 2=0,数列{a n }为等差数列, 所以数列{}a n 是首项为-1,公差为1的等差数列.a n =-1+(n -1)×1=n -2,所以c n =n +1n,假设存在正整数l ,m (l <m ,且l ≠2,m ≠2),使得c l ,c 2,c m 成等比数列, 即c 22=c l c m , 可得94=l +1l ·m +1m,整理得5lm -4l =4m +4,即l =4m +45m -4,由4m +45m -4≥1,得1≤m ≤8, 一一代入检验⎩⎪⎨⎪⎧m =1,l =8或⎩⎪⎨⎪⎧m =2,l =2或⎩⎪⎨⎪⎧m =3,l =1611或⎩⎪⎨⎪⎧m =4,l =54或⎩⎪⎨⎪⎧m =5,l =87或⎩⎪⎨⎪⎧m =6,l =1413或⎩⎪⎨⎪⎧m =7,l =3231或⎩⎪⎨⎪⎧m =8,l =1.又l ,m 为正整数,l <m ,且l ≠2,m ≠2, 所以存在l =1,m =8符合题意.。