荧光偏振技术原理
- 格式:ppt
- 大小:5.75 MB
- 文档页数:40
62原理:当荧光分子受平面偏振光激发时,如果分子在受激发时期(对于荧光素约持续 4纳秒)保持静止,发射光将位于同样的偏振平面。
如果在受激发时期,分子旋转或翻转偏离这一平面,发射光将位于与激发光不同的偏振面。
如果用垂直的偏振光激发荧光素,可以在垂直的和水平的偏振平面检测发射光光强(发射光从垂直平面偏向水平平面的程度与荧光素标记的分子的迁移率有关)。
如果分子很大,激发时发生的运动极小,发射光偏振程度较高。
如果分子小, 分子旋转或翻转速度快,发射光相对于激发光平面将去偏振化。
如图2.图2 荧光偏振检测原理任何物质都处于不断运动当中,液态环境中的荧光分子也不例外。
因此当受到偏振光激发时,荧光分子的运动状态例如旋转、翻转、相互结合、排斥、溶液的粘度、温度等这些因素都有可能对这个荧光因子受激发后发出的偏振光的性质产生影响。
对此进行分析比较,有可能揭开物质活动的内在规律,达到研究目的,“荧光偏振”。
近年来,以这种物理学现象为基础的技术在生命科学研究的多个领域中扮演着越来越重要的角色。
因此,我们可以看到,以荧光偏振为基础发展的技术可用来研究生命科学中分子之间的相互作用,以及分子与所处环境——“小”至核酸和蛋白结构,“大”至整个细胞——的相互作用。
相对于传统研究方法,荧光偏振技术在溶液中进行,可最大程度的模拟真实生命环境;利用它,可以实时跟踪监测分子间结合/分离的变化,并解决一直以来困扰荧光技术使用者们对于荧光无法定量的烦恼。
最为重要的是,相对于一直被人们使用的放射性同位素研究方法,它更为安全可靠,不会在实验过程中对研究者造成威胁,也不会产生难以处理的具有放射性的废弃物。
此外,荧光偏振所需的样品量少,灵敏度高,重复性好,操作简便。
概述光由微小的波构成,光波可以在任何一个平面上均匀的振动。
当其通过某些平面时,有可能因受到平面的作用将光波的能量分成不均匀的光束,振动平面也就发生了变化,可能在某一个方向的振动强或弱于其他平面,这种光称为偏振光。
主要用途:圆偏振荧光在发光材料、生物蛋白、信息显示存储、电子学、非线性光学等领域有广泛的用途和应用前景,引起科学家极大的关注和兴趣。
采用圆偏振荧光光谱仪可提供分子激发态的结构信息,表征聚合物结构,成为研究有机化合物的立体构型的一个重要方法。
工作原理:光是一种电磁波,可用振动的电场和与之垂直的磁场来描述,若光波在其传播途径中具体某一点上只有一个振动方向,但振动方向随光波的传播而有规律的偏转一定角度但振幅不变,其电场矢量末端的运动轨迹为螺旋状,该螺旋的横截面为圆形,这种偏振光为圆偏振光。
人们在圆二色的基础上,发现圆偏振荧光的左、右圆偏振光的强度不同。
通常以左、右圆偏振荧光的强度差CPL=△F= FL-FR,作为圆偏振荧光的量度。
之前文献报道的圆偏振荧光检测都是在相关科研工作者自己设计和建造的仪器上进行的。
直到1972年以色列魏茨曼科技学院Steinberg和Gafni (SG) 提出图一A所示的圆偏振荧光调制测量方法,基本组成部分为:激发源、单色器、样品、光学弹性调制器、偏光片、发射单色器、光电倍增管、锁相放大器及计算机。
该方法将调制后的光电信号和PEM光学弹性调制器信号输入给锁相放大器,通过二者频率与相位锁相从荧光中提取圆偏振荧光。
1982年荷兰莱顿大学的Schippers,van den Beukle和Dekkers (SBD)提出了图一B所示的圆偏振荧光测量方法,该方法利用光子计数取代锁相放大器,解决了锁相放大器的输出不稳定问题。
其后复杂蛋白结构测量主要采用的是该方法,但是对于弱的圆偏振荧光测量还是速度很慢。
1992-1995年期间,随着TDC时间数字转换器等电子技术的发展,美国密西根大学的Schauerte,Steel,和Gafni (SSG) 进一步提出了图一C所示的圆偏振荧光直接相减测量方法。
该方法采用DGG延迟选通脉冲发生器,分别测量△F= FL-FR公式中的FL左圆偏振荧光和FR右圆偏振荧光,两者相减直接得到真正的圆偏振荧光△F,利用公式glum=2(FL-FR)/(FL+FR)求得不对称因子。
荧光偏振与荧光偏振免疫分析法【摘要】本文简单介绍了荧光偏振原理和荧光偏振免疫分析(FPIA)的原理,并就荧光偏振及FPIA在环境、食品安全、医疗卫生和蛋白质研究等方面的实际应用进行了简单介绍和举例。
【关键词】荧光偏振免疫分析应用从1852年,Stokes首次提出“荧光(fluorescence)”一词,人们对荧光现象的研究就不断深入,并发展出了荧光分析技术,荧光分析是指利用一些物质被电磁辐射激发后产生反映该物质特性的荧光而对该物质进行定性定量分析的方法。
随着相关理论和仪器的发展,荧光分析的手段和技术水平也不断发展,现在荧光分析以其高灵敏度、高选择性、低样品用量、方法简便等诸多优点,在化学、医药、环境、信息、生命科学等领域被人们广泛使用。
基于荧光偏振发展的荧光偏振免疫分析法是荧光分析中一个重要的组成部分。
一、荧光偏振原理荧光偏振的原理最初是1920年由Perrin建立的。
溶液中荧光分子受偏振光激发,如激发时分子保持静止,则发射的荧光仍有偏振性,且如分子分子旋转或翻转,发射荧光的偏振平面会不同于激发光偏振平面。
虽然实际测量常得消偏振的荧光,但荧光偏振技术有着重要应用[1]。
荧光偏振光强度P定义为:P=(I⊥-I∥)/(I⊥+I∥)其中,I⊥和I∥表示荧光子被激发后,发射光在垂直和水平方向上的强度。
对于荧光偏振仪器,检测到的荧光强度:P=(Ivv-G×Ivh)/(Ivv+G×Ivh)式中,下标分别代表起偏器和检偏器方向,v为垂直方向,h为水平方向,G 为校正因子,G=Ihv/Ihh。
荧光偏振光强度P与测定体系中各因素的关系可用Perrin方程表示:(1/P-1/3)=1/P0+(1/P0+1/3)(RT/V)(τ/η)其中,P0为极限荧光偏振光强度,R为气体常数,T为绝对温度,V为摩尔分子体积,τ为荧光寿命,η为溶液的粘度。
由上式知当溶液的温度和粘度都固定时,P值主要取决于荧光子的分子体积。
荧光偏振度1. 什么是荧光偏振度?荧光偏振度是描述荧光分子在激发态和基态之间发生跃迁时所产生的偏振光的性质的一个参数。
它可以用来衡量荧光分子在不同方向上发射的光的强度差异,从而反映分子在激发态和基态之间跃迁的选择性。
2. 荧光偏振度的测量方法2.1 偏振荧光显微镜偏振荧光显微镜是一种常用的测量荧光偏振度的方法。
通过使用偏振片和分析片,可以选择性地过滤掉特定方向上的偏振光,从而实现对样品中发射出的荧光信号进行测量。
2.2 荧光极化法荧光极化法是另一种常用的测量荧光偏振度的方法。
它利用样品中荧光分子在激发态和基态之间跃迁时所产生的偏振性质。
通过测量样品中垂直和水平方向上的荧光信号强度,可以计算出荧光偏振度。
2.3 其他方法除了偏振荧光显微镜和荧光极化法,还有一些其他的方法可以用来测量荧光偏振度,如荧光共振能量转移、荧光寿命测量等。
这些方法在不同的实验条件下具有不同的优势和适用性。
3. 荧光偏振度的应用3.1 生物医学研究荧光偏振度在生物医学研究中有着广泛的应用。
它可以用来研究蛋白质的结构和功能,通过测量蛋白质中色氨酸和酪氨酸的荧光偏振度,可以获取它们在分子水平上的信息。
3.2 材料科学在材料科学领域,荧光偏振度也被广泛应用于材料表征和分析。
在液晶材料研究中,通过测量液晶分子中发射出的荧光信号的偏振性质,可以了解到液晶分子排列的方向和有序程度。
3.3 光电子学荧光偏振度在光电子学领域也有重要的应用。
在液晶显示技术中,荧光偏振度可以用来控制液晶分子的排列方向,从而实现液晶显示器的图像显示。
4. 荧光偏振度的影响因素荧光偏振度受到多种因素的影响,包括荧光分子的结构、环境条件以及测量方法等。
这些因素对荧光偏振度的影响需要进行详细的研究和分析。
5. 结论荧光偏振度是描述荧光分子在激发态和基态之间发生跃迁时所产生的偏振光性质的一个重要参数。
通过不同的测量方法和应用领域,我们可以深入了解荧光偏振度在生物医学研究、材料科学和光电子学等领域中的应用价值。
荧光偏振技术在细胞成像中的应用荧光偏振技术是一种基于荧光分析的物理测量技术。
它可以探测到样品发出的荧光信号背后的分子转变信息,进而解析出样品在空间、时间和空间-时间交叉维度上的结构和动态变化。
荧光偏振技术能够为科学家提供极其强大的工具,在于细胞成像等领域的研究中发挥重要作用。
在细胞成像中,荧光偏振技术具有许多优势。
首先,它可以测定细胞成分的空间分布,进而确定细胞结构的三维构型。
其次,通过荧光偏振技术,可以研究分子在细胞中的动态过程,比如酶反应、膜蛋白的转位等复杂的细胞代谢事件。
第三,荧光偏振技术可以测定微小结构的空间方向分布,如蛋白质聚集态、细胞色素单位分布等。
荧光偏振技术的应用非常广泛。
它既可应用与体内、体外的生物组织成像,也可应用于细胞培养中。
在体外成像中,可以通过荧光偏振二能级系统研究细胞薄片等外部结构的偏振性质。
而在细胞培养中,可以通过纳米颗粒探针等方式,直接观察单个分子的荧光偏振二能级系统,研究分子位点的转变。
另外,荧光偏振技术还可以应用于分子交互界面研究、大分子组装以及复杂膜分子的研究等方面。
荧光偏振技术的实验设备非常先进。
其中,一种被广泛应用于细胞成像的技术是荧光偏振显微镜。
它利用偏振显微镜的成像功能,采集细胞荧光偏振信号,从而获得样品三维结构的信息。
荧光偏振显微镜是一种非常先进的荧光技术,它可以通过非常细微的荧光过程,探测到分子的洛克态信息,进而揭示分子在空间和时间上的动态行为。
荧光偏振技术的应用在细胞成像研究中具有巨大的潜力。
随着技术的不断发展和完善,荧光偏振显微镜可以越来越高精度的探测细胞体内的物质分子,从而揭示细胞的复杂活动。
特别是在生物医学和药物研发领域,荧光偏振技术具有非常重要的作用,可以帮助科学家更好地认知人类健康和疾病治疗的问题,推进更加快速和更加精确的医疗研究。
总之,荧光偏振技术在细胞成像中应用非常广泛,是一种非常有前景和有巨大应用潜力的技术。
随着技术的不断发展,荧光偏振技术能够为科学家提供更为高效、更为简单、更为精确的成像技术,进而加速我们对细胞科学的研究和认知,更好地服务于人类健康和生命科学的发展。
适配体解离常数测量方法适配体作为一种重要的生物分子识别元素,广泛应用于生物检测、药物筛选等领域。
适配体与目标分子结合的稳定性可通过解离常数来衡量。
本文将详细介绍适配体解离常数的测量方法,以供研究者参考。
一、荧光偏振法荧光偏振法是测定适配体解离常数的一种常用方法。
该技术基于荧光分子与适配体结合后,荧光偏振程度发生变化的原理。
具体步骤如下:1.将荧光标记的适配体与不同浓度的目标分子混合。
2.在一定温度下,测量混合体系的荧光偏振值。
3.通过非线性拟合分析荧光偏振值与目标分子浓度之间的关系,计算出适配体的解离常数。
二、紫外-可见光谱法紫外-可见光谱法是通过监测适配体与目标分子结合后引起的吸光度变化来测定解离常数。
具体步骤如下:1.将适配体与不同浓度的目标分子混合。
2.在一定波长范围内测量混合体系的吸光度。
3.通过分析吸光度变化,计算出适配体的解离常数。
三、等温滴定量热法等温滴定量热法(ITC)是一种直接测量生物分子结合热力学参数的方法。
通过监测滴定过程中体系的温度变化,可以得到适配体与目标分子结合的解离常数。
具体步骤如下:1.将适配体与目标分子混合,在一定温度下进行滴定。
2.记录滴定过程中体系的温度变化。
3.通过分析温度变化数据,计算出适配体的解离常数。
四、表面等离子共振法表面等离子共振法(SPR)是一种基于光学原理的检测技术。
通过监测适配体与目标分子结合过程中引起的表面等离子共振角度变化,可以测定解离常数。
具体步骤如下:1.将适配体固定在传感器芯片表面。
2.将不同浓度的目标分子流过芯片表面。
3.通过分析表面等离子共振角度变化,计算出适配体的解离常数。
五、总结以上四种方法均可用于测定适配体的解离常数。
研究者可根据实验条件、样品特性及设备要求选择合适的方法。
在实际应用中,结合多种方法可以提高测量结果的准确性和可靠性。
荧光偏振原理
荧光偏振原理是指当荧光光线经过偏振器时,其偏振方向会发生改变的现象。
荧光偏振原理的解释基于光的电磁波性质和物质的吸收与发射特性。
在一般情况下,光是一个横波,它的电矢量振动方向垂直于光传播方向。
然而,光线在通过某些材料或反射、散射时会发生偏振现象,即电矢量振动发生特定方向上的约束。
此时,我们可以用偏振器测量或控制光的偏振状态,其中偏振器可以是线偏振器、圆偏振器或椭圆偏振器。
当荧光光线经过偏振器时,偏振器会选择光电矢量振动特定方向上的分量,使
得透过偏振器的光的偏振方向与偏振器的方向相同。
荧光光线经过样品后,会激发样品中的物质,使其发射出特定波长的荧光。
这些发射的荧光有不同的振动方向,当这些荧光再次经过偏振器时,原本与偏振器方向相同的振动方向的分量会被偏振器选择透过,而与偏振器方向垂直的振动方向的分量则会被偏振器屏蔽。
因此,透过偏振器的荧光光线会产生偏振,其振动方向与偏振器的方向相同。
荧光偏振原理在科学研究和实验技术中有广泛应用。
通过分析荧光偏振可帮助
研究者了解物质分子的取向、结构和相互作用等信息。
此外,荧光偏振原理还在显微镜技术、生物医学和材料科学等领域得到应用,为我们提供了重要的研究工具和实验手段。
总之,荧光偏振原理描述了荧光光线经过偏振器时其偏振方向会发生改变的现象。
了解和应用荧光偏振原理对于深入理解物质的光学特性以及实验研究具有重要意义。