荧光偏振技术原理 ppt课件
- 格式:ppt
- 大小:4.38 MB
- 文档页数:40
62原理:当荧光分子受平面偏振光激发时,如果分子在受激发时期(对于荧光素约持续 4纳秒)保持静止,发射光将位于同样的偏振平面。
如果在受激发时期,分子旋转或翻转偏离这一平面,发射光将位于与激发光不同的偏振面。
如果用垂直的偏振光激发荧光素,可以在垂直的和水平的偏振平面检测发射光光强(发射光从垂直平面偏向水平平面的程度与荧光素标记的分子的迁移率有关)。
如果分子很大,激发时发生的运动极小,发射光偏振程度较高。
如果分子小, 分子旋转或翻转速度快,发射光相对于激发光平面将去偏振化。
如图2.图2 荧光偏振检测原理任何物质都处于不断运动当中,液态环境中的荧光分子也不例外。
因此当受到偏振光激发时,荧光分子的运动状态例如旋转、翻转、相互结合、排斥、溶液的粘度、温度等这些因素都有可能对这个荧光因子受激发后发出的偏振光的性质产生影响。
对此进行分析比较,有可能揭开物质活动的内在规律,达到研究目的,“荧光偏振”。
近年来,以这种物理学现象为基础的技术在生命科学研究的多个领域中扮演着越来越重要的角色。
因此,我们可以看到,以荧光偏振为基础发展的技术可用来研究生命科学中分子之间的相互作用,以及分子与所处环境——“小”至核酸和蛋白结构,“大”至整个细胞——的相互作用。
相对于传统研究方法,荧光偏振技术在溶液中进行,可最大程度的模拟真实生命环境;利用它,可以实时跟踪监测分子间结合/分离的变化,并解决一直以来困扰荧光技术使用者们对于荧光无法定量的烦恼。
最为重要的是,相对于一直被人们使用的放射性同位素研究方法,它更为安全可靠,不会在实验过程中对研究者造成威胁,也不会产生难以处理的具有放射性的废弃物。
此外,荧光偏振所需的样品量少,灵敏度高,重复性好,操作简便。
概述光由微小的波构成,光波可以在任何一个平面上均匀的振动。
当其通过某些平面时,有可能因受到平面的作用将光波的能量分成不均匀的光束,振动平面也就发生了变化,可能在某一个方向的振动强或弱于其他平面,这种光称为偏振光。
荧光偏振法荧光偏振法是一种用于研究生物大分子结构与功能的非常有用的技术手段。
荧光偏振法是利用荧光分子的特性来进行研究,荧光偏振法可以用于研究分子间的相互作用、分子内部结构的确定以及蛋白质的折叠状态等方面的问题。
以下是对荧光偏振法的详细介绍。
一、荧光偏振法的基本原理荧光偏振法是利用偏振光与荧光分子之间的相互作用来实现的。
荧光分子通常在能量激发后能够发出荧光,而荧光分子的发出方向与激发光的方向之间存在一定的关系。
因此,当将荧光分子暴露在偏振光的作用下时,在荧光发出时,会观察到特定的荧光偏振性质,这些性质可以用来研究分子结构、动力学和函数方面的问题。
荧光偏振法的基本原理可以通过极化法与偏振法来进行分析。
这些方法利用荧光分子的极化来探测荧光分子的偏振性质。
在极化法中,荧光分子处于热平衡状态下,因此,在具有不同极化方向的偏振光激发下,荧光分子发射的荧光强度也会发生变化。
在偏振法中,荧光分子产生的荧光偏振性质被用来研究分子的构象和方向性的问题。
二、荧光偏振法的优势荧光偏振法有很多的优势,包括以下几点:1. 荧光偏振法可以研究分子的结构和函数。
荧光偏振法可以通过测量荧光偏振性质来研究分子的结构和函数,这使得荧光偏振法成为了一个非常有用的技术手段。
2. 荧光偏振法具有高灵敏度和高分辨率。
荧光偏振法的灵敏度和分辨率都非常高,这使得荧光偏振法成为了一种非常重要的技术手段。
3. 荧光偏振法可以研究生物大分子的互作用。
荧光偏振法可以用来研究生物大分子的互作用,如蛋白质之间的相互作用、蛋白质-核酸相互作用等,这些研究对于研究生物大分子的结构和功能都非常重要。
三、荧光偏振法的应用荧光偏振法在生命科学研究中经常被使用。
荧光偏振法在蛋白质研究、膜研究、DNA/RNA研究、细胞动力学研究等方面都有广泛应用。
1. 荧光偏振法在蛋白质研究中的应用。
荧光偏振法可以用来研究蛋白质的结构和功能。
荧光标记的蛋白质可以用来研究其折叠状态、构象变化和互作用等方面的问题。
荧光偏振免疫测定的原理
荧光物质经单一平面的偏振光蓝光(波长485nm)照射后,可吸收光能跃入激发态;在恢复至基态时,释放能量并发出单一平面的偏振荧光(波长525nm)。
偏振荧光的强度与荧光物质受激发时分子转动的速度成反比。
大分子物质旋转慢,发出的偏振荧光强;小分子物质旋转快,其偏振荧光弱。
利用这一现象建立了荧光偏振免疫测定,用于小分子物质特别是药物的测定。
FPIA的试剂为荧光素标记的药物和抗药物的抗体,模式为均相竞争法,标本中的药物与荧光标记的药物与一定量的抗体竞争结合。
反应平衡后,与抗体结合的荧光标记药物的量与标本中药物浓度的量呈反比。
由于抗体的分子量远大于药物的分子量,游离的荧光标记药物与结合抗体的荧光标记药物所产生的偏振荧光强度相差甚远。
因此在F PIA中测定的偏振荧光强度与标本中药物的浓度呈反比。