八年级数学上册 第一章 勾股定理知识点归纳 (新版)北师大版
- 格式:doc
- 大小:379.00 KB
- 文档页数:3
北师版八年级数学第1章 勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDC B A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DC B A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A。
北师大版八年级上册数学第 1 讲《勾股定理》知识点梳理【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a,b ,斜边长为c ,那么a2+b2=c2.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用已知直角三角形的任意两条边长,求第三边;用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c .(1)若a =5,b =12,求c ;(2)若c =26,b =24,求a .【思路点拨】利用勾股定理a2+b2=c2来求未知边长.【答案与解析】解:(1)因为△ABC 中,∠C=90°,a2+b2=c2,a =5,b =12,所以c2=a2+b2= 52+122= 25 +144 = 169 .所以c =13.(2)因为△ABC 中,∠C=90°,a2+b2=c2,c =26,b =24,所以a2=c2-b2= 262- 242= 676 - 576 = 100 .所以a =10.【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.举一反三:【变式】在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c .(1)已知b =6,c =10,求a ;(2)已知a : c = 3 : 5 ,b =32,求a 、c .【答案】解:(1)∵∠C=90°,b =6,c =10,∴a2=c2-b2= 102- 62= 64 ,∴ a =8.(2)设a = 3k ,c = 5k ,∵∠C=90°,b =32,∴a2+b2=c2.即(3k )2+ 322=(5k )2.解得k =8.∴ a = 3k = 3⨯8 = 24 ,c = 5k = 5⨯8 = 40 .类型二、与勾股定理有关的证明2、(2015•丰台区一模)阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1 的方法将它们摆成正方形.由图1 可以得到(a+b)2=4×,整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1 中的四个全等的直角三角形摆成图2 所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:由图2 可以得到,整理,得,所以.【答案与解析】证明:∵S 大正方形=c 2,S 大正方形=4S △+S 小正方形=4×ab+(b ﹣a )2, ∴c 2=4× ab+(b ﹣a )2,整理,得2ab+b 2﹣2ab+a 2=c 2,∴c 2=a 2+b 2.故答案是:;2ab+b 2﹣2ab+a 2=c 2;a 2+b 2=c 2.【总结升华】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.举一反三:【变式】如图,在△ABC 中,∠C =90°,D 为 BC 边的中点,DE ⊥AB 于 E ,则 AE 2-BE 2 等于( )A .AC 2B .BD 2C .BC 2D .DE 2【答案】连接 AD 构造直角三角形,得类型三、与勾股定理有关的线段长,选 A .3、如图,长方形纸片 ABCD 中,已知 AD =8,折叠纸片使 AB 边与对角线 AC 重合,点 B 落在点 F 处,折痕为 AE ,且 EF =3,则 AB 的长为( )A .3B .4C .5D .6【答案】D ;⎨ ⎩【解析】解:设 AB = x ,则 AF = x ,∵ △ABE 折叠后的图形为△AFE ,∴ △ABE ≌△AFE .BE =EF ,EC =BC -BE =8-3=5,在 Rt △EFC 中,由勾股定理解得 FC =4,在 Rt △ABC 中, x 2 + 82 = ( x + 4)2,解得 x = 6 . 【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解.类型四、与勾股定理有关的面积计算4、如图,直线 l 上有三个正方形 a ,b ,c ,若 a ,c 的面积分别为 5 和 11,则 b 的面积为( )A .6B .5C .11D .16【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由 b 是正方形,可求△ABC ≌△CDE .由勾股定理可求 b 的面积=a 的面积+c 的面积.【答案】D【解析】解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC ,在△ABC 和△CDE 中,⎧∠ABC = ∠CDE ∵ ⎪∠ACB = ∠DEC ⎪ AC = CE∴△ABC ≌△CDE∴BC=DE∵ AB 2 + BC 2 = AC 23 =8,S 4=10,则S=()∴AB2+DE2=AC 2∴b 的面积为5+11=16,故选D.【总结升华】此题巧妙的运用了勾股定理解决了面积问题,考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.举一反三:【变式】(2015•东莞模拟)如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 S 1=4,S 2=9,SA.25B.31C.32D.40【答案】解:如图,由题意得:AB2=S1+S2=13,AC2=S3+S4=18,∴BC2=AB2+AC2=31,∴S=BC2=31,故选B.类型五、利用勾股定理解决实际问题5、(2016 春•淄博期中)有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1 尺,斜放就恰好等于门的对角线,已知门宽4 尺,求竹竿高与门高.【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.【答案与解析】解:设门高为x 尺,则竹竿长为(x+1)尺,根据勾股定理可得:x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)答:门高7.5 尺,竹竿高8.5 尺.【总结升华】本题考查勾股定理的运用,正确运用勾股定理,将数学思想运用到实际问题中是解答本题的关键.举一反三:【变式】如图所示,一旗杆在离地面5 m 处断裂,旗杆顶部落在离底部12 m 处,则旗杆折断前有多高?【答案】解:因为旗杆是垂直于地面的,所以∠C=90°,BC=5 m ,AC=12 m ,∴AB2=BC 2+AC 2= 52+122= 169 .∴ AB =13 ( m ).∴BC+AB=5+13=18( m ).∴旗杆折断前的高度为18 m .。
第一章勾股定理1. 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为\(a\),\(b\),斜边长为\(c\),那么\(a^2 + b^2 = c^2\)。
2. 勾股定理的逆定理:如果三角形的三边长\(a\),\(b\),\(c\)满足\(a^2 + b^2 = c^2\),那么这个三角形是直角三角形。
第二章实数1. 无理数:无限不循环小数叫做无理数。
2. 平方根:如果一个数的平方等于\(a\),那么这个数叫做\(a\)的平方根。
一个正数有两个平方根,它们互为相反数;\(0\)的平方根是\(0\);负数没有平方根。
3. 算术平方根:正数\(a\)的正的平方根叫做\(a\)的算术平方根,记作\(\sqrt{a}\)。
4. 立方根:如果一个数的立方等于\(a\),那么这个数叫做\(a\)的立方根。
正数的立方根是正数,负数的立方根是负数,\(0\)的立方根是\(0\)。
第三章位置与坐标1. 在平面内,确定物体的位置一般需要两个数据。
2. 平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为\(x\)轴或横轴,竖直的数轴称为\(y\)轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
3. 点的坐标:对于平面内任意一点\(P\),过点\(P\)分别向\(x\)轴、\(y\)轴作垂线,垂足在\(x\)轴、\(y\)轴上对应的数\(a\),\(b\)分别叫做点\(P\)的横坐标、纵坐标,有序数对\((a,b)\)叫做点\(P\)的坐标。
4. 各象限内点的坐标的特征:点\(P(x,y)\)在第一象限:\(x>0\),\(y>0\);点\(P(x,y)\)在第二象限:\(x0\),\(y>0\);点\(P(x,y)\)在第三象限:\(x0\),\(y0\);点\(P(x,y)\)在第四象限:\(x>0\),\(y0\)。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师大版八年级上册第一章知识点一、勾股定理。
1. 定理内容。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别为a和b,斜边长度为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,那么斜边的平方c^2=3^2+4^2=9 + 16=25,所以斜边c = 5。
2. 勾股定理的证明。
- 常见的证明方法有赵爽弦图证明法等。
- 赵爽弦图:以直角三角形的斜边c为边长的正方形的面积等于以直角边a、b 为边长的四个直角三角形与一个小正方形面积之和。
即c^2=4×(1)/(2)ab+(b - a)^2,化简后可得c^2=a^2+b^2。
3. 勾股定理的应用。
- 已知直角三角形的两边求第三边。
- 当已知两条直角边a、b时,斜边c=√(a^2)+b^{2}。
- 当已知一条直角边a和斜边c时,另一条直角边b=√(c^2)-a^{2}。
- 解决实际问题中的直角三角形问题。
- 例如,在一个长方形中求对角线长度(长方形的相邻两边与对角线构成直角三角形);在一个梯形中,通过作高构造直角三角形来求相关线段长度等。
二、勾股定理的逆定理。
1. 定理内容。
- 如果三角形的三边长a、b、c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
2. 判断直角三角形的方法。
- 首先计算三边的平方,看是否满足两短边的平方和等于长边的平方。
- 例如,三角形三边分别为3、4、5,因为3^2+4^2=9 + 16 = 25=5^2,所以这个三角形是直角三角形,其中边长为5的边所对的角为直角。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
- 如果(a,b,c)是一组勾股数,那么ka、kb、kc(k为正整数)也是一组勾股数。
例如,(3,4,5)是勾股数,那么(6,8,10)(k = 2时)也是勾股数。
八年级上册知识点总结第一章勾股定理1.勾股定理直角三角形两直角边a, b的平方和等于斜边c的平方, 即a2 +b2=c23、2.勾股定理的逆定理如果三角形的三边长a, b, c有关系, a2 +b2=c2则这个三角形是直角三角形。
勾股数: 满足a2 +b2=c2的三个正整数, 称为勾股数。
常见的勾股数(3, 4, 5), (6, 8, 10), (5, 12, 13), (8, 15, 17), (7, 24, 25)第二章实数一、实数的概念与分类1.实数的分类整数(包括正整数, 0, 负整数)有理数实数分数(包括正分数和负分数)正无理数无理数无限不循环小数负无理数2.无理数: 无限不循环小数叫做无理数。
在理解无理数时, 要抓住“无限不循环”, 归纳起来有三类:(1)开方开不尽的数, 如等;(2)化简后含有π的数, 如+8等;(3)有特定结构的数, 如0.1010010001…等;注意:分数是有理数, 不是分数。
二、实数的倒数、相反数和绝对值1.相反数: 实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数, 零的相反数是零), 从数轴上看, 互为相反数的两个数所对应的点关于原点对称, 如果a与b互为相反数, 则有a+b=0, a=—b, 反之亦成立。
2.绝对值: 在数轴上, 一个数所对应的点与原点的距离, 叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身, 也可看成它的相反数, 若|a|=a, 则a≥0;若|a|=-a, 则a≤0。
3、倒数:如果a与b互为倒数, 则有ab=1, 反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时, 要注意上述规定的三要素缺一不可)。
三、平方根、算数平方根和立方根1.算术平方根: 一般地, 如果一个正数x的平方等于a, 即x2=a, 则这个正数x就叫做a 的算术平方根。
特别地, 0的算术平方根是0。
北师大版八上数学知识点归纳第一章勾股定理。
1. 勾股定理。
- 直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两直角边分别为3和4,那么斜边的平方c^2=3^2+4^2=9 + 16=25,所以斜边c = 5。
2. 勾股定理的逆定理。
- 如果三角形的三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。
- 例如,三角形三边为5,12,13,因为5^2+12^2=25+144 = 169=13^2,所以这个三角形是直角三角形。
3. 勾股数。
- 满足a^2+b^2=c^2的三个正整数,称为勾股数。
常见的勾股数有(3,4,5)、(5,12,13)、(8,15,17)等。
第二章实数。
1. 无理数。
- 无限不循环小数叫做无理数。
如√(2),π等。
2. 平方根。
- 如果一个数x的平方等于a,即x^2=a,那么这个数x叫做a的平方根。
正数a有两个平方根,它们互为相反数,记为±√(a);0的平方根是0;负数没有平方根。
- 例如,4的平方根是±2,因为(±2)^2=4。
3. 算术平方根。
- 正数a的正的平方根叫做a的算术平方根,记为√(a)。
0的算术平方根是0。
- 例如,9的算术平方根是3,即√(9)=3。
4. 立方根。
- 如果一个数x的立方等于a,即x^3=a,那么这个数x叫做a的立方根,记为sqrt[3]{a}。
正数的立方根是正数,负数的立方根是负数,0的立方根是0。
- 例如,8的立方根是2,因为2^3=8;-8的立方根是-2,因为( - 2)^3=-8。
5. 实数的分类。
- 实数包括有理数和无理数。
有理数包括整数和分数,整数又分为正整数、0、负整数;分数分为有限小数和无限循环小数。
无理数是无限不循环小数。
6. 实数的运算。
- 在进行实数运算时,有理数的运算法则和运算律同样适用于实数。
第1章 勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A A D BC CB D A。
新版北师大版八年级数学上册知识点全面总结第一章勾股定理1 •勾股定理:直角三角形两直角边的平方和等于斜边的平方;即a2 b2 c2。
2 •勾股定理的证明:用三个正方形的面积关系进行证明(两种方法) 。
3 •勾股定理逆定理:如果三角形的三边长 a , b , c满足a2 b2 c2,那么这个三角形是直角三角形。
满足a2 b2 c2的三个正整数称为勾股数。
常见勾股数:(3、4、5) (6、8、10) (5、12、13) (& 15、17)第二章实数1 •平方根和算术平方根的概念及其性质:(1)概念:如果x2 a,那么x是a的平方根,记作:.a ;其中,a叫做a的算术平方根。
(2)性质:①当a > 0时, > 0;当a vo时,a .a2a。
2 .立方根的概念及其性质:(1 )概念:若x3 a,那么x是a的立方根,记作:3 a ;(2 )性质:①需3a :②Va a :③旷=需3 .实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4 .与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是----------- 对应的。
因此,数轴正好可以被实数填满。
5•算术平方根的运算律:f ag. b , ag) ( a》0, b》0);第三章图形的平移与旋转1 •平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类 1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
北师版八年级数学第1章 勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDC B A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DC B A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A。
北师大版《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; …等;(4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
第1章 勾股定理
一.知识归纳
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方;
表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=
勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方
2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变
②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
常见方法如下:
方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2
ab b a c ⨯+-=,化简可证. c b
a H
G F
E
D
C
B A
方法二:
b a
c b a c
c
a b c a b
四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422
S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++
所以222a b c +=
方法三:1()()2S a b a b =+⋅+梯形,2112S 222
ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证
a b c
c
b a E D
C
B A
3.勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用
①已知直角三角形的任意两边长,求第三边
在ABC ∆中,90C ∠=︒
,则c
,b =
,a
②知道直角三角形一边,可得另外两边之间的数量关系
③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;
②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形
6.勾股数
①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数
②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等
③用含字母的代数式表示n 组勾股数:
221,2,1n n n -+(2,n ≥n 为正整数);
2221,22,221n n n n n ++++(n 为正整数)
2222,2,m n mn m n -+(,m n >m ,n 为正整数)
7.勾股定理的应用
勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.
8..勾股定理逆定理的应用
勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体
推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.
9.勾股定理及其逆定理的应用
勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:
A B C 30°
D C
B A A D B
C C
B D A。