北师大版勾股定理复习学案
- 格式:doc
- 大小:392.50 KB
- 文档页数:6
北师大《勾股定理》教案(通用5篇)作为一名教师,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
那么问题来了,教案应该怎么写?下面是小编为大家整理的北师大《勾股定理》教案(通用5篇),仅供参考,大家一起来看看吧。
北师大《勾股定理》教案1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第一章勾股定理综合复习恩江中学八年级数学备课组高秋秀一、教学目标:进一步熟练运用勾股定理和它的逆定理进行计算。
二、教学重难点:能灵活运用勾股定理的相关知识解决实际问题。
三、教学过程(一)知识点梳理勾股定理:1.直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的验证—通过从不同角度求同一图形的面积(常见图形如下)勾股定理的逆定理1、 如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.(注意长边对的角是直角)2.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.(二)精讲精练考点一、勾股定理的证明例1、 4个全等的直角三角形的直角边分别为a 、b ,斜边为c .现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理, 你能说明其中的道理吗?•请试一试.考点二、勾股定理的应用求解 1 、若一个直角三角形的两条直角边的长分别为6 cm 和8 cm ,则斜边的长_________2、从5,9,12,13,17这5个数中选取3个数,可以作为勾股数的一组是( )A. 5,9,12B. 5,9,13C. 5,12,13D. 9,12,173.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、折叠问题2、如图所示,在长方形ABCD 中,AB=16,BC=8,将长方形沿AC 折叠,使D落在点E 处,且CE 与AB 交于点F ,求AF 的长.考点四、最短路径【知识要点】1、内容:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;2、原理: 两点之间,线段最短;垂线段最短。
八上期末复习一勾股定理班级学号姓名一、知识点归纳:1.勾股定理:直角三角形两边的平方和等于的平方.2.勾股定理的逆定理:在△ABC中,若a、b、c三边满足___________,则△ABC为___________,斜边为 . 3.勾股数:边长为0.3,0.4,0.5的三角形是否为一个直角三角形? 0.3,0.4,0.5是勾股数吗?总结:满足_____ ___的三个___ _____,称为勾股数.4.直角三角形中边的特殊关系:(1)在Rt△ABC,∠C=90°,a=b=5,则c=(2)在Rt△ABC,∠C=90°,a=1,c=2, 则b=(3)在Rt△ABC,∠C=90°,b=15,∠A=30°,则a= ,c= 。
总结:①在中,30°所对的边是边的一半。
②在Rt△ABC中,若∠A=45°, ∠C=90°,则△ABC是一个三角形。
其中,= 。
二、典例讲解:例1、已知直角三角形的两边长分别为5和12,求第三边。
例2、一个直角三角形的周长为9,斜边为4,求这个三角形的面积。
例3、如图,在矩形ABCD中,AB=5cm,在边CD上适当选定一点E,沿直线AE把△ADE折叠,使点D恰好落在边BC上一点F处,且△ABF的面积是30cm2.求此时EC的长.例4.已知ABC ∆为等腰直角三角形,∠A =︒90,AB=AC, D 为BC 的中点,E 为AB 上一点, BE =12,F 为AC 上一点,FC=5,且∠EDF =︒90,求EF 的长度。
例5、如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是_____________例6、已知,如图,在四边形ABCD 中,∠ABC =90°,CD ⊥AD 于点D ,且CD 2+AD 2=2AB 2. (1)求证AB =BC ;(2)当BE ⊥AD 于点E 时,试证明:BE =AE +CD .例7、如图,等边三角形ABC 内一点P ,AP =3,BP =4,CP =5,求∠APB 的度数.BCDEFA作业:一、选择题1、下列说法中正确的有()(1)如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形;(2)如果∠A+∠B=∠C,那么△ABC是直角三角形;(3)如果三角形三边为111,,345,则∆ABC是直角三角形;(4)如果三边长分别是2222, 2,m n mn m n+-,则∆ABC是直角三角形。
E
C
D
B
A 勾股定理
本章常用知识点:
1、勾股定理:直角三角形两直角边的 等于斜边的 。
如果用字母a,b,c 分别表示直角三角形的两直角边和斜边,那么勾股定理可以表示为: 。
勾股逆定理:如果直角三角形三边长a 、b 、c 满足 ,那么这个三角形是 三角形。
(且∠ =90°)
2、勾股数:满足a 2+b 2=c 2的三个 ,称为勾股数。
常见的勾股数组有:3、4、5; 5、12、13; 8、15、17; 7、24、25; 20、21、29; 9、40、41;… 这些勾股数组的整数倍仍然是勾股数组。
(记忆 11~30二十个数的平方值) 3、最短距离:将立体图形展开,利用直角三角形的勾股定理求出最短距离(斜边长)。
题型一 直角三角形中已知两边,求第三边。
例1、已知:一个直角三角形的两边长分别是3cm 和4cm,第三边得长为________
例2、已知在△ABC 中,AB=17,AC=10,BC 边上的高等于8,求△ABC 的周长为_________ 课堂训练
1.已知直角三角形两直角边分别为5,12,则三边上的高的和为____. 2、在Rt △ABC 中,已知两边长为5、12,则第三边的长为 。
3、等腰三角形的两边长为10和12,则周长为________,底边上的高是________,
面积是_________。
4..如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时 梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置 上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?
题型二 勾股定理逆定理的应用 如何判定一个三角形是直角三角形: ① 先确定最大边(如c ); ② 验证2
c 与2
2b a +是否具有相等关系
③ 若2
c =2
2b a +,则△ABC 是以∠C 为直角的直角三角形;
若2c ≠2
2b a +,则△ABC 不是直角三角形。
例1、如图,在四边形ABCD 中,∠C=90°,AB=13,BC=4,CD=3,AD=12,求证:AD ⊥BD .
例2、如图,在正方形ABCD 中,E 是BC 的中点,F 为CD 上一点,且CF=4
1
CD . 求证:△AEF 是直角三角形.
课堂训练
1、下列各组数中,可以构成直角三角形的三边长的是( )
A 、5,6,7
B 、40,41,9
C 、
22,23,1 D 、31,4
1,51
2. 三角形的三边长为ab c b a 2)(2
2
+=+,则这个三角形是( )
A 、等边三角形
B 、钝角三角形
C 、直角三角形
D 、锐角三角形.
3、已知:如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°。
题型三 勾股定理及其逆定理的综合应用 13 4 例1、如图,求阴影部分面积.
3
12 课堂训练
1.如图,AB ⊥AD ,AB=3,BC=12,CD=13,AD=4,求四边形ABCD 的面积.
题型四 关于勾股定理的实际应用:最短路线问题
立体图形中线路最短问题,通常把立体图形的表面____,得到____图形后,运用勾股定理或逆定理解决.
例1、如图,一油桶高4米,底面直径2米,一只壁虎由A 到B 吃一害虫,需要爬行的最短路程是多少?
A
B
C
D
B
B
例2、一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所爬行的最短路线的长是
____________________.
课堂训练
1、如下图、王力的家在高楼15层,一天他去买竹竿,如果电梯的长、宽、高分别为1.2m,1.2m,1.3m ,则他所买的竹竿最大长度是多少?
2、如图所示,一个二级台阶,每一级的长、宽、高分别为60cm 、30cm 、10cm ,A 和B 是这个台阶上两个相对的端点,在A 点处有一只蚂蚁它想到B 点处觅食,那么它爬行的最短路线是多少?
3、一艘轮船以40海里/时的速度离开了港口A 向东北方向航行,另一艘轮
船同时离开港口A 以30海里/时的速度向东南方向航行,他们离开港口半小时后相距___________海里。
题型五 主要数学思想-------方程思想
例1、如图,已知长方形ABCD 中AB=8 cm,BC=10 cm,在边CD 上 取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.
B
A
C '
F
E
O D
C
B
A
例2、已知:如图,在△ABC 中,AB =15,BC =14,AC =13.求△ABC 的面积.
练习
1、已知△ABC 中,∠C=90°,若c=34,a:b=8:15,则a= ,b= .
2、如图,把矩形ABCD 纸片折叠,使点B 落在点D 处,点C 落在C ’处,折痕EF 与BD 交于点O ,已知AB=16,AD=12,求折痕EF 的长。
3、已知:如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.
4、如图,在△ABC 中,AB=15,BC=14,CA=13求BC 边上的高AD.
题型六 勾股定理与面积
例1.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.
l 3
2
1
S 4
S 3
S 2
S 1
练习
1.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明
S 1=S 2+S 3 .
(1) 如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用S 1、S 2、S 3表示,那么S 1、
S 2、S 3之间有什么关系?(不必证明)
(2) 如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用S 1、S 2、S 3表示,请你确定S 1、S 2、S 3之间的关系并加以证明;
(3) 若分别以直角三角形ABC 三边为边向外作三个正多边形,其面积分别用S 1、S 2、S 3表示,请你猜想S 1、
S 2、S 3之间的关系?.
题型七、勾股定理与旋转
1、如图,在等腰△ABC 中,∠ACB=90°,D 、E 为斜边AB 上的点,
且∠DCE=45°。
求证:DE 2=AD 2+BE 2。
2..在等腰Rt ▲ABC 中,∠CAB=︒90,P 是三角形内一点,且
PA=1,PB=3,PC=7
求:∠CPA 的大小?
E
C
A
B
D
C
B
A
P
练习
1、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的
点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
思考
1已知:如图2-7所示,△ABC中,D是AB的中点,若AC=12,BC=5,CD=6.5。
求证:△ABC是直角三角形.。