古典概型一等奖优秀教案汇总古典概型公开课说课稿范文
- 格式:docx
- 大小:54.96 KB
- 文档页数:37
古典概型教学设计(汇总5篇)篇1:古典概型教学设计古典概型教学设计一、教材分析本节课的内容选自《一般高中课程标准试验教科书数学必修3(A)版》第三章中的3.2.1节古典概型。
它支配在随机大事之后,几何概型之前,同学还未学习排列组合的状况下教学的。
古典概型是一种特不的数学模型,也是一种最基本的概率模型,在概率论中占有重要的地位,是学习概率必不行少的内容,同时有利于理解概率的概念及利用古典概型求随机大事的概率。
二、教学目标依据本节教材在本章中的地位和大纲要求以及同学实际,本节课的教学目标制定如下:①结合一些具体实例,让同学理解并把握古典概型的两个特征及其概率计算公式,培育同学猜想、化归、观看比较、归纳询问题的力气。
②会用列举法计算一些随机大事所含的基本领件数及大事发生的概率, 渗透数形结合、分类争辩的思想方法。
③使同学初步学会把一些实际询问题转化为古典概型,关键是要使该询问题是否中意古典概型的两个条件,培育同学对各种不同的实际状况的分析、推断、探究,培育同学的应用力气。
三、教学的重点和难点重点:理解古典概型的含义及其概率的计算公式。
难点:如何推断一个试验是否为古典概型,分清在一个古典概型中某随机大事包含的基本领件的个数和试验中基本领件的总数。
四、学情分析高一(x)班是一个xx班,同学数学基础比较薄弱,对数学的了解比较浅显,课堂同意容量较低。
本课的学习是建立在同学基本了解了概率的意义,把握了概率的基本性质,明白了互斥大事和对立大事的概率加法公式。
同学基本具备了确信的归纳、猜想力气,但在数学的应用意识与应用力气方面尚需进一步培育。
多数同学能够乐观参与争论,但在合作沟通意识方面,进展不够均衡,有待加强。
五、教法学法分析本节课属于概念教学,依据这节课的.特点和同学的认知水平,本节课的教法与学法定为:为了培育同学的自主学习力气,激发学习爱好,借鉴布鲁纳的发觉学习理论,在教学中实行以询问题式引导发觉法教学,利用多媒体等手段,引导同学进行观看争辩、归纳总结。
古典概型(说课稿)各位评委下午好!今天我说课的题目是《古典概型》。
接下来我将从:教材分析,教学目标,教法学法,教学过程,作业布置、教学评价六方面来阐述我这节课的设计。
一、教材分析:《古典概型》位于苏教版必修三第三章第二节。
是在学习随机事件之后,几何概型之前。
所以本节内容是随机事件知识的延续,也是学习几何概型的基础。
本节课所讲的基本概率知识,是以后数学学习中不可缺少的部分,也是今后高考的必考内容。
二、教学目标:(1)正确理解基本事件的概念,准确求出基本事件及其个数;(2)在数学建模的过程中,正确理解古典概型的两个特点;(3)推导和掌握古典概型的概率计算公式,感受化归的重要思想,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率,学会运用数形结合、分类讨论的思想解决概率的计算问题。
教学重点:1、理解古典概型的概念;2、利用古典概型概率公式求解随机事件的概率。
难点:1、判断一个随机试验是否为古典概型;2、古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
三、教法学法分析教学方法在教学中以问题为核心,采取引导发现法,通过“提出问题、思考问题、解决问题”的教学过程,借助实物试验、多媒体课件引导学生进行试验探究、观察类比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。
学生学法学生通过“试验观察、思考探究、归纳总结”的自主学习解惑过程,体验了从特殊到一般的数学思维过程,体会学以致用和数学的严谨之美,增强学习的兴趣和信心。
四、教学过程一、提出问题、情景引入二、类比归纳、引出概念三、例题分析、加深理解四、练习反馈、强化目标五、总结概括、提炼精华上述五个方面由表及里、由浅入深,层层递进。
从数到形,螺旋上升。
多层次、多角度地加深对概念的理解,进行对重点难点的突破。
提高学生学习的兴趣,以达到良好的教学效果一) 提出问题、情景引入课前模拟实验:教学活动:老师布置学生分组实验,并提出2个问题;学生实验并回答问题,科代表统汇总结果和问题答案课前模拟试验:(1)抛掷一枚质地均匀的硬币,观察哪个面朝上的试验。
古典概型教案范文教案主题:古典概型教学年级:高中一年级教学目标:1.理解古典概型的概念和基本思想;2.掌握古典概型的计算方法;3.运用古典概型解决实际问题。
教学重点:1.古典概型的概念和基本思想;2.古典概型的计算方法。
教学难点:运用古典概型解决实际问题。
教学准备:1.掷骰子、纸牌等道具;2.备有练习题。
教学过程:Step 1: 引入1.介绍概率与统计的基础知识,并与学生进行互动讨论;2.引出古典概型课题。
Step 2: 讲解古典概型的概念和基本思想1.定义古典概型:在一次试验中,所有可能结果都是等可能发生的概率模型;2.古典概型的基本思想:每个事件发生的概率都是相等的,只要求出事件的总数和有利情况的总数就可以计算出概率。
Step 3: 讲解古典概型的计算方法1.对于求概率的基本事件,使用基本概率法则:P(A)=有利情况数/总情况数;2. 对于求概率的复合事件,使用复合概率法则:P(A and B) = P(A) × P(B)。
Step 4: 运用古典概型解决实际问题1.展示一个骰子,并说明骰子有6个面,每个面的概率都相等;2.举例子进行实际计算:掷一次骰子,求出得到偶数点数的概率。
Step 5: 练习训练1.给学生发放练习题;2.学生独立完成练习题;3.学生互相讨论和核对答案;4.教师进行解答和总结。
Step 6: 小结与反思1.小结古典概型的概念和基本思想;2.总结古典概型的计算方法;3.让学生回答一个思考问题:是否所有实际问题都适用古典概型的计算方法?为什么?教学扩展:1.引导学生思考古典概型在实际问题中的应用;2.提供更多实际问题供学生练习和探究。
教学评估:1.练习题的答案和解题过程;2.学生对古典概型的理解和应用能力;3.学生的互动讨论和思考问题的回答。
教学反馈:1.对学生过程中的错误进行纠正和指导;2.回答学生的问题和疑惑;3.记录学生的参与度和反馈。
教学延伸:1.给学生布置相关作业,进一步加深对古典概型的理解和掌握;2.引导学生继续深入研究概率与统计的其他内容。
高二上册数学古典概型说课稿高二上册数学古典概型说课稿范文一、教材分析本节课人教版普通高中课程标准实验教科书数学必修3第三章概率第二节古典概型的第一课时。
古典概型是在随机事件的概率之后,几何概型之前进行教学的。
古典概型是一种理想的数学模型,也是一种最基本的概率模型,它的引入避免了大量的重复试验,而且得到的是概率准确值,有利于理解概率的概念,有利于计算一些简单事件的概率,有利于解释生活中的一些现象与问题。
而接下来要学习的几何概型与古典概型有很多相通之处,学好古典概型可以为学习几何概型奠定基础,起到了承前启后的作用。
古典概型在高等数学中概率论中也占有相当重要的地位,为学生学习高等数学做好衔接和铺垫。
二、学情分析认知分析:学生已经了解概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率公式,这三者形成了学生思维的“最近发展区”。
此时学生们并没有学习排列组合的知识。
随机事件的概率在教材中主要通过观察和试验的方法,得到一些事件的概率估计,学生的认知水平更多的停留在感性认识的层面,还未上升到理性认识的高度。
能力分析:学生已经具备了一定的归纳、猜想能力,但数学的理性的思维能力和应用意识仍需提高。
但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整,解决问题的能力还略显单薄。
情感分析:由于本章开始的内容起点低,坡度小,与实际联系紧密,多数学生对本章的学习有一定的兴趣,心里有想好好学习的意愿和信心。
三、教学目标在新课标让学生经历“学数学、做数学、用数学”的理念指导下,以教材为背景,我将本节课的教学目标分为以下三个方面:知识与技能:1。
理解古典概型的概念2。
利用古典概型求解随机事件的概率过程与方法:在教学过程中,进一步发展学发现问题,分析问题,解决问题的能力;培养学生归纳、类比等合情推理能力;培养学生的应用能力与意识。
情感态度与价值观:激发学生学习数学的热情,培养学生勇于探索,善于发现的创新思想;结合问题的现实意义,培养学生的合作精神。
1.3古典概型一等奖创新教学设计10.1.3 古典概型一、内容与内容解析(一)内容本单元的核心内容包括:古典概型的概念及特征、古典概型的概率计算公式。
(二)内容解析1、内容的本质古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的,它的出现是为了更简单的运算,为计算概率制作一个在无规则概率问题中提出一个有规则的模型。
2、知识的上下位关系古典概型是安排在学生学习了有限样本空间与随机事件、事件的关系和运算之后的一个最基础的概率模型,前两节的学习为学生列样本空间、计算和事件打下了一定的基础,也为下一节学生研究概率的基本性质提供了一个具体的案例支撑,建立事件的独立性、条件概率等重要概念,也都是以古典概型为背景的。
3、内容蕴含的数学思想和方法研究古典概型,在描述并表示样本空间的过程中,体会将随机现象数学化的思想方法,发展数学抽象素养,通过计算古典概型中简单随机事件的概率,加深对随机现象的认识和理解,通过解决一些简单实际问题,提升数学建模、逻辑推理、数据分析和数学运算素养。
4、内容的育人价值概率课程承担的主要育人任务是培养学生分析随机现象以及对随机试验进行数学建模的能力。
通过对古典概率试验的分析,在构建研究随机现象的路径、抽象概率的研究对象、建立古典概型的基本概念、发现和提出古典概型的概率计算公式、探索和形成研究具体随机现象的思路和步骤、应用概率知识解决实际问题的过程中,使学生学会辩证地思考问题,提升学生的数学抽象、数学建模、逻辑推理以及数学运算素养。
(三)教学重点1、理解古典概型的概念及特征,会判断随机试验是否是古典概型;2、总结归纳古典概型中简单随机事件的求法。
二、目标与目标解析(一)目标1.理解古典概型的概念及特点.2.利用古典概型概率公式解决简单的概率计算问题.(二)目标解析达成上述目标的标志是:1、会利用古典概型的两个特征判断是否是古典概型.2、能用适当的表达形式和分类方法通过列举获得古典概型的样本空间;能对样本点的等可能性进行判断;能用古典概型的概率计算公式计算概率。
古典概型优质课比赛说课教案1.说教材本节内容是选自人教 A版必修3第三章第二节第一小节的内容,属于概率部分的知识。
学生已经学习了统计以及概率的运算和基本性质等,而本节内容是在此基础上延续和拓展。
古典概型是一种数学模型,它的引入避免了大量的重复试验,有利于学生理解概率的概念和概率值的存在。
也为后面学习几何概率作铺垫,同时学习了本节内容,能够帮助学生解决生活中的一些问题,激发学生的学习兴趣,因此本节知识在高中概率论这一块中起着举足轻重的作用。
重点:理解古典概型及其概率计算公式难点:古典概型的判断2、说目标基于以上对教材的认识,根据数学课程标准发展学生的数学应用意识的基本理念,考虑到学生已有的认知结构与心理特征,制定如下教学目标知识目标:通过试验理解基本事件的概念和特点在数学建模的过程中,抽离出古典概型的两个基本特征,推倒出概率的计算公式。
能力目标:经历公式的推倒过程,体验由特殊到一般的数学思想方法的应用。
情感态度与价值观目标:用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想,培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想。
3、说教法学法为突出重点,突破难点,使学生能达到本节课设定的目标,根据本节课的内容特点我采取了引导探究,讨论交流的教学模式,即通过再次考察前面做过的两个实验引入课题,根据学习情况,在合适的时机提出问题,设置合理有效的教学情境,让每一位学生都参与课堂讨论,提供学生思考讨论的时间与空间,师生一起探讨古典概型的特点以及概率值的求法。
学法上:课前已经安排学生做过两个试验,本节课上学生在教师的引导下对试验结果进行探讨交流,解决问题,完善知识结构。
从根本上理解古典概型这一模型,4、说教学过程一、提出问题引入新课课前,老师已经布置学生完成掷一枚质地均匀的硬币和一枚均匀的骰子是试验,试验一:抛掷一枚质地均匀的硬币,记录“正面朝上”和“反面朝上”的次数,每组同学至少做20次试验二:抛掷一枚质地均匀的骰子,分别记录点数为“1,2,3,4,5,6”出现的次数,每组同学至少完成60次。
3.2.1 古典概型说课稿各位评委,老师大家好!我是,我说课的内容是人教A版、必修3、第三章概率的第二节、古典概型第一课时。
针对本节课我将以教什么?怎么教?为什么这么教为主旨,从教材分析、学情分析、教法学法分析、教学过程设计以及评价反思五方面进行介绍。
一.教材分析1.教材的地位和作用古典概型是一种古老而特殊的概率模型,可以说没有古典概型的研究就没有概率学的产生。
它的引入既能避免大量的重复试验,又能得到概率的精确值;学习它有利于深入理解概率的概念,有利于厘清学生生活中困惑的概率问题。
古典概型也是学习几何概型的基础,在概率教学中有着承上启下的作用。
根据新课改对“三维目标”的整体要求,整合确定本节课的教学目标。
1、知识与技能目标会用列举法计算一些随机事件所含基本事件的个数理解并掌握古典概型的概念及其概率计算公式;2、过程与方法目标通过两个课前数学试验让学生理解古典概型的特征,观察类比各个实验结果,归纳、猜想、证明出古典概型概率计算公式,体验由特殊到一般的化归思想。
3、情感态度和价值观目标通过各种有趣的、贴近生活的概率素材,激发学生学习概率的热情。
在古典概型概念探究和辨析时采用团队协作的方式,使学生感受与他人合作的重要性。
根据学生的认知发展水平,结合学情制定教学重点:理解并掌握古典概型的概念及其概率计算公式的应用;教学难点:如何判断一个实验是否是古典概型以及确定基本事件的个数。
二.学情分析在知识上,学生已经了解概率的意义,掌握了概率的基本性质,会用互斥事件的概率加法公式,这三者形成了学生认知的“最近发展区”,有利于自主学习。
在能力上,高一学生已经具备了一定的归纳、猜想能力,但数学应用意识仍不足。
情感上,在教师激励下多数学生能积极主动参与自主学习,但由于能力发展不均衡,仍有小部分学生心有余而力不足.三.教法学法分析为实现高效课堂的目标,我设计了娱乐化的数学实验、引导学生自主学习、合作探究,分组展示、直至产生质疑、参与点评,尽可能增加学生课堂参与度,将时间、空间还给学生。
人教版高中数学古典概型教学设计(全国一等奖)课题:《古典概型》第一课时教学设计及说明《古典概型》选自高中数学人教A版必修3第三章第2节第1课时。
在当代高中数学新课改的背景下,数学教育要把“数学育人”作为根本目标,要将“德育”渗透到教育教学的各个环节中去。
通过引导学生开展独立思考、主动探究、合作交流等多种活动形式来理解和掌握基本的数学方法和数学技能。
要鼓励学生的创新思考,加强学生的数学实践,培养学生的理性精神,从而激发学生的学习兴趣。
在数学教学过程中,学生成为课堂学习的主体,教师成为学生活动的组织者、引导者、合作者。
下面我将以此为指导思想从:教学内容解析→教学目标设置→学生学情分析^p →教学策略分析^p →教学过程等几个方面向各位评委老师说明我的构思与设想。
一、教学内容分析^p :1、教材分析^p :(1)教材将本节课内容安排在随机事件概率之后,几何概型之前,古典概型是一种特殊的概率模型,也是一种最基本的概率模型,它的引入避免了大量的重复实验,而且得到的是概率准确值,同时古典概型也为后面学习其他概率的基础。
在教材中起到承前启后的作用,所以在概率论中占有相当重要的地位。
(2)本节课学生将感知认识与理性认识相结合,并且利用生活中大量实例来归纳总结相关的数学概念。
能用系统的眼光看待以前已经接触的知识,通过本节课的探究确定古典概型的定义及计算公式,所以本节课对学生构建数学模型能力和方法有所提升。
(3)本节课渗透了数形结合的思想,分类讨论的思想以及变式化1归的思想,树立学生从具体到抽象,从特殊到一般的数学思想,并且利用列举法(树状图、列表)来寻找基本事件,有利于培养学生良好的数学思维。
2、教材处理:依据新教材和新大纲的要求,本节课是《古典概型》第1课时,重点是古典概型的定义和古典概型的计算公式,为了让学生更好地掌握本节课的内容,在紧扣书上例题的同时,对例题做适当的变式、调整与补充。
二、教学目标设置:根据上述教材结构和内容分析^p ,以及对学生认知水平的考察,我制定如下教学目标。
古典概型(一)说课教案一、教材分析1. 教材的地位及作用:本节课是高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习了随机事件的概率、概率的加法公式之后,学习几何概型之前,尚未学习排列组合的情况下进行教学的。
古典概型安排在这一节,是因为古典概率公式推导要用到加法公式,学了古典概型后有利于计算一些事件的概率,避免了大量重复试验。
有利于进一步理解概率的概念,有助于几何概型的学习,也可以为以后概率的学习奠定基础。
古典概型是一种特殊的数学模型,能培养学生建模的思想,同时它与生活联系密切,有利于解释生活中的一些问题,增加学生的兴趣。
2.教学重点:理解古典概型及其概率计算公式。
3.教学难点:(1)对古典概型两个特点的理解。
(2)确定在一个古典概型中试验的所有基本事件二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
能力目标:培养学生运用观察对比,归纳的方法探究问题的能力,注重化归,数形结合,分类思想的应用,逐步培养学生建模思想,来解决实际问题。
情感目标:通过各种贴近学生生活的素材,激发学生学习数学的热情和兴趣,培养学生勇于探索,善于发现的创新思想;通过参与探究活动,领会理论与实践对立统一的辨证思想。
三、教法与学法分析导悟学启发接受诱导问题探究激励知识完成应用1.教法我采用:(1)引导发现和归纳概括相结合的教学方法,通过试验、设置表格、提出问题、分析问题,解决问题等教学过程,一步步地来概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性。
(2)多媒体辅助教学,体现直观,突破难点。
2.学法(1)新旧知联系:学生已正确理解了概率的意义,像游戏的公平性,这能促进本节“等可能”的理解。
引导学生进行知识迁移。
2.1 古典概型》一等奖创新教学设计23.2.1 古典概型1教学目标1.了解基本事件的特点;2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.2学情分析概率是描述随机事件发生可能性大小的度量。
学生在初中已学过简单的“古典概型”,现在又学习了“随机事件及概率”,进一步加深了对概率意义的认识。
只要突出重点,突破难点,掌握方法,教学目标会达到理想的效果。
3重点难点2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.4教学过程4.1 第一学时教学活动活动1【讲授】3.2古典概型(第一课)【教学目标及重、难点】1.了解基本事件的特点;2.理解古典概型的概念及特点;3.会应用古典概型概率公式解决简单的概率计算问题.【熟记要点】1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型的概念如果某概率模型具有以下两个特点:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等;那么我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.3.古典概型的概率公式【教学流程】一、基本事件【情境导学】(1)抛掷一枚质地均匀的硬币,有哪几种可能结果?(2)抛掷两枚质地均匀的硬币,有哪几种可能结果?(3)连续抛掷三枚质地均匀的硬币,有哪几种可能结果?【生答师正】:(1)正,反;(2)用(x,y)表示结果,其中x表示第一枚硬币出现的情况,y 表示第二枚硬币出现的情况,可能结果为(正,正),(正,反),(反,正),(反,反);(3)用(x,y,z)表示结果,其中x表示第一枚硬币出现的情况,y表示第二枚硬币出现的情况,z表示第三枚硬币出现的情况,可能结果为(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).【师】上述试验中的每一个结果都是随机事件,我们把这类事件称为基本事件.思考1:在一次试验中,任何两个基本事件是什么关系?【生答师正】:由于任何两种结果都不可能同时发生,所以它们的关系是互斥关系.思考2:在(3)中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?【生答师正】:(正,正,反),(正,反,正),(反,正,正);(正,正,反),(正,反,正),(反,正,正),(正,正,正).【例1】从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?事件“取到字母a”是哪些基本事件的和?解:所求的基本事件有6个,他们分别是A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};设D=“取到字母a”,则D=A+B+C.【点评】基本事件有如下两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.【训练1】做投掷2颗骰子的试验,用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第2颗骰子出现的点数.写出:(1)试验的所有基本事件;(2)“出现点数之和大于8”的事件;(3)“出现点数相等”的事件;(4)“出现点数之和等于7”的事件.二、古典概型【情境导学】(1)抛掷一枚质地均匀的硬币,每个基本事件出现的可能性相等吗?(2)抛掷一枚质地均匀的骰子,有哪些基本事件?每个基本事件出现的可能性相等吗?(3)上述试验的共同特点是什么?【生答师正】:(1)基本事件有两个,正面朝上和正面朝下,由于质地均匀,因此每个基本事件出现的可能性是相等的.(2)这个试验的基本事件有6个,正面出现的点数为1点,或2点,或3点,或4点,或5点,或6点,由于质地均匀,因此每个基本事件出现的可能性是相等的.(3)共同特点是:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.【师】我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.思考3:某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……、命中5环和不中环.你认为这是古典概型吗?为什么?【生答师正】:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环、……、命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.思考4:从所有整数中任取一个数的试验中“抽取一个整数”是古典概型吗?【生答师正】:不是,因为有无数个基本事件.【点评】判断一个试验是不是古典概型要抓住两点:一是有限性;二是等可能性.三、古典概型概率公式【问题】在古典概型下,每一基本事件的概率是多少?随机事件出现的概率如何计算?思考5:在抛掷硬币试验中,如何求正面朝上及反面朝上的概率?【生答师正】出现正面朝上的概率与反面朝上的概率相等,即P(“正面朝上”)=P(“反面朝上”).由概率的加法公式,得P(“正面朝上”)+P(“反面朝上”)=P(必然事件)=1,因此P(“正面朝上”)=P(“反面朝上”)=1/2,思考6:在抛掷一枚骰子的试验中,(1)如何求出现各个点的概率?(2)如何求“出现偶数点”的概率?【生答师正】(1)出现各个点的概率相等,即P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”),利用概率的加法公式,我们有P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1.所以P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)= .(2)P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=1/6.【例3】某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回地从某箱中随机抽出2听,求检测出不合格产品的概率.【小结】1.古典概型是一种最基本的概型,也是学习其他概型的基础,这也是我们在学习、生活中经常遇到的题型.解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P(A)=时,关键是正确理解基本事件与事件A的关系,从而求出m、n.2.求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏.3.对于用直接方法难以解决的问题,可以求其对立事件的概率,进而求得其概率,以降低难度.【作业】1、必做题:习题3.2A组1、2、3、4;2、选做题:(1)总结本节内容,形成文字到笔记本上.(2)在标准化的考试中既有单选题又有多选题,多选题是从A、B、C、D四个选项中选出所有正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?(这是因为猜对的概率更小,由概率公式可知,分子上的数还是1,因正确答案是唯一的,而分母上的数即基本事件的总数增多了,有(A),(B),(C),(D),(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),(A,B,C),(A,B,D),(A,C,D),(B,C,D),(A,B,C,D)共15个,所以所求概率为1/15.【教学反思】一节课成功与否,不在于老师讲的多津津有味,而在于学生理解了多少。
古典概型说课稿最新古典概型说课稿10篇作为一名优秀的教育工作者,总归要编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么你有了解过说课稿吗?以下是小编帮大家整理的最新古典概型说课稿10篇,仅供参考,大家一起来看看吧。
古典概型说课稿 1老师、同学们:早上好。
今天我说课的课题来自普通高中课程标准数学必修3第三章第2节古典概型。
下面,我将围绕教什么,怎么教,为什么要这样教从说教材、说教学目标、说教法学法、说教学过程及说板书设计五个方面来加以说明,请老师、同学们加以批评指正。
一、教材分析教材的地位和作用古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。
它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。
学情分析从心理特征来说,已到高一下学期学生,刚经过高一上学期的适应期,知识增多,能力增强,但思维的局限性还很大,能力也有差距。
从认知状况来说,学生在此之前已经学习了随机事件的概率,对随机事件的概念已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于古典概型的判断与计算,学生可能会产生一定的困难,针对我班学生基础较差,教学中给予以从特殊到一般的认知规律、简单明白深入浅出的分析。
教学的重点和难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重难点设计如下:重点:理解古典概型及其概率计算公式。
难点:古典概型的判断及把一些实际问题转化成古典概型。
教学目标分析根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:1、知识与技能目标:(1)通过试验理解基本事件的概念和特点。
(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。
2、能力目标:(1)经历公式的推导过程,体验由特殊到一般的数学思想方法,发展抽象思维能力。
(2)学生通过实际问题的条件判断是否为古典概型,及应用公式解决问题,培养分析问题、解决问题和应用问题的能力。
古典概型的说课稿一、说教材古典概型作为概率论中的一个重要概念,它在我国高中数学课程中占据着举足轻重的地位。
本文主要围绕古典概型的定义、性质、计算方法等方面进行阐述,旨在帮助学生建立完整的概率知识体系,培养他们的逻辑思维能力和解决实际问题的能力。
本文在教材中的作用和地位如下:1. 承上启下:本文在概率论知识体系中,起到了连接前后知识的桥梁作用。
它既是对之前所学概率基础知识的巩固,也为后续学习更复杂的概率问题打下基础。
2. 知识拓展:通过学习古典概型,学生可以了解到概率论在不同领域中的应用,提高他们对数学学科的兴趣。
3. 方法论培养:本文通过讲解古典概型的计算方法,引导学生运用数学方法解决实际问题,培养他们的逻辑思维能力和创新意识。
本文的主要内容可以分为以下几个部分:1. 古典概型的定义:介绍什么是古典概型,以及它与其他类型概率的区别。
2. 古典概型的性质:阐述古典概型的基本性质,如有限性、等可能性等。
3. 古典概型的计算方法:介绍如何计算古典概型,包括直接计算法、树状图法、排列组合法等。
4. 古典概型的应用:通过实例分析,展示古典概型在生活中的广泛应用。
二、说教学目标学习本课,学生需要达到以下教学目标:1. 知识与技能:(1)理解古典概型的定义,掌握其性质和计算方法。
(2)能够运用古典概型解决实际问题。
2. 过程与方法:(1)通过实例分析,培养学生运用数学方法解决实际问题的能力。
(2)通过小组合作,培养学生的团队协作能力。
3. 情感态度价值观:(1)激发学生对概率论的兴趣,提高他们学习数学的积极性。
(2)培养学生严谨、认真的学习态度。
三、说教学重难点本文的教学重点是古典概型的定义、性质和计算方法,以及如何运用这些知识解决实际问题。
教学难点主要包括:1. 理解古典概型的定义和性质,尤其是等可能性的概念。
2. 掌握古典概型的计算方法,能够灵活运用。
3. 学会运用古典概型解决实际问题,提高解决问题的能力。
教学对象:初中学生教学目标:1. 知识与技能:正确理解古典概型的两大特点,掌握古典概型的概率计算公式。
2. 过程与方法:通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,培养逻辑推理能力。
3. 情感态度与价值观:通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点。
教学重点:1. 古典概型的概念及概率计算公式。
2. 判断一个试验是否是古典概型,分清一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数。
教学难点:1. 如何判断一个试验是否是古典概型。
2. 分清一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数。
教学过程:一、导入新课1. 创设情境:展示生活中的概率问题,如掷骰子、抽签等,引导学生思考概率的概念。
2. 提问:什么是概率?概率的计算方法有哪些?二、新课讲授1. 古典概型的概念:- 试验中所有可能出现的基本事件只有有限个。
- 每个基本事件出现的可能性相等。
2. 古典概型的概率计算公式:P(A) = m/n,其中m为事件A包含的基本事件个数,n为实验中基本事件的总数。
3. 判断一个试验是否是古典概型:- 所有可能出现的基本事件只有有限个。
- 每个基本事件出现的可能性相等。
4. 分清一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数:- 统计随机事件包含的基本事件个数。
- 统计实验中基本事件的总数。
三、课堂练习1. 列举以下随机事件中的基本事件:- 从1、2、3、4、5中任取两个不同的数字。
- 抛掷一枚均匀的硬币,观察正反面。
2. 计算以下随机事件的概率:- 抛掷一枚均匀的骰子,求出现奇数的概率。
- 从一副52张的扑克牌中随机抽取一张,求抽到红桃的概率。
四、课堂小结1. 回顾本节课所学内容,强调古典概型的概念及概率计算公式。
2. 总结如何判断一个试验是否是古典概型,以及如何分清一个古典概型中某随机事件包含的基本事件的个数和实验中基本事件的总数。
人教版古典概型说课稿一、说课背景与目标在人教版高中数学教材中,古典概型是一个重要的知识点,它不仅是概率论的基础,也是培养学生逻辑思维能力的重要内容。
通过本节课的学习,学生将能够理解古典概型的概念,掌握计算古典概型事件概率的方法,并能够运用这些知识解决实际问题。
二、教学内容与分析1. 古典概型的定义古典概型,又称为等可能概型,是指在一次试验中,所有基本事件发生的可能性相等的情况。
在这种情况下,我们可以通过计算各个事件发生的次数来确定其概率。
2. 计算方法对于古典概型,事件的概率可以通过该事件发生的基本事件数除以所有基本事件的总数来计算。
即 P(A) = m/n,其中 m 是事件 A 发生的基本事件数,n 是所有基本事件的总数。
3. 实际应用古典概型在现实生活中有广泛的应用,例如掷硬币、掷骰子等随机事件的概率计算,都可以通过古典概型的方法来解决。
三、教学目标1. 知识与技能学生能够准确理解古典概型的定义,并掌握其概率的计算方法。
2. 过程与方法通过实际问题的分析与解决,培养学生运用古典概型知识的能力。
3. 情感态度与价值观培养学生对数学学习的兴趣,激发学生探索数学问题的热情。
四、教学重点与难点1. 教学重点明确古典概型的定义,掌握其概率的计算公式。
2. 教学难点如何将抽象的数学概念与学生的生活实际相结合,提高学生的实际应用能力。
五、教学方法与手段1. 启发式教学通过提问和引导,激发学生的思考,帮助学生自主构建知识体系。
2. 案例分析结合具体的生活实例,分析问题,引导学生运用古典概型进行概率计算。
3. 小组讨论通过小组合作,让学生在交流中深化对古典概型的理解。
六、教学过程1. 导入新课通过掷硬币的例子,引出古典概型的概念。
2. 讲解概念详细解释古典概型的定义和特点,并通过板书进行强化。
3. 例题演示展示并解析几个典型的古典概型问题,让学生掌握计算方法。
4. 学生练习学生独立完成几个练习题,巩固所学知识。
古典概型一等奖优秀教案汇总古典概型公开课说课稿范文一、教学目标【知识与技能】会判断古典概型,会用列举法计算一些随机事件所含的基本事件数和试验中基本事件的总数;能够利用概率公式求解一些简单的古典概型的概率。
【过程与方法】通过从实际问题中抽象出数学模型的过程,提升运用从具体到抽象,特殊到一般的分析问题的能力和解决问题的能力。
【情感态度与价值观】在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度,在此过程中还可以增加学习数学的学习兴趣。
二、教学重难点【重点】古典概型的概念以及概率公式。
【难点】如何判断一个试验是否是古典概型。
三、教学过程(一)导入新课提问:口袋里装2个白球和2个黑球,这4个球除颜色外完全相同,白球代表奖品,4个人按顺序依次从中摸球并记录结果,每一个人摸到白球的概率一样吗?追问:如何从理论上来计算出每个人的中奖率呢?引出课题:古典概型(二)探究新知1.探索基本事件和古典概型的概念师生活动:师生共同探讨两个概念的生成(1)抛掷一枚均匀的硬币,出现“正面朝上”和“反面朝上”的概率?(2)掷一粒均匀的骰子,出现“向上的点数为6”的概率是多少?活动:实验的结果只有6个,每种结果的可能性是相等的,每一种结果出现的概率都是(3)转动一个8等份标记的转盘,出现箭头指向4的概率为。
提问:以上三个实验都具有什么特征?预设:(1)试验的所有可能结果只有有限个,每次实验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同。
我们把具有这样两个特征的随机试验的数学模型称为古典概型。
上面三个试验中,试验的每一个可能结果称为基本事件。
如果1次试验的等可能基本事件共有n个,那么每一个等可能基本事件发生的概率都是,如果一些事件A包含了其中M个等可能基本事件,那么事件A发生的概率P(A)=思考:向一个圆面内随机地投一个点,如果该点落在园内任意一点都是等可能的,你认为这是古典概型吗?为什么?(三)巩固提高1.一只口袋内装有大小相同的5只球,其中三只白球,2只黑球,从中一次摸出2只球。
(1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?2.有五根细长的木棒,长度分别为1,3,5,7,9,任取三根,可以组合成三角形的概率。
师生活动:学生独立完成,同桌互相交流,教师适时纠正答案。
(四)小结作业小结:教师与学生一起回顾本节课所学的主要内容,并请学生回答一下问题:1.古典概型的特点是什么?2.古典概型的计算公式是什么作业:1.说一说生活中的一些古典概型的实例,并列举出其中的基本事件是什么?2.掷两次骰子,求出现点数之和为奇数的概率。
四、板书设计教学目标:(1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中随机事件包含的基本事件的个数和试验中基本事件的总数.教学过程:导入:故事引入探究一试验:(1)掷一枚质地均匀的硬币的试验(2)掷一枚质地均匀的骰子的试验上述两个试验的所有结果是什么?一.基本事件1.基本事件的定义:随机试验中可能出现的每一个结果称为一个基本事件2.基本事件的特点:(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和。
例1、从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?探究二:你能从上面的两个试验和例题1发现它们的共同特点吗?二.古典概型(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。
(等可能性)我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
思考:判断下列试验是否为古典概型?为什么?(1).从所有整数中任取一个数(2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。
(3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,….命中1环和命中0环(即不命中)。
(4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张.一、教材分析:《古典概型的特征和概率计算公式》是北师大版普通高中课程标准试验教科书数学必修3第三章第二节第一小节的内容。
本节课内容是在学生已经学习了随机事件概率的概念基础上的延续和拓展。
古典概型是一种特殊的数学模型,它的引入避免了大量的重复试验,而且得到的是概率的精确值。
它也为后面学习几何概型在思路上做了一个铺垫,在教材中起着承前启后的作用。
同时,学习本节课的内容,能够大大激发学生学习数学、应用数学的兴趣。
因此本节知识在概率论中占有相当重要的地位。
由于在这节课之前,教材中并没有安排排列组合知识,所以这节课的重点我认为不是“如何计算”,而是让学生通过生活中的实例与数学模型,来理解古典概型的两个特征,让学生初步学会把一些实际问题转化为古典概型;能运用公式求一些简单的古典概型概率二、教学目标:1.知识与技能(1)理解古典概型的特征;(2)通过实例归纳出古典概型概率计算公式;(3)能运用公式求一些简单的古典概型概率。
2.过程与方法根据本节课的内容和学生的实际水平,通过对两个问题的研究让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比骰子试验,归纳总结出古典概型的概率计算公式,体现了有特殊到一般的数学思想,掌握列表法,和树状图法两种列举方法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
3.情感态度与价值观三、重点、难点重点:理解古典概型的两个特征;归纳出古典概型概率计算公式。
难点:简单应用古典概型概率计算公式。
四、教学过程(一)复习回顾,引入课题:通过上节课做大量的重复试验,得出随机事件概率的方法存在的不足:费时,费力;并且得到的概率是一个估计值,引出有必要寻找另外一种计算随机事件概率的方法:古典概型的特征和概率计算公式。
(二)探究新知:问题1:(1)、掷一枚质地均匀的硬币,可能出现的结果有几个?每个结果出现的概率是多少?通过什么方法得到的?(2)、掷一枚质地均匀的骰子,向上的点数可能有几种?每个结果出现的概率是多少?通过什么方法得到的?对以上问题如何从理论上进行说明?设计目的:首先让学生体会到概率计算问题在理论与实践上是相统一的,然后让学生通过对上述问题的结论进行交流探讨,得出他们的共同特征,即古典概型的特征。
让学生体会有特殊到一般的数学思想,并使学生在亲身体会古典概型的同时感受与他人合作的重要性,得出基本事件的概念。
思考交流:1、问题一中各自的基本事件是什么?2、射击运动员向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环、……命中1环和命中0环(即不命中),你认为这是古典概型吗?为什么?3、向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,你认为是古典概型吗?为什么?设计目的:让学生交流讨论得出结论,一方面让学生感受到与他人合作的重要性,另一方面让学生对古典概型的特征和基本事件作进一步的加深巩固,其次得出古典概型必须同时满足有限等可能两个条件,否则它就不是古典概型。
问题2:掷一粒均匀的骰子,计算下列事件的概率:(1)向上的点数为偶数的概率;(2)向上的点数为奇数的概率;(3)向上的点数小于等于4的概率。
设计目的:通过对问题的分析,然后让学生观察各概率分子分母的特征,归纳出古典概型概率计算公式,让学生体会古典概型概率计算公式的生成过程。
(三)例题解析:例1:同时掷两粒均匀的骰子,计算:(1)一共有多少种可能的结果?(2)向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?设计目的:通过该题让学生总结出列举事件所有可能结果的方法,及各个列举方法如何应用,在哪些情况下应用哪些方法,并初步体会运用古典概型概率计算公式的步骤。
例2:将一枚质地均匀的硬币连续掷三次,求恰好出现“两次正面朝上一次反面朝上”的概率?设计目的:老师与学生共同研究,让学生体会归纳出运用古典概型概率计算公式的步骤。
(四)课堂练习:1、甲、乙两人做出拳游戏(剪刀、石头、布)求:甲赢的概率。
2、一个不透明的口袋内装有除颜色外完全相同的红、黄、蓝各1个小球,每次从中摸出1个球,放回后再摸一个,连续摸三次,求摸出的3个球是“两红一黄”的概率。
3、同时转动如图所示的两个转盘,记转盘(A)得到的数为某,转盘(B)得到的数为y,计算下列事件的概率:(1)某+y=5;(2)某<3且y>1设计目的:通过练习一方面检测学生对古典概型的特征和概率计算公式的掌握情况,另一方面让学生巩固对古典概型的特征和概率计算公式的应用。
(五)课时小结:1.古典概型的概念:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个结果出现的可能性相同。
2.古典概型的概率公式3.运用古典概型概率计算公式的步骤:①判断随机事件是否为古典概型;②计算随机事件A包含的可能结果数和实验的所有可能结果数4.列举随机实验所有可能结果的方法:列表法、树状图等。
设计目的:让学生对本节课做一个回头望,加深对本节课所学知识理解。
(五)课后作业:(1)必做:课本134页,第3题选作:课本147页,A组第3题;(2)课后探究:在标准化考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案,大家可能有一种感觉,如果不知道正确答案,多选题比单选题更难猜对,试从概率的角度给出解释?设计目的:让学生对本节课的知识进行独立的应用,同时检测所有学生对本节课的掌握程度教学目标:知识与技能学习用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策。
过程与方法经历实验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率。
渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力。
情感、态度与价值观通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:分析等可能性教学难点:能根据不同情况选择恰当的方法进行列举,解决较复杂事件概率的计算问题。
教学过程一、复习引入:1、古典概型的特点:①出现的结果有限多个;②各结果发生的可能性相等。
2、练习:P131第1、2题;P132第2、3题。
老师:等可能性事件的概率可以用列举法而求得。
列举法就是把要数的对象一一列举出来分析求解的方法,这就是本节课要学习的知识。
二、新知讲解:例1、如图:计算机扫雷游戏,在9某9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把他的去域记为A区,A区外记为B区,下一步小王应该踩在A区还是B区?分析:首先要弄清游戏的规则;其次,求两个概率,要研究它们是否符合古典概率的两要素解:(略)例2、掷两枚硬币,求下列事件的概率:(1)两枚硬币全部正面朝上。