第十四章 热分析法
- 格式:ppt
- 大小:2.11 MB
- 文档页数:98
热分析方法简介热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。
该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。
其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。
其三,测量物理量随温度的变化关系。
物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。
表1中列出根据所测物理性质对热分析方法的分类。
其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。
下面简单介绍DTA、TG和DSC的基本原理和技术。
表1热分析方法的分类(一)差热分析(DTA)差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。
差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。
在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。
一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。
图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。
将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。
差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。
从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。
在理想条件下,差热分析曲线如图图2所示。
图中的纵坐标表示试样和参比物之间的温度差;横坐标表示温度T、或升温过程的时间t。
如果参比物的热容和被测试样的热容大致相同,而试样又无热效应时,两者的温度差非常微小,此时得到的是一条平滑的基线AB。
随者温度的上升,试样发生了变化,产生了热效应,在差热分析曲线上就出现一个峰如图2中的BCD和EFG。
5 热分析5. 1 概述物质在温度变化过程中,往往伴随着微观结构和宏观物理、化学等性质的变化,宏观上的物理、化学性质的变化通常与物质的组成和微观结构相关联。
通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性、定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。
热分析方法是利用热学原理对物质的物理性能或成分进行分析的总称。
根据国际热分析协会(International Confederation for Thermal Analysis,缩写ICTA)对热分析法的定义:热分析是在程序控制温度下,测量物质的物理性质随温度变化的一类技术。
所谓“程序控制温度”是指用固定的速率加热或冷却,所谓“物理性质”则包括物质的质量、温度、热焓、尺寸、机械、升学、电学及磁学性质等。
热分析的发展历史可追溯到两百多年前。
1780年英国的Higgins在研究石灰粘结剂和生石灰的过程中第一次使用天平测量了实验受热时所产生的重量变化, 1915年日本的本多光太郎提出了“热天平”概念并设计了世界上第一台热天平。
1899年,英国的Roberts和Austen采用两个热电偶反相连接,采用差热分析的方法直接记录样品和参比物之间的温差随时间变化规律;至二次大战以后,热分析技术得到了飞快的发展,20世纪40年代末商业化电子管式差热分析仪问世,60年代又实现了微量化。
1964年,Wattson和O’Nei11等人提出了“差示扫描量热”的概念,进而发展成为差示扫描量热技术,使得热分析技术不断发展和壮大。
经过数十年的快速发展,热分析已经形成一类拥有多种检测手段的仪器分析方法,它可用于检测的物质因受热而引起的各种物理、化学变化,参与各学科领域中的热力学和动力学问题的研究,使其成为各学科领域的通用技术,并在各学科间占有特殊的重要地位。
5.2 热分析技术的分类热分析是在程序控制温度下,测量物质的物理性质随温度变化的一类技术。