聚合物研究方法 第三章热分析
- 格式:ppt
- 大小:642.00 KB
- 文档页数:68
聚合物合成反应的机理和研究方法聚合物是由不同的小分子单元通过化学键结合而形成的高分子化合物,它广泛应用于医学、化工、材料科学等领域。
在聚合物的制备过程中,聚合物合成反应是非常重要的一步。
本文将探讨聚合物合成反应的机理以及研究方法。
一、聚合物合成反应的机理聚合物合成反应是指将单体分子缩合成链状高分子化合物的反应过程,其机理包括自由基聚合、离子聚合、羰基聚合、酰胺聚合等。
1.自由基聚合自由基聚合是最常见的聚合物合成反应,其机理是在反应中发生自由基的链式反应。
首先,引发剂(如温度、光或化学物质)会将单体分子中的一个或多个电子从共价键中打出,形成自由基。
接着,自由基与另一个单体分子的双键结合,形成一个新的自由基。
这种机理将循环重复,直到形成长链状的高分子化合物。
2.离子聚合离子聚合是将离子性单体分子缩合成离子链的反应。
这种机理主要有阴离子聚合和阳离子聚合两种。
在阴离子聚合中,引发剂引发了阴离子的形成,这些离子与单体分子结合并释放出负离子,形成更多的阴离子并最终生成一个长链状的高分子化合物。
而在阳离子聚合中,正离子与单体分子结合进一步释放出正离子,周而复始直到形成长链状高分子化合物。
3.羰基聚合羰基聚合是一种重要的聚合物合成反应,其机理是在酰基或酯基的存在下,通过核酸加成,使单体中的羰基上的氧原子与其他单体缩合,依次形成长链状的高分子化合物。
此外,还可以在氰基聚合中使用氰基作为单体。
4.酰胺聚合酰胺聚合是通过在酰胺键的存在下,将含有官能基的单体与偶联剂结合形成长链状高分子化合物的反应。
此外,还可以通过其他官能基的反应,如酯化、亲核取代等反应实现聚合物的制备。
二、聚合物合成反应的研究方法1.光谱分析光谱分析是一种无损检测技术,被广泛应用于聚合物合成反应的机制研究中。
例如,利用红外光谱、核磁共振等分析方法,可以对反应物在反应过程中发生的化学变化进行跟踪,帮助确认反应物种类、反应程度、质量分数等信息。
2.热分析热分析是聚合物反应机制研究的另一种常见方法。
实验7 聚合物的热重分析(TGA)热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。
此外,也可在恒定温度下,将失重作为时间的函数进行测定。
应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。
因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。
1. 实验目的(1)了解热重分析法在高分子领域的应用。
(2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度Td。
2. 实验原理热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。
现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。
通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。
温度/℃图2-40 TGA谱图开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。
图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。
TGA在高分子科学中有着广泛的应用。
例如,高分子材料热稳定性的评定,共聚物和共混物的分析,材料中添加剂和挥发物的分析,水分(含湿量)的测定,材料氧化诱导期的测定,固化过程分析以及使用寿命的预测等。
化学化工学院材料化学专业实验报告实验实验名称:聚合物的热分析------差示扫描量热法(DSC)年级:2011级材料化学日期:2013-10-17姓名:学号:同组人:一、预习部分1、差热分析差热分析(Differential Thermal Analysis—DTA)法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。
该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。
广泛应用于无机、有机、特别是高分子聚合物、玻璃钢等领域。
差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同的人在同一仪器上测量,所得到的差热曲线结果有差异。
峰的最高温度、形状、面积和峰值大小都会发生一定变化。
其主要原因是因为热量与许多因素有关,传热情况比较复杂所造成的。
虽然过去许多人在利用DTA进行量热定量研究方面做过许多努力,但均需借助复杂的热传导模型进行繁杂的计算,而且由于引入的假设条件往往与实际存在差别而使得精度不高,差示扫描热法(简称DSC)就是为克服DTA在定量测量方面的不足而发展起来的一种新技术。
20世纪60年代,差示扫描量热法(Differential Scanning Calorimetry,DSC)被提出,其特点是使用温度范围比较宽,分辨能力和灵敏度高,根据测量方法的不同,可分为功率补偿型DSC和热流型DSC,主要用于定量测量各种热力学参数和动力学参数。
差示扫描量热法是在程序升温的条件下,测量试样与参比物之间的能量差随温度变化的一种分析方法。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
曲线的纵轴为单位时间所加热量,横轴为温度或时间。
曲线的面积正比于热焓的变化。
DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。
聚合物研究方法聚合物在我们生活里可太常见啦,像塑料、橡胶这些都是聚合物呢。
那研究它们得有不少有趣的方法哦。
有一种方法就是光谱分析。
这就像是给聚合物做个超级细致的“体检”。
比如说红外光谱,它就像一个超级侦探,能发现聚合物分子里不同的化学键。
就好比每个化学键都有自己独特的“声音”,红外光谱就能把这些“声音”都听出来,然后告诉我们这个聚合物里都有哪些基团。
这就像是在猜一个神秘礼物盒里装了啥,通过一些小线索,就能知道大概的东西啦。
还有热分析的方法呢。
想象一下聚合物就像一个小怪兽,温度就是刺激它的魔法。
我们通过热重分析,可以知道这个小怪兽在不同温度下重量的变化。
比如说有的聚合物在高温的时候会像个胆小鬼一样开始分解,重量就会变轻啦。
差示扫描量热法也很有趣,它能发现聚合物在加热或者冷却的时候那些隐藏的热变化,就像是发现小怪兽在不同温度下的小秘密一样。
显微镜观察也是个超酷的方法。
把聚合物放在显微镜下,就像把一个小世界放大了。
光学显微镜能让我们看到聚合物的大概模样,是光滑的呀,还是有很多小颗粒的呢。
电子显微镜就更厉害了,它的放大倍数超级高,可以看到聚合物分子链的排列,就好像能看到小怪兽的细胞结构一样,超级神奇。
另外,流变学测试也很重要哦。
这就像是在测试聚合物的“脾气”。
它在受到外力的时候是像个软妹子一样很容易变形呢,还是像个硬汉一样很倔强地抵抗变形。
通过这种测试,我们就能知道聚合物在加工过程中会有什么样的表现啦。
研究聚合物的方法就像一个装满工具的魔法盒子,每个工具都有自己独特的用处,通过这些方法,我们就能更好地了解聚合物这个神奇的小世界啦。
聚合物热分析法介绍热分析是在程序控温下,测量物质的物理性质与温度的关系的一类技术。
热分析方法种类繁多,但对高分子应用最广的是差热分析(DTA)、差示量热扫描法(DSC)、热重分析(TG或TGA)、热机械分析(TMA)和动态机械分析(DMA或DMTA)等少数几种。
科标分析以成熟的分析技术为理论依据,创建“光-色-热-质-元-化”联用的检测技术,在微量模块化方法学模拟技术中对产品的成分进行全方位的解析,科标分析聚合物分析测试服务,根据样品实际情况,制定专项检测方案,提供精准权威的检测数据。
DSC和DTA的谱图类似,但DSC有更好的分辨率、重复性和准确性,更适合于高分子的分析,特别是定量分析。
图11-6是聚对苯二甲酸乙二醇酯的典型DSC谱图。
图11-6聚对苯二甲酸乙二醇酯的DSC曲线根据DSC谱图上峰的位置和大小,可以研究高聚物的化学反应或物理转变。
化学反应包括聚合、固化、交联、氧化和分解等,物理转变包括结晶/熔融和液晶转变等相变,玻璃化转变等,结晶、氧化有放热峰,熔融有吸热峰,分解有时放热有时吸热,玻璃化转变在DSC曲线上表现为基线偏移(因比热容发生突变),出现一个台阶。
式中:为比热容,为样品质量,为热流速率(纵坐标),为升温速率。
DSC定量的依据是峰面积A与热效应的大小成正比,即=因而通过峰面积的测定可以计算结晶度及研究结晶动力学。
=/式中:为样品的熔融热,为100%结晶样品的熔融热。
=1-=式中:为时刻的结晶度;为时刻的结晶峰面积;A为结晶完成后结晶峰总面积;为结晶速率常数;为Arrami指数。
TGA法记录高分子材料的重量随温度的变化主要用于研究聚合物的热稳定性,常用热分解温度来评价。
TGA也用于高分子材料的组成分析。
TMA法记录试样在一定负荷下形变随温度的变化,得温度-形变曲线。
DMA法测量高分子材料在振动负荷下动态模量和阻尼与温度的关系,主要用于研究高分子的玻璃化转变及次级松弛,可以记录温度谱,也可以记录频率谱。
聚合物分析DSC聚合物的热分析技术是研究聚合物的熔融、结晶和玻璃化行为的重要手段之一、其中,差示扫描量热分析(DSC)是最常用的热分析技术之一、DSC可以通过测量材料在加热或冷却过程中吸收或释放的热量来确定材料的热性质,从而揭示聚合物分子结构和交联程度等信息。
DSC的基本原理是将待测样品与一相对参照物样品同时加热或冷却,测量两者之间的温差,通过这种方式测量样品在加热或冷却过程中产生或吸收的热量。
对于聚合物材料来说,DSC主要可以提供以下几方面的信息。
首先,DSC可以通过测量聚合物的熔点和熔融热来确定聚合物的热稳定性和熔融行为。
聚合物材料通常会在一定的温度范围内熔化,这个温度称为熔点。
根据DSC曲线上的熔点峰值可以确定聚合物的熔点。
同时,熔点峰值下方的面积可以反映聚合物的熔融热,即在熔化过程中吸收或释放的热量。
这些信息可以用来评估聚合物的熔融性能和热稳定性。
其次,DSC还可以用来研究聚合物的晶化行为和结晶度。
聚合物通常会在冷却过程中逐渐形成结晶结构,这个过程可以通过DSC曲线上的多个峰和尖峰之间的峰型变化来观察得到。
晶化过程中会释放出特定的热量,通过测量曲线上峰下方的面积可以反映聚合物的结晶热。
结合其他表征结晶程度的方法,如X射线衍射等,可以确定聚合物的结晶度和晶型。
此外,DSC还可以研究聚合物的玻璃化行为。
在一定的温度范围内,聚合物会由高分子链的自由运动逐渐转变为玻璃态,这个过程称为玻璃化转变。
通过DSC曲线上的玻璃化跳跃点可以确定聚合物的玻璃化转变温度。
此外,玻璃化转变过程中伴随着一定的热效应,通过测量曲线上玻璃化跳跃点下方的面积可以得到玻璃化转变的热焓。
最后,DSC还可以用来研究聚合物的交联程度和固化反应。
聚合物在交联或固化过程中,会放出大量的热量。
通过测量DSC曲线上的交联峰的位置和面积,可以确定聚合物的交联程度和固化反应速率。
总的来说,DSC是一种非常重要的聚合物分析技术,可以用来研究聚合物的熔融、结晶和玻璃化行为,揭示聚合物的热性质和分子结构。
聚合物检测方法
1. 光谱分析:包括红外光谱(IR)、紫外可见光谱(UV-Vis)、核磁共振光谱(NMR)等。
这些方法可用于确定聚合物的化学结构、官能团、化学键等信息。
2. 分子量测定:通过凝胶渗透色谱(GPC)或质谱法(MS)等技术,可以测定聚合物的分子量分布、平均分子量和分子量分布宽度等参数。
3. 热分析:热重分析(TGA)、差示扫描量热法(DSC)等热分析技术可用于研究聚合物的热稳定性、熔点、玻璃化转变温度、热分解等特性。
4. 显微镜观察:使用光学显微镜或电子显微镜可以观察聚合物的形态、晶体结构、相分离等微观结构信息。
5. 力学性能测试:包括拉伸试验、弯曲试验、冲击试验等,用于评估聚合物的力学强度、韧性、弹性等性能。
6. 元素分析:通过元素分析仪可以测定聚合物中各元素的含量,例如碳、氢、氧、氮等元素的比例。
7. 流变性能测试:使用流变仪可以测量聚合物的黏度、弹性、熔体流动等流变学特性。
8. 老化试验:进行加速老化或自然老化试验,以评估聚合物在长期使用或暴露条件下的稳定性和耐久性。
这些方法可以单独或结合使用,根据具体的需求和应用选择合适的检测方法。
聚合物检测有助于评估材料的质量、性能和可靠性,对于材料科学研究、产品开发和质量控制具有重要意义。
第三节 热重分析(TG )一、基本原理热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。
如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。
如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。
如图1所示。
一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。
第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。
第三个台阶发生在高温是属于试样本体的分解。
为了清楚地观察到每阶段失重最快的温度。
经常用微分热重曲线DTG (如图1b )。
这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。
对于分解不完全的物质常常留下残留物W R 。
在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。
另外目前又出现了一种等温TG 曲线。
这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即:W=f (t )(温度为定值)W 0 W 1 W 2 W 3重量图1 热重分析曲线(a )与微商热重曲线(b )炉子它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。
二、基本结构热重法的仪器称为热天平,给出的曲线为热重曲线。
热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。
热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。
热天平的示意图如图2-1所示。
通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成温度。
三、影响因素虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下:1.坩埚的影响坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。
聚合物材料的热力学分析及应用研究随着现代化进程的不断提升,高科技材料的应用越来越广泛。
而聚合物材料,作为其中一种不可或缺的材料,日益受到人们的关注。
聚合物材料的热力学分析是一项非常重要的工作,不仅有助于深入了解聚合物材料的性能特点,更可以为聚合物材料的应用提供基础性理论知识,下面我们就来详细的探讨一下聚合物材料的热力学分析及应用研究。
一、聚合物的热力学特性热力学是描述物理、化学系统的宏观状态及其相互转换关系的一种基本理论。
对于聚合物材料,其热力学特性的分析对于研究其性能有着至关重要的作用。
热力学的基本参数包括热力学函数(自由能、熵、焓等)和平衡常数,而聚合物材料的热力学特性通常由下列几方面来评估:1.热分析热分析是利用热学的基本理论来研究物质热学特性的方法,包括热重分析、热扫描电镜、差式扫描量热法、微量热法等。
这些方法可以用来研究聚合物材料的热分解、膨胀行为、晶体化特性等。
2.热力学模拟热力学模拟是一种从热力学的角度来考虑材料的模拟方法,它可以利用计算机模拟分子运动,进而研究聚合物系统的能量、自由能、热容量等热力学性质以及相互作用。
目前,热力学模拟已经成为聚合物材料研究中的重要工具之一。
二、聚合物的热化学性能聚合物材料的热化学性能涉及热力学、动力学、热力学平衡等多方面的问题。
其中,最重要的是反应热和活化能的研究。
聚合物的反应热是指在聚合过程中放出的能量,也是聚合反应热力学性质的重要指标。
而活化能则是指聚合物分子在反应中去除必须的能量,使反应进行的能力,也是聚合物材料研究重要的参数。
此外,在聚合物材料的应用过程中,还需要考虑其破坏温度、热稳定性等,因此,热力学分析也有助于理解材料的失效机理。
三、聚合物材料的应用研究聚合物材料的应用范围非常广泛,包括塑料、橡胶、纤维等。
在应用过程中,聚合物材料的热力学性能是至关重要的。
例如,在聚合物增韧剂的应用研究中,要考虑其施加热量对于聚合物的影响;在聚酯纤维的制备中,要考虑其热稳定性等等。
热动力学分析聚合物体系聚合物是由多个小分子单体化合物通过化学作用连接而成的大分子化合物。
聚合物体系是由多种不同聚合物构成的宏观体系。
在聚合物材料科学中,热力学是研究聚合物热性质的重要分支。
由于聚合物体系的复杂性和多样性,热动力学分析在聚合物体系研究中是必不可少的。
1. 热力学基础热力学是研究能量转化和热现象的物理科学,其中主要涉及热能、温度和熵等基本量。
在聚合物体系中,热力学可以用来描述聚合物分子的热运动以及相互作用。
例如,通过测量聚合物体系的热容、焓和熵,可以确定聚合物体系的相变点和热力学稳定性。
2. 热力学分析热力学分析是一种从聚合物热学方面对聚合物体系进行研究的方法。
通过测量聚合物体系的热量、温度和压力等参数,可以得出一系列热力学参数,如焓、熵和自由能。
这些参数可以用来评估聚合物体系的热力学本质、稳定性和相转换行为。
3. 热力学参数的测量热力学参数的测量可以通过多种实验方法进行。
例如,热重分析可以用来测量聚合物体系的热稳定性和热分解动力学。
差示扫描量热法可以用来测量聚合物体系的焓、熵和热容等参数。
等温量热法可以用来研究聚合物体系的相转换行为。
4. 聚合物体系的热力学稳定性聚合物体系的热力学稳定性是指聚合物体系在一定温度和压力条件下保持相对稳定的能力。
热力学稳定性可以通过测量聚合物体系的热容和焓等热力学参数来评估。
聚合物体系的热力学稳定性不仅受到化学组成和分子结构的影响,还受到外部条件(如温度、压力、湿度等)的影响。
5. 聚合物体系的相转换行为聚合物体系的相转换行为是指在一定温度和压力条件下,聚合物体系中不同相之间发生转换的行为。
聚合物体系的相转换行为可以通过测量聚合物体系的焓和熵等参数来评估。
聚合物体系的相转换行为受到许多因素的影响,如聚合物分子之间的相互作用、外部条件等。
总之,热动力学分析是研究聚合物体系热性质的重要方法,它可以帮助科学家深入了解聚合物体系的热力学本质、稳定性和相转换行为。