2016-2017学年广东省深圳市宝安 区八年级(下)期末数学试卷
- 格式:pdf
- 大小:432.04 KB
- 文档页数:27
2016-2017学年上海中学八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.(3分)下列计算正确的是()A.B.C.D.4.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.5.(3分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=56.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.59.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.2410.(3分)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD 11.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)12.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)13.(3分)=,=.14.(3分)顺次连接矩形各边中点所得四边形为形.15.(3分)已知菱形的两条对角线长为8和6,那么这个菱形面积是,菱形的高.16.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC 于F.且AD交EF于O,则∠AOF=度.17.(3分)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC 上一动点,则PB+PE的最小值是.三、解答题:(共66分)19.(8分)计算:(1)2﹣6+3(2)(﹣).20.(8分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.21.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.22.(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.23.(10分)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED 的形状,并说明理由.24.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD 上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.(10分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.2016-2017学年上海中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2014春•宁津县期末)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)(2016春•重庆期中)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.(3分)(2016春•津南区校级期中)下列计算正确的是()A.B.C.D.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能合并,错误;C、原式=2×=,错误;D、原式=5,正确,故选D【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.(3分)(2016春•津南区校级期中)正方形面积为36,则对角线的长为()A.6 B.C.9 D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.(3分)(2016春•庆云县期末)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.(3分)(2016春•津南区校级期中)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD【分析】利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【解答】解:A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)(2007•南通)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(3分)(2016春•津南区校级期中)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.5【分析】如下图所示:∠AOD=∠BOC=60°,即:∠COD=120°>∠AOD=60°,AD 是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA=OD=OC=OB=7.5,又因为∠AOD=∠BOC=60°,所以AD的长即可求出.【解答】解:如下图所示:矩形ABCD,对角线AC=BD=15,∠AOD=∠BOC=60°∵四边形ABCD是矩形∴OA=OD=OC=OB=×15=7.5(矩形的对角线互相平分且相等)又∵∠AOD=∠BOC=60°,∴OA=OD=AD=7.5,∵∠COD=120°>∠AOD=60°∴AD<DC所以该矩形较短的一边长为7.5,故选C.【点评】本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.9.(3分)(2016春•苏州期末)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.10.(3分)(2016春•津南区校级期中)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【分析】先根据平行四边形的判定得出四边形ABCD是平行四边形,再根据矩形的判定逐个判断即可.【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.【点评】本题考查了平行四边形和矩形的判定的应用,能熟记矩形的判定定理是解此题的关键.11.(3分)(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.12.(3分)(2016春•日照期中)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△A FD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S=•AF•BC=10.△AFC故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(每小题3分,共18分)13.(3分)(2016春•津南区校级期中)=,=.【分析】根据二次根式的乘除法则以及二次根式的性质化简即可.【解答】解:==,=|﹣|=,故答案分别为,.【点评】本题考查二次根式的化简,二次根式的性质,解题的关键是掌握分母有理化的方法,记住公式=|a|,()2=a(a>0),属于中考常考题型.14.(3分)(2012•蓟县模拟)顺次连接矩形各边中点所得四边形为菱形.【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为:菱形.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.15.(3分)(2016春•津南区校级期中)已知菱形的两条对角线长为8和6,那么这个菱形面积是24,菱形的高.【分析】如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E,先利用勾股定理求出菱形边长,根据菱形的面积等于对角线乘积的一半等于底乘高,即可解决问题.【解答】解:如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E.∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴菱形的面积=•AC•BD=24,∵BC•AE=24,∴AE=,∴菱形的高为.故答案为24,.【点评】本题考查菱形的性质,记住菱形的面积的两种求法,①菱形面积等于三角形乘积的一半,②菱形的面积等于底乘高,属于基础题,中考常考题型.16.(3分)(2016春•津南区校级期中)如图,AD是△ABC的角平分线,DE∥AC 交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=90度.【分析】先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出▱AEDF为菱形,根据菱形的性质即可得出结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.【点评】本题考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.17.(3分)(2004•郫县)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为20.【分析】此题要能够根据三角形的中位线定理证明四边形A1B1C1D1是矩形,从而根据矩形的面积进行计算.【解答】解:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10∴A1D1是△ABD的中位线∴A1D1=BD=×10=5同理可得A1B1=AC=4根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形那么四边形A1B1C1D1的面积为A1D1×A1B1=5×4=20.【点评】本题考查了三角形的中位线定理,是经常出现的知识点.注意:顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.18.(3分)(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10.【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题:(共66分)19.(8分)(2016春•津南区校级期中)计算:(1)2﹣6+3(2)(﹣).【分析】(1)先把各个二次根式进行化简,合并同类二次根式即可;(2)先把各个二次根式进行化简,合并同类二次根式,再根据二次根式的除法法则计算即可.【解答】解:(1)2﹣6+3=4﹣2+12=14;(2)(﹣)=(5﹣2)÷=3÷=3.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质和二次根式的混合运算法则是解题的关键.20.(8分)(2015春•荣昌县期末)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【分析】因为x2=7﹣4直接代入,可构成两个平方差公式,计算比较简便.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.【点评】此题的难点在于将7+4写成(2+)2的形式.21.(10分)(2016春•津南区校级期中)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.【分析】如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.【解答】解:如图,连接BD.在Rt△ABD中,∵∠A=90°,AD=4,AB=3,∴BD===5,∵BD2+BC2=52+122=169,DC2=132=169,∴BD2+BC2=CD2,∴△BDC是直角三角形,∴S△DBC =•BD•BC=×5×12=30,S△ABD=•AD•AB=×3×4=6,∴四边形ABCD的面积=S△BDC +S△ADB=36.【点评】本题考查勾股定理、勾股定理的逆定理、三角形的面积等知识,解题的关键是把四边形问题转化为三角形问题解决,属于中考常考题型.22.(10分)(2014•泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【分析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【解答】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.23.(10分)(2013•济南模拟)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED 的形状,并说明理由.【分析】(1)提取公因式(a+b),然后整理即可得解;(2)根据矩形的对角线互相垂直平分求出OC=OD,然后求出四边形OCED是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.【解答】(1)解:2a(a+b)﹣(a+b)2,=(a+b)(2a﹣a﹣b),=(a+b)(a﹣b),=a2﹣b2;(2)解:四边形OCED菱形.理由如下:∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED是菱形.【点评】本题考查了菱形的判定,矩形的对角线互相垂直平分的性质,以及平行四边形的判定与一组邻边相等的平行四边形是菱形.24.(10分)(2013•南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.25.(10分)(2011•河池)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【分析】(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD 是平行四边形;(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程(8﹣x)2=x2+(4)2,解此方程即可求得OG的长.【解答】(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB•cos30°=8×=4,AB=OB•sin30°=8×=4,∴点B的坐标为(4,4);(2)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)解:设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.【点评】此题考查了折叠的性质,三角函数的性质,平行四边形的判定,等边三角形的性质,以及勾股定理等知识.此题难度较大,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.。
2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷2016-2017学年云南省昆明市盘龙区八年级(下)期末数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)计算:$\sqrt{27}=$.2.(3分)若一组数据3,x,4,5,6的众数是3,则这组数据的中位数是$\frac{4+5}{2}=$.3.(3分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为$6+8+10=$.4.(3分)如图,函数$y=ax+4$和$y=bx$的图象相交于点A,则不等式$bx\geq ax+4$的解集为$x\geq 4\frac{1}{b-a}$.5.(3分)已知:在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交AD于E、BC于F,$S_{\triangle AOE}=3$,$S_{\triangle BOF}=5$,则▱ABCD 的面积是$24$.6.(3分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为$5$.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)要使式子$\sqrt{x+1}$有意义,则x的取值范围是(B).A.$x>1$ B.$x\geq -1$ C.$x\geq 1$ D.$x\geq 0$8.(4分)下列式子成立的是(B).A.$2+3=3$ B.$2-3=2-5$ C.$2\times3=6$ D.$\frac{2}{3}=0.6$9.(4分)为了考察甲、乙、丙3种小麦的苗高,分别从中随机各抽取了100株麦苗,测得数据,并计算其方差分别是:$S_{甲}^2=1.4$,$S_{乙}^2=18.8$,$S_{丙}^2=2.5$,则苗高比较整齐的是(A).A.甲种 B.乙种 C.丙种 D.无法确定10.(4分)下列各曲线中表示y是x的函数的是(D).A.$\sqrt{x+y}=1$ B.$x^2+y^2=1$ C.$y=\pmx$ D.$y=2x-1$11.(4分)如图,△ABC中,CD⊥AB于D,且E是AC 的中点.若AD=6,DE=5,则CD的长等于(C).A.$5$ B.$6$ C.$7$ D.$8$12.(4分)菱形ABCD的周长是20,对角线AC=8,则菱形ABCD的面积是(B).A.$12$ B.$24$ C.$40$ D.$48$13.(4分)将一次函数$y=-3x-2$的图象向上平移4个单位长度后,图象不经过(C).A.第一象限 B.第二象限 C.第三象限 D.第四象限14.(4分)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是(D).A.$2n-2$ B.$2n-1$ C.$2n$ D.$2n+1$三、解答题(本大题共9小题,共70分)15.(4分)计算:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=$.解:$\frac{3}{5}\times \frac{5}{7}\times\frac{7}{9}=\frac{3\times 5\times 7}{5\times 7\times9}=\frac{1}{3}$.16.(5分)计算:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=$.解:$\frac{2}{3}+\frac{1}{5}-\frac{1}{6}-\frac{1}{15}=\frac{10+3-5-2}{15}=\frac{6}{15}=\frac{2}{5}$.17.(8分)如图,在△ABC中,$AB=AC$,$D$是$BC$的中点,$E$是$AD$的垂足,$F$是$BE$的中点,$G$是$AF$的垂足,$AG$交$BC$于点$H$,求证:$BH=HC$.证明:因为$AB=AC$,所以XXX又因为$D$是$BC$的中点,所以$AD\perp BC$,即$\angle ADE=90^\circ$.又因为$E$是$AD$的垂足,所以$AE=DE$,又$\angle AFE=90^\circ$,所以$AF=EF$.因为$F$是$BE$的中点,所以$BF=FE$.又因为$AG\perp BF$,所以$AG$是$BF$的高,所以$AG=GF$.设$BH=x$,则$HC=BF-BH=2x-BC$.由勾股定理得$AE=\sqrt{AB^2-BE^2}=\sqrt{AB^2-\left(\frac{AD}{2}\right)^2}=\sqrt{AB^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{3}}{2}AB$.由相似三角形可得$\frac{EF}{AB}=\frac{1}{2}$,$\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{HC}{AB}=\frac{2x-AB}{AB}$.由正弦定理得$\frac{EF}{\sin \angle A}=\frac{AE}{\sin\angle AEF}$,即$\frac{EF}{AB}=\frac{\sin \angle A}{\sin\angle AEF}$.又$\angle AEF=90^\circ-\angle BAE=\angle C$,$\sin \angle A=\sin \angle B$,所以$\frac{EF}{AB}=\frac{\sin \angle B}{\sin \angle C}$.由正弦定理得$\frac{AG}{\sin \angle B}=\frac{AB}{\sin\angle BAG}$,即$\frac{AG}{AB}=\frac{\sin \angle B}{\sin\angle BAG}$.又$\angle BAG=90^\circ-\angle BAF=90^\circ-\angle C$,所以$\frac{AG}{AB}=\frac{\sin \angle B}{\cos\angle C}$.综上所述,$\frac{\sin \angle B}{\sin \angleC}=\frac{EF}{AB}=\frac{1}{2}$,$\frac{\sin \angle B}{\cos\angle C}=\frac{AG}{AB}=\frac{2}{\sqrt{3}}$,$\frac{2x-AB}{AB}=\frac{HC}{AB}$,即$\frac{2x-AB}{AB}=\frac{2x-2BH}{AB}=\frac{2x-2BC}{AB}+1$,即$x=BC$,所以XXX.18.(8分)已知函数$f(x)=\frac{2x^2-8x}{x-2}$,求$f(2+\frac{1}{x})$的值.解:$f(2+\frac{1}{x})=\frac{2(2+\frac{1}{x})^2-8(2+\frac{1}{x})}{2+\frac{1}{x}-2}=\frac{2(4+\frac{4}{x}+\frac{1}{x^2})-8-\frac{8}{x}}{\frac{1}{x}}=-2x^2-4x-8+\frac{16}{x}$.所以$f(2+\frac{1}{x})=-2x^2-4x-8+\frac{16}{x}$.19.(10分)如图,已知$\odot O$是正方形ABCD内切圆,P是线段AD上一点,连接PB、PC,交$\odot O$于点E、F,交BC于点Q,求证:$PQ=2QF$.证明:因为$\odot O$是正方形ABCD内切圆,所以$\angle AOE=45^\circ$,所以$\angle EOF=90^\circ$,所以$\angle EPF=45^\circ$,所以XXX.因为$BE=BF$,所以XXX,又因为$\angle EFB=90^\circ$,所以$\angle FBE=45^\circ$,所以$\angle EPQ=90^\circ+\angle FPQ$.所以$\angle EPQ+\angle FPQ=135^\circ$,所以$\anglePQF=45^\circ$,所以$\angle FQP=45^\circ$,所以$\triangle PQF$是等腰直角三角形,所以$PQ=2QF$.20.(10分)如图,在△ABC中,$D$、$E$、$F$分别是$BC$、$AC$、$AB$上的三个点,$AD$、$BE$、$CF$交于点$O$,且$\frac{BO}{OE}=\frac{CO}{OF}=2$,求证:$AD$、$BE$、$CF$交于一点,并且$S_{\triangle ABC}=4S_{\triangle OEF}$.证明:作$BE$的平行线$GH\parallel BE$,交$AC$于点$H$,则$\frac{AH}{HC}=\frac{BG}{GE}=2$.作$AD$的平行线$IJ\parallel AD$,交$BC$于点$J$,则$\frac{BJ}{JC}=\frac{AI}{ID}=2$.作$CF$的平行线$KL\parallel CF$,交$AB$于点$L$,则$\frac{BL}{LA}=\frac{CK}{KF}=2$.设$\triangle ABC$的面积为$S$,则$\triangle AHE\sim\triangle ABC$,$\triangle BGF\sim \triangle ABC$,$\triangle CKE\sim \triangle ABC$,所以$S_{\triangleAHE}=\frac{1}{9}S$,$S_{\triangle BGF}=\frac{1}{9}S$,$S_{\triangle CKE}=\frac{1}{9}S$,所以$S_{\triangle OEF}=S-S_{\triangle AHE}-S_{\triangle BGF}-S_{\triangleCKE}=\frac{4}{9}S$.又因为$\frac{BO}{OE}=\frac{CO}{OF}=2$,所以$\frac{BG}{GE}=\frac{BO}{OE}-1=1$,$\frac{CK}{KF}=\frac{CO}{OF}-1=1$,所以$GH\parallel BE$,$KL\parallel CF$,所以XXX$,所以$\frac{AJ}{JC}=\frac{HL}{LK}=\frac{3}{2}$。
2016-2017学年北京市海淀区八年级(上)期末数学试卷一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a33.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×1064.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣25.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣28.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.259.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.12.分解因式:x2y﹣4xy+4y=.13.写出点M(﹣2,3)关于x轴对称的点N的坐标.14.如果等腰三角形的两边长分别是4、8,那么它的周长是.15.计算:﹣4(a2b﹣1)2÷8ab2=.16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=°.17.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法.(填“正确”或“不正确”)18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是;(2)∠ACB与∠ABC的数量关系为:.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.21.解下列方程:(1)=;(2)﹣1=.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有条对称轴,非正方形的长方形有条对称轴,等边三角形有条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=°,∠BEA=°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:.2016-2017学年北京市海淀区八年级(上)期末数学试卷参考答案与试题解析一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.2.下列运算中正确的是()A.x2÷x8=x﹣4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、底数不变指数相减,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相乘,故C正确;D、积的乘方等于乘方的积,故D错误;故选:C.3.石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体.石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学记数法表示为()A.1×10﹣6 B.10×10﹣7C.0.1×10﹣5D.1×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 001=1×10﹣6,故选A.4.在分式中x的取值范围是()A.x>﹣2 B.x<﹣2 C.x≠0 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分式有意义的条件可得x+2≠0,再解即可.【解答】解:由题意得:x+2≠0,解得:x≠﹣2,故选:D.5.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【解答】解:A、2a2﹣2a+1=2a(a﹣1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x﹣y)=x2﹣y2,这是整式的乘法,故此选项不符合题意;C、x2﹣6x+5=(x﹣5)(x﹣1),是因式分解,故此选项符合题意;D、x2+y2=(x﹣y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.6.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC【考点】全等三角形的性质.【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.【解答】解:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.7.下列各式中,计算正确的是()A.(15x2y﹣5xy2)÷5xy=3x﹣5y B.98×102==9996C. D.(3x+1)(x﹣2)=3x2+x﹣2【考点】分式的加减法;多项式乘多项式;平方差公式;整式的除法.【分析】根据分式的加减法,整式的除法,多项式乘多项式的运算方法和平方差公式,逐项判断即可.【解答】解:∵(15x2y﹣5xy2)÷5xy=3x﹣y,∴选项A不正确;∵98×102==9996,∴选项B正确;∵﹣1=﹣,∴选项C不正确;∵(3x+1)(x﹣2)=3x2﹣5x﹣2,∴选项D不正确.故选:B.8.如图,∠D=∠C=90°,E是DC的中点,AE平分∠DAB,∠DEA=28°,则∠ABE 的度数是()A.62 B.31 C.28 D.25【考点】平行线的判定与性质;角平分线的定义.【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,最后求得∠ABE的度数.【解答】解:如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°﹣∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.故选:C.9.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当△PCE的周长最小时,P点的位置在()A.△ABC的重心处 B.AD的中点处C.A点处D.D点处【考点】三角形的重心;等边三角形的性质;轴对称﹣最短路线问题.【分析】连接BP,根据等边三角形的性质得到AD是BC的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【解答】解:连接BP,∵△ABC是等边三角形,D是BC的中点,∴AD是BC的垂直平分线,∴PB=PC,△PCE的周长=EC+EP+PC=EC+EP+BP,当B、E、E在同一直线上时,△PCE的周长最小,∵BE为中线,∴点P为△ABC的重心,故选:A.10.定义运算=,若a≠﹣1,b≠﹣1,则下列等式中不正确的是()A.×=1 B. +=C.()2=D.=1【考点】分式的混合运算.【分析】根据定义:=,一一计算即可判断.【解答】解:A、正确.∵=,=.∴×=×=1.B、错误. +=+=.C、正确.∵()2=()2==.D、正确.==1.故选B.二.填空题(本大题共24分,每小题3分)11.如图△ABC,在图中作出边AB上的高CD.【考点】作图—基本作图.【分析】过点C作BA的延长线于点D即可.【解答】解:如图所示,CD即为所求.12.分解因式:x2y﹣4xy+4y=y(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:x2y﹣4xy+4y,=y(x2﹣4x+4),=y(x﹣2)2.13.写出点M(﹣2,3)关于x轴对称的点N的坐标(﹣2,﹣3).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可以直接写出答案.【解答】解:∵M(﹣2,3),∴关于x轴对称的点N的坐标(﹣2,﹣3).故答案为:(﹣2,﹣3)14.如果等腰三角形的两边长分别是4、8,那么它的周长是20.【考点】等腰三角形的性质;三角形三边关系.【分析】解决本题要注意分为两种情况4为底或8为底,还要考虑到各种情况是否满足三角形的三边关系来进行解答.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2015.计算:﹣4(a2b﹣1)2÷8ab2=﹣.【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】原式利用幂的乘方与积的乘方运算法则,以及整式的除法法则计算即可得到结果.【解答】解:原式=﹣4a4b﹣2÷8ab2=﹣2a3b﹣4=﹣,故答案为:﹣16.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A=36°.【考点】等腰三角形的性质;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵AB=AC,∴∠C=∠ABC,∵AB的垂直平分线MN交AC于D点.∴∠A=∠ABD,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠C=2∠A=∠ABC,设∠A为x,可得:x+x+x+2x=180°,解得:x=36°,故答案为:3617.教材中有如下一段文字:思考如图,把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?如图中的△ABC与△ABD满足两边和其中一边的对角分别相等,即AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等.这说明,有两边和其中一边的对角分别相等的两个三角形不一定全等.小明通过对上述问题的再思考,提出:两边分别相等且这两边中较大边所对的角相等的两个三角形全等.请你判断小明的说法正确.(填“正确”或“不正确”)【考点】全等三角形的判定.【分析】小明的说法正确.如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.首先证明△ACG≌△DFH,推出AG=DH,再证明△ABG≌△DEH,推出∠B=∠E,由此即可证明△ABC≌△DEF.【解答】解:小明的说法正确.理由:如图,△ABC和△DEF中,AB>AC,ED>DF,AB=DE,AC=DF,∠ACB=∠DFE,作AG⊥BC于G,DH⊥EF于H.∵∠ACB=∠DFE,∴∠ACG=∠DFH,在△ACG和△DFH中,,∴△ACG≌△DFH,∴AG=DH,在Rt△ABG和Rt△DEH中,,∴△ABG≌△DEH,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF.(当△ABC和△DEF是锐角三角形时,证明方法类似).故答案为正确.18.如图1,△ABC中,AD是∠BAC的平分线,若AB=AC+CD,那么∠ACB与∠ABC有怎样的数量关系?小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE.由AB=AC+CD,可得AE=AB.又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB与∠ABC的数量关系.(1)判定△ABD与△AED全等的依据是SAS;(2)∠ACB与∠ABC的数量关系为:∠ACB=2∠ABC.【考点】等腰三角形的性质;全等三角形的判定.【分析】(1)根据已知条件即可得到结论;(2)根据全等三角形的性质和等腰三角形的性质即可得到结论.【解答】解:(1)SAS;(2)∵△ABD≌△AED,∴∠B=∠E,∵CD=CE,∴∠CDE=∠E,∴∠ACB=2∠E,∴∠ACB=2∠ABC.故答案为:SAS,∠ACB=2∠ABC.三.解答题(本大题共18分,第19题4分,第20题4分,第21题10分)19.分解因式:(a﹣4b)(a+b)+3ab.【考点】因式分解﹣运用公式法.【分析】原式整理后,利用平方差公式分解即可.【解答】解:原式=a2﹣3ab﹣4b2+3ab=a2﹣4b2=(a﹣2b)(a+2b).20.如图,DE∥BC,点A为DC的中点,点B,A,E共线,求证:DE=CB.【考点】全等三角形的判定与性质.【分析】欲证明DE=CB,只要证明△ADE≌△ACB即可.【解答】证明:∵DE∥BC,∴∠D=∠C,∠E=∠B.∵点A为DC的中点,∴DA=CA.在△ADE和△ACB中,,∴△ADE≌△ACB.∴DE=CB.21.解下列方程:(1)=;(2)﹣1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:5x+2=3x,解得:x=﹣1,经检验x=﹣1是增根,原方程无解;(2)去分母得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=,经检验x=是分式方程的解.四.解答题(本大题共14分,第22题4分,第23、24题各5分)22.已知a+b=2,求(+)•的值.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将a+b的值代入化简后的式子即可解答本题.【解答】解:===,当a+b=2时,原式=.23.如图,在等边三角形ABC的三边上,分别取点D,E,F,使得△DEF为等边三角形,求证:AD=BE=CF.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】只要证明△ADF≌△BED,得AD=BE,同理可证:BE=CF,由此即可证明.【解答】解:在等边三角形ABC中,∠A=∠B=60°.∴∠AFD+∠ADF=120°.∵△DEF为等边三角形,∴∠FDE=60°,DF=ED.∵∠BDE+∠EDF+∠ADF=180°,∴∠BDE+∠ADF=120°.∴∠BDE=∠AFD.在△ADF和△BED中,,∴△ADF≌△BED.∴AD=BE,同理可证:BE=CF.∴AD=BE=CF.24.列方程解应用题:老舍先生曾说“天堂是什么样子,我不晓得,但从我的生活经验去判断,北平之秋便是天堂.”(摘自《住的梦》)金黄色的银杏叶为北京的秋增色不少.小宇家附近新修了一段公路,他想给市政写信,建议在路的两边种上银杏树.他先让爸爸开车驶过这段公路,发现速度为60千米/小时,走了约3分钟,由此估算这段路长约3千米.然后小宇查阅资料,得知银杏为落叶大乔木,成年银杏树树冠直径可达8米.小宇计划从路的起点开始,每a米种一棵树,绘制示意图如下:考虑到投入资金的限制,他设计了另一种方案,将原计划的a扩大一倍,则路的两侧共计减少200棵树,请你求出a的值.【考点】分式方程的应用.【分析】根据题意列出分式方程进行解答即可.【解答】解:这段路长约60×=3千米;由题意可得:.解方程得:a=15.经检验:a=15满足题意.答:a的值是15.故答案为:3五.解答题(本大题共14分,第25、26题各7分)25.在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴;(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,仿照类似的修改方式,请你在图1﹣4和图1﹣5中,分别修改图1﹣2和图1﹣3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.【考点】四边形综合题;等腰三角形的性质;等边三角形的性质;矩形的性质;轴对称图形.【分析】(1)根据等腰三角形的性质、矩形的性质以及等边三角形的性质进行判断即可;(2)中图1﹣2和图1﹣3都可以看作由图1﹣1修改得到的,在图1﹣4和图1﹣5中,分别仿照类似的修改方式进行画图即可;(3)长方形具有两条对称轴,在长方形的右侧补出与左侧一样的图形,即可构造出一个恰好有2条对称轴的凸六边形;(4)在等边三角形的基础上加以修改,即可得到恰好有3条对称轴的凸六边形.【解答】解:(1)非等边的等腰三角形有1条对称轴,非正方形的长方形有2条对称轴,等边三角形有3条对称轴,故答案为:1,2,3;(2)恰好有1条对称轴的凸五边形如图中所示.(3)恰好有2条对称轴的凸六边形如图所示.(4)恰好有3条对称轴的凸六边形如图所示.26.钝角三角形ABC中,∠BAC>90°,∠ACB=α,∠ABC=β,过点A的直线l交BC边于点D.点E在直线l上,且BC=BE.(1)若AB=AC,点E在AD延长线上.①当α=30°,点D恰好为BE中点时,补全图1,直接写出∠BAE=60°,∠BEA= 30°;②如图2,若∠BAE=2α,求∠BEA的度数(用含α的代数式表示);(2)如图3,若AB<AC,∠BEA的度数与(1)中②的结论相同,直接写出∠BAE,α,β满足的数量关系.【考点】全等三角形的判定与性质.【分析】(1)①只要证明AE⊥BC,△BCE是等边三角形即可解决问题.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN ⊥AE于N.只要证明Rt△BMF≌Rt△BNE,推出∠BEA=∠F,由BF=BC,推出∠F=∠C=α,推出∠BEA=α即可.(2)如图3中,连接EC,由△ADC∽△BDE,推出=,推出=,由∠ADB=∠CDE,推出△ADB∽△CDE,推出∠BAD=∠DCE,∠ABD=∠DEC=β,由BC=BE,推出∠BCE=∠BEC,推出∠BAE=∠BEC=∠BEA+∠DEC=α+β.【解答】解:(1)①补全图1,如图所示.∵AB=AC,BD=DC,∴AE⊥BC,∴EB=EC,∠ADB=90°,∵∠ABC=30°,∴∠BAE=60°∵BC=BE,∴△BCE是等边三角形,∠DEB=∠DEC,∴∠BEC=60°,∠BEA=30°故答案为60,30.②如图2中,延长CA到F,使得BF=BC,则BF=BE=BC,连接BF,作BM⊥AF于M,BN⊥AE于N.∵AB=AC,∴∠ABC=∠C=α,∴∠MAB=2α,∵∠BAN=2α,∴∠BAM=∠BAN,∴BM=BN,在Rt△BMF和Rt△BNE中,,∴Rt△BMF≌Rt△BNE.∴∠BEA=∠F,∵BF=BC,∴∠F=∠C=α,∴∠BEA=α.(2)结论:∠BAE=α+β.理由如下,如图3中,连接EC,∵∠ACD=∠BED=α,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,∴=,∵∠ADB=∠CDE,∴△ADB∽△CDE,∴∠BAD=∠DCE,∠ABD=∠DEC=β,∵BC=BE,∴∠BCE=∠BEC,∴∠BAE=∠BEC=∠BEA+∠DEC=α+β.附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)27.一个多边形如果是轴对称图形,那么它的边数与对称轴的条数之间存在联系吗?(1)以凸六边形为例,如果这个凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴;(2)凸五边形可以恰好有两条对称轴吗?如果存在请画出图形,并用虚线标出两条对称轴;否则,请说明理由;(3)通过对(1)中凸六边形的研究,请大胆猜想,一个凸多边形如果是轴对称图形,那么它的边数与对称轴的条数之间的联系是:对称轴的条数是多边形边数的约数.【考点】作图﹣轴对称变换.【分析】(1)根据凸六边形进行画图,然后猜想即可;(2)根据题意画出图形,再结合轴对称图形的定义进行分析即可;(3)根据(1)中所得的数据可得答案.【解答】解:(1)凸六边形是轴对称图形,那么它可能有1,2,3或6条对称轴,故答案为:1,2,3或6;(2)不可以.理由如下:根据轴对称图形的定义,若一个凸多边形是轴对称图形,则对称轴与多边形的交点是多边形的顶点或一条边的中点.若多边形的边数是奇数,则对称轴必经过一个顶点和一条边的中点.如图1,设凸五边形ABCDE是轴对称图形,恰好有两条对称轴l1,l2,其中l1经过A和CD的中点.若l2⊥l1,则l2与五边形ABCDE的两个交点关于l1对称,与对称轴必经过一个顶点和一条边的中点矛盾;若l2不垂直于l1,则l2关于l1的对称直线也是五边形ABCDE的对称轴,与恰好有两条对称轴矛盾.所以,凸五边形不可以恰好有两条对称轴.(3)对称轴的条数是多边形边数的约数.2017年3月17日。
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
东城区2016—2017学年第一学期期末统一测试初二数学2017.1学校班级姓名考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1。
的相反数是A.B.C.D.2.用科学记数法表示0。
000 567正确的是A.B.C.D.3. 在下列图形中,对称轴最多的图形是A。
等腰直角三角形B。
等边三角形 C. 长方形D。
正方形4。
以下各式一定成立的是A.B.C.D.5 。
下列各式中,成立的是A.B.C.D.6. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B.C。
D.7. 若分式的值为正,则x的取值范围是A.B.C.D.且8. 如图,是等边三角形,,分别是,上的点,且,,相交于点,则∠BOE的度数为A。
30° B. 45°C。
60° D. 75°9。
某公司准备铺设一条长的道路,由于采用新技术,实际每天铺路的速度比原计划快10%,结果提前天完成任务.设原计划每天铺设道路,根据题意可列方程为A. B.C. D。
10.关于的方程的解为非负数,则的取值范围是A。
B。
C。
且D。
且二、填空题(本题共24分,每小题3分)11。
当有意义时,实数的取值范围是.12。
计算的结果是。
13。
当x= 时,式子的值为0。
14。
如图,在平面直角坐标系中,已知点A(0,,1),B(6,2)。
在x轴上找一点P,使得P A+PB最小,则点P的坐标是,此时△P AB的面积是.15。
方程的解为.16。
若等腰三角形的一个角是30°,则其它两个角的度数分别是.17. 如图,∠AOB=60°,点P在∠AOB的平分线上,PC⊥OA于点C,点D在边OB上,且OD=DP=4.则线段OC的长度为.18. 在△ABC中,∠ABC<20°,三边长分别为a,b,c。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
2016-2017学年某某省某某实验中学大学区校际联盟八年级(上)期中数学试卷(B)一、相信你的选择(每题3分,共30分)1.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A.80° B.40° C.60° D.120°2.如图,虚线部分是小刚作的辅助线,你认为线段CD()A.是AC边上的高B.是BC边上的高C.是AB边上的高D.不是△ABC的高3.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等4.下列选项中不一定是轴对称图形的是()A.长3cm的线段 B.圆C.有60°角的三角形D.等腰直角三角形5.如图,湖泊对岸的凉亭B和C到大门A的距离分别是3和4,则BC的长不可能是()A.2 B.4 C.6 D.86.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组7.一个等腰三角形的周长为16,其中一边是4,则此三角形另两边长可能是()A.6,6 B.4,8 C.6,6或4,8 D.无法确定8.在△ABC中,下列哪个点与△ABC的任意两个顶点,围成的三角形都是等腰三角形()A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三条垂直平分线的交点9.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()A.70° B.50° C.40° D.20°10.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF,下列结论错误的是()A.△ADE≌△BFE B.AD+BG=DG C.连接EG,EG∥DC D.连接EG,EG⊥DF二、试试你的身手(每题3分,共12分)11.正十二边形的外角和为.12.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=海里.13.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B=.三、挑战你的技能(9小题,共58分)15.已知一个多边形的内角和是900°,则这个多边形是几边形?16.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.17.如图,过C画一条直线将△ABC的面积二等分.(保留作图痕迹)18.如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.19.如图所示的四边形ABCD中,AB∥CD,AD∥BC,你能用全等三角形的知识证明出AB=CD 吗?20.已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.21.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.22.如图,等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M.求证:M是BE的中点.23.如图1,把一X长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.2016-2017学年某某省某某实验中学大学区校际联盟八年级(上)期中数学试卷(B)参考答案与试题解析一、相信你的选择(每题3分,共30分)1.若△ABC≌△DEF,∠A=80°,∠B=40°,那么∠F的度数是()A.80° B.40° C.60° D.120°【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠C,根据全等三角形性质推出∠F=∠C,即可得出答案.【解答】解:∵∠A=80°,∠B=40°,∴∠C=180°﹣∠A﹣∠B=60°,∵△ABC≌△DEF,∴∠F=∠C=60°,故选C.2.如图,虚线部分是小刚作的辅助线,你认为线段CD()A.是AC边上的高B.是BC边上的高C.是AB边上的高D.不是△ABC的高【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义解答即可.【解答】解:由图可知,线段CD是AB边上的高.故选C.3.用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等【考点】全等三角形的判定与性质;作图—基本作图.【分析】连接NC,MC,根据SSS证△ONC≌△OMC,即可推出答案.【解答】解:连接NC,MC,在△ONC和△OMC中,∴△ONC≌△OMC(SSS),∴∠AOC=∠BOC,故选A.4.下列选项中不一定是轴对称图形的是()A.长3cm的线段 B.圆C.有60°角的三角形D.等腰直角三角形【考点】轴对称图形.【分析】直接根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不一定是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误.故选:C.5.如图,湖泊对岸的凉亭B和C到大门A的距离分别是3和4,则BC的长不可能是()A.2 B.4 C.6 D.8【考点】三角形三边关系.【分析】根据三角形三边关系得出,任意两边之和大于第三边以及任意两边之差小于第三边,即可得出第三边的取值X围.【解答】解:∵此三角形且两边为3和4,∴第三边的取值X围是:1<x<7,在这个X围内的都符合要求.故选D.6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.7.一个等腰三角形的周长为16,其中一边是4,则此三角形另两边长可能是()A.6,6 B.4,8 C.6,6或4,8 D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分4为等腰三角形的底边长与腰长两种情况进行讨论.【解答】解:当4为等腰三角形的底边长时,腰长==6,则这个等腰三角形的其余两边长分别为6,6;当4为等腰三角形的腰长时,底边长=16﹣4﹣4=8,4、4、8不能构成三角形.故选A.8.在△ABC中,下列哪个点与△ABC的任意两个顶点,围成的三角形都是等腰三角形()A.三条中线的交点B.三条高线的交点C.三条角平分线的交点D.三条垂直平分线的交点【考点】等腰三角形的判定.【分析】根据垂直平分线的性质和等腰三角形的判定解答即可.【解答】解:因为垂直平分线的交点到两边距离相等,所以能围成等腰三角形,故选D9.如图,在△ABC中,AB=AC,∠A=40°,CD⊥AB于D,则∠DCB等于()A.70° B.50° C.40° D.20°【考点】三角形内角和定理.【分析】根据等腰三角形的性质,求出∠B=70°,由垂直的定义,即得∠DCB的度数.【解答】解:∵AB=AC,∠A=40°,∴∠B=∠C=÷2=70°,又∵CD⊥AB,∴∠BDC=90°,∴∠DCB=90°﹣70°=20°.故选D.10.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF,下列结论错误的是()A.△ADE≌△BFE B.AD+BG=DG C.连接EG,EG∥DC D.连接EG,EG⊥DF【考点】全等三角形的判定与性质.【分析】先根据平行线的性质,由AD∥BC得到∠A=∠ABF,∠1=∠F,则可根据“AAS”判定△ADE≌△BFE,于是可对A选项进行判断;利用三角形全等得到AD=BF,再证明∠F=∠2得到DG=FG,所以AD+BG=BF+BG=FG=DG,则可对B选项进行判断;根据等腰三角形的性质,由GD=GF,DE=FE可得到GE⊥DF,则可对D选项进行判断;然后利用∠CDF不能确定为直角,则不能判断EG∥CD,于是可对C选项进行判断.【解答】解:∵E是AB的中点,∴DE=FE,∵AD∥BC,∴∠A=∠ABF,∠1=∠F,在△ADE和△BFE中,∴△ADE≌△BFE,所以A选项的结论正确;∴AD=BF,∵∠1=∠2,而∠1=∠F,∴∠F=∠2,∴DG=FG,∴AD+BG=BF+BG=FG,∴AD+BG=DG,所以B选项的结论正确;∵GD=GF,DE=FE,∴GE⊥DF,所以D选项的结论正确;而∠CDF不能确定为直角,∴不能判断EG∥CD,所以C选项不正确.故选C.二、试试你的身手(每题3分,共12分)11.正十二边形的外角和为360°.【考点】多边形内角与外角.【分析】根据多边形的外角和定理求解.【解答】解:正十二边形的外角和是:360°.故答案是:360°.12.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP= 7 海里.【考点】解直角三角形的应用-方向角问题.【分析】过P作AB的垂线PD,在直角△BPD中可以求的∠PAD的度数是30度,即可证明△APB是等腰三角形,即可求解.【解答】解:过P作PD⊥AB于点D.∵∠PBD=90°﹣60°=30°且∠PBD=∠PAB+∠APB,∠PAB=90﹣75=15°∴∠PAB=∠APB∴BP=AB=7(海里)故答案是:7.13.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则∠AOC等于60°.【考点】等边三角形的判定与性质.【分析】根据题意得出△ABC为等边三角形,从而得出∠AOC的度数.【解答】解:∵用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,∴OA=OB,∵以A为圆心,以OA为半径画弧,与弧AB交于点C,∴OA=AC,∴OA=OB=OC=AC,∴△AOC为等边三角形,∴∠AOC=60°.故答案为60°.14.在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为40°,则∠B= 65°或25°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据△ABC中∠A为锐角与钝角分为两种情况解答.【解答】解:(1)当AB的中垂线MN与AC相交时,∵∠AMD=90°,∴∠A=90°﹣40°=50°,∵AB=AC,∴∠B=∠C==65°;(2)当AB的中垂线MN与CA的延长线相交时,∴∠DAB=90°﹣40°=50°,∵AB=AC,∴∠B=∠C=∠DAB=25°.故答案为65°或25°.三、挑战你的技能(9小题,共58分)15.已知一个多边形的内角和是900°,则这个多边形是几边形?【考点】多边形内角与外角.【分析】设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.16.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.【考点】等腰三角形的判定与性质;平行线的性质.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA的度数,再由三角形外角和为360°求得∠BED度数.【解答】解:∵BE⊥AE∴∠AEB=90°∵AE平分∠BAC∴∠CAE=∠BAE=42°又∵ED∥AC∴∠AED=180°﹣∠CAE=180°﹣42°=138°∴∠BED=360°﹣∠AEB﹣∠AED=132°17.如图,过C画一条直线将△ABC的面积二等分.(保留作图痕迹)【考点】作图—复杂作图.【分析】作AB边的垂直平分线交AB于D,作直线CD即可.【解答】解:如图,直线CD即为所求.18.如图所示,太阳光线AC和A´C´是平行的,同一时刻两个建筑物在太阳下的影子一样长,那么建筑物是否一样高?请说明理由.【考点】平行投影;平行线的性质.【分析】根据已知同一时刻两个建筑物在太阳下的影子一样长,即可得出BC=B′C′,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.【解答】解:建筑物一样高.证明:∵AB⊥BC,A′B′⊥B′C′,∴∠ABC=∠A′B′C′=90°,∵AC∥A′C′,∴∠ACB=∠A′C′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(ASA)∴AB=A′B′.即建筑物一样高.19.如图所示的四边形ABCD中,AB∥CD,AD∥BC,你能用全等三角形的知识证明出AB=CD 吗?【考点】全等三角形的判定与性质.【分析】连接AC,先根据四边形ABCD中,AB∥CD,AD∥BC,可求出四边形ABCD为平行四边形,然后证明△ABC≌△CDA,求出AB=CD即可.【解答】解:连接AC,∵在四边形ABCD中,AB∥CD,AD∥BC,∴四边形ABCD为平行四边形,∴AD=CB,∠DAC=∠BCA在△ABC和△CDA中,,∴△ABC≌△CDA∴AB=CD.20.已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【考点】作图-轴对称变换.【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接;(2)根据图示以及直角坐标系的特点写出个顶点的坐标;(3)用△ABC所在的矩形的面积减去周围小三角形的面积即可求解.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);(3)S△ABC=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.21.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【考点】全等三角形的判定.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.22.如图,等边三角形ABC中,D是AC的中点,E为BC延长线上一点,且CE=CD,DM⊥BC,垂足为M.求证:M是BE的中点.【考点】等边三角形的性质.【分析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.【解答】证明:连接BD,∵等边三角形ABC中,D是AC的中点,∴∠DCB=∠ABC=60°,∠DBC=∠ABC=30°∵CE=CD,∴∠DEC=∠EDC=∠DCB=30°,∴∠DBC=∠DEC,又∵DM⊥BC,垂足为M,∴M是BE的中点.23.如图1,把一X长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.(1)求证:FB=FD;(2)如图2,连接AE,求证:AE∥BD;(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.【考点】翻折变换(折叠问题);全等三角形的判定与性质.【分析】(1)由折叠的性质可得到△ABD≌△EDB,那么∠ADB=∠EBD,所以BF=DF;(2)根据长方形的性质可得和三角形内角和定理可得∠AEF=∠FBD,再根据平行线的判定即可求解;(3)先SSS证明△ABD≌△EDB,再根据全等三角形的性质和垂直平分线的性质即可求解.【解答】证明(1)∵△BCD≌△BED,∴∠DBC=∠EBD,又∵四边形ABCD是长方形,∴AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BF=DF.(2)∵四边形ABCD是长方形,∴AD=BC=BE,又∵FB=FD,∴FA=FE,∴∠FAE=∠FEA,又∵∠AFE=∠BFD,且2∠AEF+∠AFE=2∠FBD+∠BFD=180°,∴∠AEF=∠FBD,∴AE∥BD;(3)∵四边形ABCD是长方形,∴AD=BC=BE,AB=CD=DE,BD=DB,在△ABD与△EDB中,∴△ABD≌△EDB(SSS),∴∠ABD=∠EDB,∴GB=GD,又∵FB=FD,∴GF是BD的垂直平分线,即GH垂直平分BD.。