换热器的腐蚀分析标准版本
- 格式:docx
- 大小:24.66 KB
- 文档页数:4
关于换热设备的腐蚀破坏及防护措施分析报告换热设备的腐蚀破坏及防护措施有哪些?有哪些需要注意的地方,下面这篇关于换热设备的腐蚀破坏及防护措施分析报告,和大家一起分享一下!摘要:本文简要介绍了金属腐蚀的类型、危害,并对换热设备腐蚀进行调查,概括了腐蚀控制方法,并以骤冷塔冷凝器为例, 通过剖析腐蚀产生的原因,重点介绍了换热设备腐蚀破坏原因、防护措施及其防护效果。
关键词:换热设备;腐蚀;防护方法中图分类号:TQ051 文献标志码:B 文章编号:1671-7953(20__)02-0113-03换热器是石油化工行业中应用最广的设备,通常约占工艺设备总质量的40 % ,其中换热设备中大约有1/ 3 是水冷器,占建厂投资费用的20 %左右。
换热器性能的优劣直接影响整套装置的平稳运行及企业的综合经济指标。
近几年来,由于石油化工原料越来越多样化,换热设备的腐蚀问题日益突出,设备的防腐蚀问题已得到石油化工行业的特别关注。
腐蚀和结垢是换热设备的两大问题。
因此,对国内外石油化工行业换热设备的腐蚀和结垢原因及防护措施进行分析和研究很有必要。
1 金属腐蚀的常见类型金属和它所处的环境介质之间发生化学、电化学或物理作用,引起金属的变质和破坏,称为金属腐蚀,石油化工行业换热器在生产运行过程中由于苛刻恶劣的使用条件,在高温液相、气相或者多相腐蚀性介质的腐蚀、冲刷等作用下换热器常见的腐蚀类型有均匀腐蚀、点蚀坑蚀、缝隙腐蚀、垢下腐蚀、冲刷腐蚀、硫化物应力腐蚀开裂、氯化物应力腐蚀开裂及露点腐蚀等数种[1-4],导致换热器腐蚀、穿孔、泄漏而遭到破坏,使用寿命缩短,造成直接、间接的巨大经济损失。
2 腐蚀的危害及换热设备腐蚀情况调查腐蚀现象遍及国民经济的各个领域,材料腐蚀给国民经济带来巨大损失,据统计,一个工业发达国家每年因金属腐蚀所造成的直接损失占全年国民经济总产值的2%~4% 。
目前,全世界每年因腐蚀造成的经济损失高达7000亿美元,间接损失(如停工、停产)则更大。
文件编号:RHD-QB-K5840 (解决方案范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX换热器的防腐蚀措施标准版本换热器的防腐蚀措施标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
1.采用能耐介质腐蚀的金属和非金属材料2.采取有效的防腐蚀措施(1)防腐涂层在换热器与腐蚀介质接触表面,覆盖一层耐腐蚀的涂料保护层,涂层要有较好的耐蚀性、防渗性和较好的附着力和柔韧性。
对水冷系统,管内清洗干净后进行预膜处理。
(2)金属保护层常用方法有衬里、复合板(管)、金属喷涂、金属堆焊等。
(3)电化学保护阴极保护因费用太高,一般不用。
阳极保护是接以外用电源的阳极保护换热器,金属表面生成钝化膜而得到保护。
(4)防应力腐蚀措施①胀接结构,其胀管率越大,残余应力越大,则在腐蚀介质中其电极电位越高,腐蚀倾向越大。
在同一种腐蚀介质中,与焊接结构相比较,胀接结构,特别当胀接时胀管率较大时,更容易产生应力腐蚀,因而在保证胀接强度及密封性的条件下,胀接压力不宜过高以控制胀接后残余应力的大小,减小产生应力腐蚀的可能性。
必要时可改变换热管与管板的连接形式,如用强度焊加轻微贴胀的结构代替原先的胀接结构,这种结构既减小了结构的残余应力,又能防止只焊接而产生缝隙腐蚀的可能,通过改变换热管与管板的连接形式来减小结构的残余应力,对预防换热器的应力腐蚀破裂是有效、可行的。
②胀管深度应达管板底部,以消除全部缝隙。
③在强应力腐蚀介质下的换热器,应对管板进行消除应力处理。
④消除氯离子的浓缩条件,如采用内孔焊接,消除管头缝隙。
这里写地址或者组织名称Write Your Company Address Or Phone Number Here。
换热器腐蚀标准
为了避免换热器的腐蚀,必须保证换热器安装使用的环境以及进行换热的介质对不锈钢金属与铜金属无腐蚀,并确保换热介质中的氯离子和硫酸离子的含量一般不得超过100mg/L。
此外,还需要对循环水系统的各项指标进行严格控制,包括腐蚀速率、污垢热阻、异养菌数量、粘泥量和悬浮物含量等。
具体的控制标准如下:
1.腐蚀速率:应小于0.125mm/a。
2.污垢热阻:应不大于3.44×10-4m2.K/W。
3.悬浮物含量:应不大于10mg/L。
4.粘泥量:应不大于4mL/m³。
5.异养菌数量:应不大于1×10^5个/mL。
在实际运行中,为了防止腐蚀,还应做到以下几点:
1.严格控制循环水的pH值和水中的溶氧量,尽可能提高循环水流动的速度,以使水中的沉淀物不会在管束内壁沉附。
2.严格按照循环水的控制标准控制水中各离子的含量,尤其是氯离子的含量。
3.换热器在安装、试运行期间要进行试压、酸洗除锈等措施,尽可能确保没有锈层的存在,或在经济条件相当的情况下尽可能采用耐蚀钢。
4.保证系统运行的稳定性,避免系统管道压力的剧烈或频繁变化造成换热器板片出现应力腐蚀。
5.如果换热器中一侧使用介质是水,应控制换热器中水温,防
止水温度过高氯离子反应活跃引起换热器板片的腐蚀。
文件编号:TP-AR-L2856In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编制:_______________审核:_______________单位:_______________换热器的腐蚀分析正式样本换热器的腐蚀分析正式样本使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
(1)管子本身材料缺陷在腐蚀介质和高温条件下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点腐蚀。
(2)管子与管板的接口采用强度焊、强度胀因苛刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段和未胀管间过渡区,管子内外壁存在较大拉应力,易产生应力腐蚀破裂;管子与折流板处产生局部应力集中,加之间隙存在,腐蚀介质浓聚,其结合部位易产生应力腐蚀。
(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。
(4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。
(5)大多数换热器失效都发生在管子与管板的连接处。
连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。
近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力破坏的类型之一,这种破坏常常起源于微小的裂纹,然后深深穿透材料,最后导致泄漏或断裂。
换热器设备的腐蚀原因分析及解决措施作者:邢通达来源:《科学与财富》2018年第15期摘要:通过对石油化工装置换热器设备泄漏故障产生的原因进行分析,并针对换热器设备在生产运行中存在的具体实际问题进行分析,最后提出了相应解决办法和预防措施,以保证换热器设备的长周期稳定运行。
关键字:换热器、腐蚀、结垢、检修前言换热器设备是石油化工生产装置中设备的重要组成部分,在石油化工重大设备中占有很大的比例,将近占到整个生产装置工艺设备总质量的百分之四十左右,在热交换设备中大约有三分之一是水冷器。
换热器设备的运行状态关系到石油化工生产装置能否安全平稳运行,而结垢与腐蚀是影响换热器设备安全运行的两大重要因素。
结垢会导致换热器的冷热交换效率下降,使装置能耗增加,而且换热器内部管束表面结垢以后,还会导致产生特定的垢下腐蚀。
腐蚀会致换热器内部管束穿孔,发生泄漏,两种冷热交换介质相互污染混合在一起,影响石油化工装置生产质量;因此,换热器设备的防腐蚀措施是保证石油化工生产装置长周期、平稳、安全运行、节能降耗的重要手段。
一、换热器设备的结垢与腐蚀原理分析换热器设备的结垢与腐蚀根据工作介质不同,在管束的内表面与外表面均会产生结垢或腐蚀。
石油化工生产装置中换热器设备所接触的工作介质主要是油、油气、水等三种介质。
根据各石油化工生产装置换热器设备严重的腐蚀问题,虽然对于流通介质为水的一侧,可以通过水质稳定进行预防处理;轻油或油气一侧通过工艺防腐蚀措施加以解决。
但是在生产中由于工艺操作条件的波动仍会导致换热器设备局部在苛刻条件下发生结垢与腐蚀。
(1)石油化工换热器设备结垢与腐蚀的主要原因分析:1)在生产装置中由于换热器设备年久失修或者经过多次检维修,设备更新换代跟不上,多年长时间运行。
2)石油化工生产装置大部分在工艺流程上存在先天性的设计缺陷,比如:换热器设备位置高,系统管线长;换热器设备串联,而进出口管径太细等缺陷因素,会造成冷介质管道内循环水流量小,流速低,水中的悬浮物沉积会导致产生垢下腐蚀。
换热器腐蚀分析及工艺对策换热器是工业生产过程中常用的设备之一,它具有传热效率高、操作灵活、能耗低等优点。
由于工作环境的复杂性和介质的特殊性,换热器容易受到腐蚀的影响,进而影响其使用寿命和传热效果。
对换热器的腐蚀分析和工艺对策的研究显得尤为重要。
换热器的腐蚀主要有两种形式:化学腐蚀和电化学腐蚀。
化学腐蚀是指介质和金属材料之间直接的化学反应,导致材料表面的腐蚀损失。
化学腐蚀主要与介质的酸碱性、氧化性和盐度等有关。
常见的化学腐蚀有酸蚀、碱蚀、氧化蚀等。
腐蚀的主要危害是导致换热器的材料失效和管道堵塞,进而影响生产效率和产品质量。
腐蚀的程度可以通过腐蚀速率和腐蚀深度来评估。
腐蚀速率是指单位时间内材料表面的腐蚀损失量,可通过重量损失法、腐蚀速率计等方法进行测量。
腐蚀深度是指腐蚀物穿透金属材料的深度,可通过金相显微镜等方法进行观察。
为了降低换热器的腐蚀问题,可以采取以下工艺对策:1.选择适当的材料:根据介质的特性选择抗腐蚀性能好的材料,如不锈钢、镍合金、钛合金等。
还可以在金属表面进行镀层或涂层处理,增加其抗腐蚀能力。
2.控制介质的酸碱性和氧化性:通过调整介质的pH值和氧化还原 potential,可以降低介质对金属材料的腐蚀作用。
可以通过加碱加酸、添加缓冲剂、用氧化剂和还原剂来控制介质的性质。
3.加强防腐措施:在换热器内部和管道中加装防腐设备,如腐蚀抑制剂、防腐涂层、缓蚀剂等,来减少介质对金属材料的腐蚀作用。
4.定期检测和维护:定期对换热器进行腐蚀检测,及时发现和修复腐蚀问题,可采用无损检测技术、金相显微镜等方法进行检测。
5.优化工艺条件:合理调整工艺参数,如温度、流速、浓度等,可以减少介质对金属材料的腐蚀作用。
增加润滑液的流量,减少流体中的固体颗粒负荷,可以减少介质对金属材料的冲蚀和磨损作用。
换热器腐蚀的分析和工艺对策是一项综合性的工作,需要考虑介质的特性、材料的选择、防腐设备的设计和工艺参数的调整等多个方面。
换热器腐蚀分析及工艺对策换热器是化工生产中常见的设备,其作用是将两种介质进行热量交换,常见的换热器包括管壳式换热器、板式换热器等。
而在工业生产过程中,换热器的腐蚀问题一直是影响设备寿命和安全生产的重要因素。
本文将针对换热器腐蚀问题进行分析,并提出相应的工艺对策,以期提高设备的使用寿命和安全性。
一、换热器腐蚀分析1. 腐蚀原因换热器腐蚀的原因多种多样,主要包括介质腐蚀、金属材料本身的腐蚀以及工艺操作不当引起的腐蚀等。
介质腐蚀是换热器腐蚀的主要原因之一,介质的PH值、含盐量、溶解氧等因素都会导致介质对金属材料的腐蚀。
而金属材料本身的腐蚀也是一个重要因素,不同的金属材料对不同的介质都有不同的耐腐蚀性能。
工艺操作不当也会引起换热器的腐蚀,比如长时间的停机、温度变化过大、流体速度过快等都可能导致换热器的腐蚀。
2. 腐蚀类型根据腐蚀的表面特征和病程,换热器腐蚀可以分为局部腐蚀和均匀腐蚀。
局部腐蚀主要是由于原料液体在介质侵蚀下,金属表面的局部破坏;均匀腐蚀则是由于原料液体对金属表面的整体侵蚀。
还有一些特殊的腐蚀类型,比如应力腐蚀、疲劳腐蚀等。
3. 腐蚀严重性换热器腐蚀严重性是判断腐蚀问题的重要标志之一,腐蚀严重会导致换热器的损坏,甚至造成泄漏等严重后果。
由于腐蚀问题的严重性,因此必须制定相应的防腐策略。
二、换热器腐蚀的工艺对策1. 选用耐腐蚀的材料换热器的材料是影响其耐腐蚀性能的重要因素之一。
在选择换热器材料时,要根据介质的化学性质、PH值、温度、流速等因素进行合理的材料选择。
通常情况下,选择耐腐蚀性能好的材料,比如不锈钢、镍基合金等,可以有效提高换热器的抗腐蚀能力。
2. 精细设计和加工换热器的设计和加工是另一个影响其耐腐蚀性能的重要因素。
在设计和加工过程中,要注意减小金属表面的表面粗糙度,避免死角、焊渣、铲焊等现象的出现,以减少介质在换热器表面的滞留时间和对金属表面的侵蚀。
3. 控制介质的PH值和氧化性控制介质的PH值和氧化性是减少腐蚀的重要手段之一。
铜管换热器防腐标准管换热器的防腐标准:1、材料:铜。
为保证良好的防腐效果,铜防腐标准要求牌号为CW071R,尺寸范围应大于OD2.7mm;2、表面处理:根据用途,可采用镀锌、镀铝、镀铬、珐琅等内表面处理方式;3、包胶厚度:有条件推荐采用10mm可缩压的接触式EPDM密封胶,也可根据使用环境和应用要求采用不同的胶厚度;4、工艺控制:工艺控制要严格,保证零件精度;5、焊接:正确的焊接技术及质量,能使换热管的工艺性能及使用性能得到更高的保障;6、其他:根据实际工作环境,选择对应耐温、抗压强度、耐腐蚀等标准要求的换热管材料和表面处理。
管换热器的防腐是一种重要的保养工作,它可以使换热管具有良好的防腐性,延长其使用寿命。
正确的防腐措施可以有效防止腐蚀,包括材料、表面处理、包胶厚度、工艺控制和焊接等各方面的防腐要求。
1、材料:为保证良好的防腐效果,铜管换热器的防腐标准要求材料牌号为CW071R,尺寸范围应大于OD2.7mm;2、表面处理:根据实际工作环境和应用要求,可采用镀锌、镀铝、镀铬、珐琅等内表面处理方式;3、包胶厚度:有条件推荐采用10mm可缩压的接触式EPDM密封胶,也可根据使用环境和应用要求采用不同的胶厚度;4、工艺控制:为保证管换热器防腐质量,工艺控制要严格,确保换热管的精度,达到性能指标。
5、焊接:正确的焊接技术及质量,能使换热管的工艺性能及使用性能得到更高的保障。
6、其他:根据实际工作环境,选择对应耐温、抗压强度、耐腐蚀等标准要求的换热管材料和表面处理。
管换热器的防腐,至关重要,只有完成正确的防腐措施,才能有效避免腐蚀,延长管换热器的使用寿命,获得良好的使用效果,为此,在具体应用过程中,应根据铜管换热器的使用需求,对材料、表面处理、包胶厚度、工艺控制和焊接技术等进行严格的检查,确保换热管材料能实现良好的防腐性、坚固性及耐腐蚀性。
文件编号:RHD-QB-K2856 (解决方案范本系列)
编辑:XXXXXX
查核:XXXXXX
时间:XXXXXX
换热器的腐蚀分析标准
版本
换热器的腐蚀分析标准版本
操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
(1)管子本身材料缺陷在腐蚀介质和高温条件下,发生全面腐蚀和局部腐蚀;管内异物堆积产生点腐蚀。
(2)管子与管板的接口采用强度焊、强度胀因苛刻工况下产生胀力松弛而形成缝隙或应力,缝隙内介质浓度高于壳程侧介质浓度,产生缝隙腐蚀;已胀段和未胀管间过渡区,管子内外壁存在较大拉应力,易产生应力腐蚀破裂;管子与折流板处产生局部应力集中,加之间隙存在,腐蚀介质浓聚,其结合部位易产生应力腐蚀。
(3)壳体焊缝及热影响区在高温、腐蚀介质环境下,焊接质量不好更易发生腐蚀。
(4)壳体与折流板材质的电解电位不同,折流板材质的电位高于壳体,壳侧介质为电解质,壳体内壁因此受电化学腐蚀。
(5)大多数换热器失效都发生在管子与管板的连接处。
连接接头处的失效可能造成产品不合格及减产、环境污染乃至引发火灾或爆炸,造成装置被迫停产。
近年来,管壳式换热器在腐蚀性介质作用下产生的低应力破坏,引起了国内外/‘大学者及工程人员的极大关注,它的严重性正是由于破坏发生在远低于材料屈服点应力的状态下,应力腐蚀裂纹就是低应力
破坏的类型之一,这种破坏常常起源于微小的裂纹,然后深深穿透材料,最后导致泄漏或断裂。
由于它发生在许用应力范围内,而且在使用过程当中突然、无征兆地发生,因此应力腐蚀破坏被认为是极其严重的一种破坏模式。
这里写地址或者组织名称
Write Your Company Address Or Phone Number Here。