经济型数控车床自动换刀原理与维修
- 格式:pdf
- 大小:120.77 KB
- 文档页数:2
第27 卷第1期2 0 0 9 年1 月西安航空技术高等专科学校学报Journal of Xi an Aerotechnical CollegeVol 2 7 No 1Jan . 2 0 0 9 自动换刀装置控制原理及故障分析罗庚合1, 黄万长2( 1. 西安航空技术高等专科学校机械工程系, 陕西西安710077; 2. 陕西法士特齿轮有限公司, 陕西西安710077)摘要: 加工中心自动换刀装置提高了数控机床的加工效率, 但由于加工中心换刀装置的动作控制比较复杂, 包含机械、电气与PM C、液压和检测等技术, 所以自动换刀装置的故障率比较高, 主要介绍自动换刀装置的类别和控制,自动换刀装置的故障诊断方法, 列举了自动换刀装置的一些常见故障及维修示例。
关键词: 加工中心; 选刀; 刀具交换; 乱刀与掉刀; PM C 诊断; I/ O 状态诊断中图分类号: T H161+ . 21 文献标识码: A 文章编号: 1008- 9233( 2009) 01- 0014- 051 引言4、6、8、12 工位, 有用电动机驱动的正传和反转, 也有用液压系统通过电磁换相阀和顺序阀进行控制加工中心可分为车削中心、镗铣中心和钻削中心等, 加工中心在加工过程中, 要使用多种刀具, 因此必须有自动换刀装置, 以便选择不同刀具, 完成不同工序的加工工艺。
常用的刀库形式有圆盘式刀库, 链式刀库, 格子盒式刀库。
按有无机械手又可分为不带机械手的自动换刀装置和带机械手的自动换刀装置。
按刀库的旋转和机械手的动作驱动方式可分为有液压、气动控制系统和电气与机械联合控制的驱动系统。
随着加工中心数控机床的普及和应用, 自动换刀装置控制过程中的故障率也比较高。
由于自动换刀装置结构比较复杂、控制为机、电、液联合控制, 复杂系数高等原因。
所以加工中心自动换刀装置的故障维修比较困难。
简要叙述换刀装置的分类和特点, 以立式镗铣中心普遍使用的圆盘式加工中心自动换刀装置为例, 分析自动换刀装置的控制原理及常见故障的维修方法。
自动换刀主轴工作原理
自动换刀主轴工作原理是指在机床中,主轴上配备了自动换刀装置,可以根据加工需要自主完成刀具的更换。
下面是自动换刀主轴的工作原理:
1. 刀具旋转:主轴驱动着刀具进行旋转,用于加工工件表面。
2. 刀库:机床上设置有刀库,刀库中存放着不同种类的刀具。
每种刀具都有一个唯一的识别编码。
3. 换刀装置:自动换刀装置包含刀库、刀具夹持器和换刀机构等部分。
换刀机构控制着刀夹位置的移动。
4. 刀具传感器:换刀装置上配备有刀具传感器,用于识别刀库中的刀具。
5. 选刀:根据加工任务,通过操作主轴控制系统进行刀具选择。
系统会指定需要哪种刀具进行加工,同时会记录已使用刀具的刀具编码。
6. 刀具识别:换刀装置开始动作,将选择的刀具位置移动到主轴旁边。
刀具传感器会识别刀夹位置是否有刀具。
如果没有刀具,则进入下一步。
7. 刀具更换:选取刀库中的合适刀具,并将其夹持在刀夹器上。
然后,换刀机构将刀夹器移动到主轴,完成刀具更换。
8. 刀具装夹校准:刀具更换后,主轴控制系统会对刀具进行校准,以保证刀具与工件的加工位置精确对应。
9. 加工:完成刀具更换后,主轴继续驱动新的刀具进行加工任务。
通过自动换刀主轴,可以实现高效的刀具更换,提高机床的加工效率和自动化程度。
数控机床自动换刀系统的设计与优化方法数控机床自动换刀系统作为现代制造业中的关键设备之一,其设计和优化对于提高生产效率和产品质量至关重要。
本文将讨论数控机床自动换刀系统的设计原理、关键技术以及优化方法,旨在指导工程师和研究人员进行相关工作。
首先,数控机床自动换刀系统的设计原理主要包括以下几个方面:刀具库、刀具传递机构和换刀动作控制。
刀具库是存放刀具的地方,通常设计成可自动旋转、抬升和倾斜的结构,以便于刀具的选择和取放。
刀具传递机构用于将所需刀具从刀具库传递到机床主轴上,并确保刀具的正确位置和方向。
换刀动作控制则通过编程和传感器来实现,保证换刀过程的准确性和稳定性。
在设计数控机床自动换刀系统时,我们需要注意一些关键技术。
首先是刀具库的设计,刀具库的容量和结构需要根据实际工作中所涉及到的刀具种类和数量进行合理规划。
其次是刀具传递机构的设计,传递机构需要具备快速、准确的传递能力,同时要考虑到刀具重量对传递机构的负荷影响,确保稳定性。
换刀动作控制需要精确控制刀具的位置和方向,可以采用光电传感器或编码器等传感器,通过编程实现动作的控制和判断。
为了进一步优化数控机床自动换刀系统的性能,我们可以采取一些优化方法。
首先是刀具库的优化,可以采用高效的刀具存放方案,如采用自动尺寸检测技术,将刀具按照尺寸进行分类存放,方便快速选择和取放。
其次是刀具传递机构的优化,可以采用更先进的传递机构设计,如采用电磁吸盘或气动夹持装置等,提高传递速度和准确性。
此外,还可以通过改进换刀动作控制算法,优化换刀过程的稳定性和精度。
在优化设计过程中,还需要充分考虑数控机床自动换刀系统的可靠性和安全性。
可靠性是指系统在长时间运行中的稳定性和故障率,我们可以通过选用高质量的部件和进行严格的测试来提高可靠性。
安全性是指系统在使用过程中的安全保障,我们需要设置安全装置,如机械锁或密码锁等,防止误操作或意外伤害的发生。
总结起来,数控机床自动换刀系统的设计与优化需要考虑刀具库、刀具传递机构和换刀动作控制等关键技术。
数控车床换刀的原理数控车床换刀的原理是通过自动化系统控制刀库中的刀具,根据加工需要,将合适的刀具自动装卸到主轴上进行加工。
换刀的过程一般包括以下几个步骤:1. 刀具信息的输入:将刀具的参数信息输入到数控机床的控制系统中。
这些信息包括刀具的几何参数、刀具材料、刀具号码等。
2. 刀具库的管理:刀具库是存放刀具的地方。
数控车床上一般会配备一个刀具库,里面可以放置多个不同的刀具。
在数控机床的控制系统中,可以设置每个刀具的位置和状态,以便在需要时能够准确地找到并进行换刀操作。
3. 刀具的选取:根据加工要求,在刀具库中选择合适的刀具。
根据控制系统的指令,通过自动取刀器从刀具库中取出刀具。
自动取刀器一般由机械手臂构成,可以在机床内进行多个方向的自由移动。
4. 刀具的装卸:当刀具被选中后,机械手臂将刀具转移到刀具位。
然后,刀具位上的机械装置将刀具插入主轴上的刀柄中,并将其固定。
这一过程需要保证刀具的准确定位和固定,以确保刀具在加工过程中的稳定性和精度。
5. 刀具的调整和检测:在刀具装卸完成后,需要进行刀具的调整和检测。
调整刀具的主要目的是保证刀具的几何参数与加工要求的一致性,而检测刀具的目的是确认刀具的装卸是否正确。
在数控机床上,通常会设置相关的检测装置,用于检测刀具的位置、刀具的磨损情况等。
6. 刀具的存储和管理:在刀具装卸完成后,未使用的刀具一般会放回刀具库中进行存储。
同时,数控机床的控制系统会对刀具的信息进行管理,包括刀具的使用寿命、刀具的磨损情况、刀具的库存情况等。
总体来说,数控车床换刀的原理是通过自动化系统控制刀库中的刀具,实现刀具的自动装卸。
这样可以提高生产效率,减少人工操作的错误和劳动强度,进而提高加工精度和产品质量。
数控机床自动换刀系统的设计与优化方法随着工业自动化的不断发展,数控机床自动换刀系统的设计与优化成为了现代制造业中的重要课题。
自动换刀系统的设计及其优化将直接影响到机床的生产效率、工件加工质量和操作人员的工作安全。
因此,本文将探讨数控机床自动换刀系统的设计原理以及进行系统优化的方法与技巧。
数控机床自动换刀系统一般包括刀库、刀臂、刀杆及刀具,其工作原理主要通过机械臂或伺服电机的驱动,将机床上的刀具自动更换。
而系统的设计与优化则需要考虑以下几个方面:首先,需要充分考虑机床的具体工艺需求,确定自动换刀系统的基本功能。
例如,切削加工中是否需要进行多种不同刀具的切换,是否需要对不同刀具进行刃磨和测量等。
不同工艺需求将直接影响到自动换刀系统的设计与优化。
其次,需要考虑自动换刀系统的结构设计。
合理的结构设计能够提高系统的稳定性和工作效率,并降低故障率。
一般来说,自动换刀系统的结构主要包括刀库结构、刀臂结构以及刀杆结构。
在设计过程中,需要充分考虑机床的空间限制、刀具数量以及换刀的速度等因素。
同时,需要关注自动换刀系统的动力传递和控制电路设计。
动力传递系统的设计主要包括伺服电机的选型、减速器的设计以及传动链的布置等。
而控制电路的设计则需要考虑自动控制装置和信号传输装置等,以确保系统的稳定性和可靠性。
另外,还需要考虑自动换刀系统的安全性。
刀具在运行过程中可能会产生较大的动力和惯性力,因此在设计过程中需要充分考虑刀具的固定、刀具与工件之间的安全间隙以及系统紧急停机装置的设置等,以确保操作人员的安全。
在完成基本的设计后,系统的优化工作则需从以下几个方面展开。
首先是换刀时间的优化。
通过减少换刀时间可以提高机床的利用率,并减少生产成本。
换刀时间的优化可以从刀具定位、刀具固定方式以及刀具检测等方面进行。
其次是系统的可靠性优化。
这需要考虑到刀库的结构设计、刀具的装卸方式以及系统故障的自我诊断与修复等。
同时,充分考虑刀具的损耗和磨损,合理安排刀具的使用周期,减少系统故障的发生。
自动换刀原理
自动换刀装置是加工中心的重要组成部分,它的作用是在加工过程中自动更换刀具,以提高加工效率和加工精度。
自动换刀装置的原理如下:
1. 刀具识别:自动换刀装置通过刀具识别系统对刀具进行识别,刀具识别系统通常采用编码、RFID 等技术,对刀具进行唯一标识。
2. 刀具库:刀具库是存储刀具的地方,刀具库通常采用圆盘式、链式等结构,刀具库中的刀具按照一定的规则排列,以便于自动换刀装置进行取刀。
3. 取刀机构:取刀机构是自动换刀装置的核心部分,它的作用是将刀具从刀具库中取出,并将其送到主轴上。
取刀机构通常采用机械手、夹爪等结构,取刀机构的动作由控制系统控制。
4. 主轴:主轴是加工中心的核心部件,它的作用是安装刀具,并对工件进行加工。
主轴通常采用电动、气动等方式进行驱动,主轴的转速和转向由控制系统控制。
5. 刀具交换:当取刀机构将刀具送到主轴上后,控制系统会控制主轴停止转动,并将刀具夹紧。
然后,取刀机构会将旧刀具从主轴上取下,并将其送回刀具库中。
最后,控制系统会控制主轴转动,开始进行加工。
自动换刀装置的工作过程是一个自动化的过程,它需要控制系统、刀具识别系统、刀具库、取刀机构、主轴等多个部分协同工作,以实现刀具的自动更换。
以上是自动换刀的原理,希望对你有所帮助!。
数控车床换刀的工作原理
数控车床换刀的工作原理是将车床主轴停止转动,并通过夹具将刀具夹持在指定位置。
具体步骤如下:
1. 根据程序要求,主轴停止转动,并将刀具退回到预定的换刀位置。
2. 释放刀具夹紧装置,松开刀具的夹紧。
3. 利用换刀装置,将待更换的刀具与主轴分离。
4. 使用自动润滑装置给刀具夹紧部位润滑。
5. 搬运新的刀具到换刀装置旁边,进行涂油处理。
6. 将手持式操作装置插到机床控制台,控制刀架运动至换刀位置。
7. 将新的刀具装到刀架上,并夹紧。
8. 车床控制系统检测刀具夹紧状态,如夹紧正确则进行下一步操作;如夹紧异常,则提示错误信息。
9. 释放车刀辅助装置,使得刀具与工件接触。
10. 主轴重新转动,刀具开始进行切削加工。
通过上述步骤,数控车床可以实现快速更换刀具,提高生产效率和加工精度。
从相应的技术标准上铺平了道路。
但同时也对我国的机床电器行业提出了相应的要求:机床电器产品的质量,不仅仅体现在其自身的稳定性、可靠性、机械寿命、电气寿命等方面。
同时还要更加注重其与整体机械、设备、系统的协同、安全、可靠;相应的技术要求条件与国际共同认可的技术要求条件接轨;相应的人身安全保护措施;对环境的影响、电磁兼容等等方面。
总之,一系列新的标准为机床电器行业在进入WT O 参与国际竞争从技术要求及条件上与国际接
轨铺平了道路。
机床电器行业也必将在新的系列标准支持下,在参与国际竞争中出现一个全新面貌。
数控・数显
经济型数控车床自动换刀原理与维修
徐州师大工学院电气工程系 苏州职工业余大学 贾传圣 杨永娟
〔摘要〕 分析了经济型数控车床自动换刀的工作原理及其维修事例,简述了国内车床加工的现状。
关键词 数控 自动换刀 反向锁紧 维修
一、经济型数控车床的自动刀架系统刀架是车床的一个重要组成部分,刀架用于夹持切削用的刀具,其结构直接影响车床的切削性能
和效率。
经济型数控车床将原来的普通手动转动力架替换成四刀位或六刀位的自动转位刀架。
自动转位刀架由数控系统控制,效率高,工艺性能可靠。
如图1所示为山东德州机床厂生产的CK D6163
图1 CK D6163型数据控车床的自动换刀
型数控车床的自动换刀原理图,该刀架的刀位数为6,当数控单元E NC 发出换刀信号后,830和827接
通,刀架正转控制接触器K M 4接通220V 交流电源,K M 4吸合,换刀电机M 3通入380V 正向旋转,驱动蜗
杆减速机构,螺杆升降机构使上刀体上升。
当上刀体上升到一定高度时,离合转盘起作用,带动上刀体—
8
1—机床电器2001No.4 数控・数显
旋转。
刀架上端的发信盘对应每个刀位都安装一个霍尔元件S Q1、S Q2……S Q6,当上刀体旋转到某一刀位时,该刀位上霍尔元件2号线向数控系统输入低电平,而其它刀位霍尔元件输出高电平。
在上刀体旋转过程中,发信盘不断向数控系统E NC反馈刀位信号。
数控系统将反馈刀位信号与指令刀位相比较,当两信号相同时,说明上刀体已旋到所选刀位,否则继续旋转。
转到所选刀号后,数控系统立即使827与830断开,而828与830接通,刀架反转控制接触器K M5接通220V交流电源,K M5吸合,换刀电机M3反转,活动销反靠在反靠盘上初定位。
在活动销的反靠作用下,蜗杆带动上刀体下降,直至齿轮盘啮合,完成精定位,并通过蜗轮蜗杆锁紧螺母,使刀架紧固,换刀电机M3反向堵转,电流值迅速上升,821,822为刀架电机堵转检测信号,检测到该信号后,向数控系统发出转位完成信号,K M5断电,切断电源,电动机停转,自动换刀过程完成,并进行下一步操作。
图中RC为过电压阻容吸收装置,QF3为具有过载及短路保护的电源开关,PE3为刀架电机M3接地保护,为防止K M4、K M5同时吸合造成主回路短路,在K M4、K M5控制回路中串入了电气互锁接点,QF1、QF2、QF3为电源闭锁开关。
值得说明的是目前经济型数控车床换刀反向卡紧的检测方式主要有3种。
第1种即文中所述的采用堵转电流检测法;第2种为延时默认法,如西门子802S系统,当转到所选刀号后,刀架电机反转100ms 卡紧刀架,刀架刀位锁紧信号被24V屏蔽掉了,此时默认换刀完毕,电机切断电源停转,完成换刀并可进行下一步操作;第3种为锁紧传感器检测法,当转到所选刀号后,电动机反转卡紧刀架后,刀位正确传感器反馈信号给数控系统,电机切断电源,自动换刀过程完成。
如南京第二机床厂生产的C J K6136D型数控车床采用此种方式。
二、自动换刀系统维修二例
经济型数控车床在中小企业中应用较广泛,由于数控机床相对普通车床价格较高,结构复杂,数控系统出现故障时用户又难以排除,因此有些用户从保护设备出发,宁可闲置,非万不得已时不启用,设备利用率较低。
数控系统是由成千上万个电子器件组成的,而它们的性能和寿命具有很大的离散性。
数控车床大量采用电气控制,机械结构大为简化,所以机械故障率大大降低,电气故障相对来讲较多,而60%以上的车床故障与自动换刀装置有关。
维修事例1:我院一台经济型数控车床采用的是西门子802S系统,当程序运行至换刀指令时,车床停止运转,无法继续操作。
自动换刀原理参照图1及文中所述,首先检查数控系统运行其它指令正常,说明数据控系统没坏,接着用手动换刀也不能操作,拆下电机用扳手能盘动换刀装置,而且用力不大,空试手动换刀,电机旋转但转向相反,说明电源相序不对,事故原因是动力网改造过程中将电源相序弄错。
笔者曾碰到此类故障三起,任意调整电源两相,数控车床运行正常。
维修事例2:采焊矿机械厂使用的是山东德州机床厂的CK D6163经济型数控车床,在程序运行到换刀时,换刀电机正向旋转,连续旋转一直不停。
调出程序换5号刀,检查一遍未发现问题,重新编程换其它刀都正常,将刀位手动停在5号位,检查805号线对地是高电平,说明刀位传感器S Q5霍尔元件损坏,更换一新的霍尔元件,车床运行正常。
从笔者所维修好的数十台经济型数控车床来看,严重的数控系统故障并未发现,主要是一些传感器、接口、电源故障,但是传统的维修电工缺少必要的自动控制、传感器、计算机基础知识,数控原理及系统等方面的基础知识运用很少的故障却不知从何下手,严重制约了数控车床的应用和发展,加速现场维修人才的培养是非常迫切的。
参考文献
1 李宏胜1数控原理与系统[M]1北京:机械工业出版社, 1997
2 贾传圣,鹿林1普通车床的数控改造与应用1南京:机械设计与制造工程,200015
3 王永章1机床的数字控制技术[M]1哈尔滨:哈尔滨工业大学出版社,1999
(收稿日期:2001-02-05)
—
9
1
—
数控・数显 机床电器2001No.4。