圆(-)园的定义、垂径定理、圆心角定理
- 格式:doc
- 大小:173.50 KB
- 文档页数:10
圆知识点:圆以及圆的相关概念(1)圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。
(2)圆的几何表示:以点O 为圆心的圆记作“⊙O”,读作“圆O” (3)弦:连接圆上任意两点的线段叫做弦。
(如图中的AC )(4)直径:经过圆心的弦叫做直径。
(如图中的AB )直径等于半径的2倍。
(5)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(6)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示) 等圆:能够重合的两个圆叫做等圆。
等弧:在同圆或者等圆中,能够完全重合的弧叫做等弧。
典例分析:题型1:圆的相关概念例1:下列说法中,结论错误的是( )A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧 例2:已知:如图,OA 、OB 为⊙O 的半径,C 、D 分别为OA 、OB 的中点,求证 AD=BC.例3:A 、B 是半径为5cm 的⊙O 上两个不同的点,则弦AB 的取值范围是( )A .AB >0 B .0<AB <5C .0<AB <10D .0<AB≤10例4:如图,以AB 为直径的半圆O 上有两点D 、E ,ED 与BA 的延长线交于点C ,且有DC=OE ,若∠C=20°,则∠EOB 的度数是_________.D 第5题C BAO 例2图 例4图题型2:综合题例1:如图,在半圆的直径上作4个正三角形,如这半圆周长为C 1,这4个正三角形的周长和为C 2,则C 1和C 2的大小关系是( ) A .C 1>C 2 B .C 1<C 2C .C 1=C 2D .不能确定例2:如图,AB, CD 为⊙O 的两条直径,E, F 分别为OA, OB 的中点,求证:四边形CEDF 是平行四边形.例3:如图,小明顺着大半圆从A 地到B 地,小红顺着两个小半圆 从A 地到B 地,设小明、小红走过的路程分别为a 、b , 则a 与b 的大小关系是( )A .a=bB .a <bC .a >bD .不能确定小试牛刀:1、下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分; ③长度相等的弧是等弧;④半径相等的圆是等圆;⑤直径是最大的弦; ⑥半圆所对的弦是直径.A .3个B .4个C .5个D .6个 2、如图,在以原点为圆心,2为半径的⊙O 上有一点C ,∠COA=45°,则C 的坐标为_________________ 3、如图,点A 、O 、D 以及点B 、O 、C 分别在一条直线上,则圆中弦的条数是______4、一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________.5、已知⊙O 的半径为R , 弦AB 的长也是R ,则∠AOB 的度数是 .例1图例4图第2题第3题6、如图,以△OAB 的顶点O 为圆心的⊙O 交AB 于点C 、D ,且AC=BD ,OA 与OB 相等吗?为什么?知识点:垂径定理1>垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
圆的垂径定理定理是经过受逻辑限制的证明为真的陈述。
一般来说,在数学中,只有重要或有趣的陈述才叫定理。
证明定理是数学的中心活动。
圆作为数学中常用的图像,有十八个基本定理。
圆的十八个定理1、圆心角定理:在同圆或等圆中,成正比的圆心角所对弧成正比,面元的弦成正比,面元的弦的弦心距成正比。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中存有一组量成正比那么它们所对应的其余各组量都成正比2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推断1:同弧或等弧所对的圆周角成正比;同圆或等圆中,成正比的圆周角面元的弧也成正比推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所推断3:如果三角形一边上的中线等同于这边的一半,那么这个三角形就是直角三角形3、垂径定理:垂直弦的直径平分该弦,并且平分这条弦所对的两条弧。
推断1:①平分弦(不是直径)的直径旋转轴弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧推断2 :圆的两条平行弦所缠的弧成正比4、切线之判定定理:经过半径的外端并且垂直于该半径的直线是圆的切线。
5、切线短定理:从铅直一点引圆的两条切线,他们的切线短成正比,这一点与圆心的连线平分这两条切线的夹角。
6、公切线长定理:如果两圆有两条外公切线或两条内公切线,那么这两条外公切线长相等,两条内公切线长也相等。
如果他们相交,那么交点一定在两圆的连心线上。
7、平行弦定理:圆内两条弦平行,被交点分为的两条线段长的乘积成正比。
8、切割线定理:从圆外一点向圆引一条切线和一条割线,则切线长是这点到割线与圆的两个交点的两条线段长的比例中项。
9、割线短定理:从铅直一点向圆引两条割线,这一点至每条割线与圆的交点的两条线段长的积成正比。
10、切线的性质定理:圆的切线垂直于经过切点的半径推断1 :经过圆心且旋转轴切线的直线必经过切点推论2:经过切点且垂直于切线的直线必经过圆心11、弦切角定理:弦切角等同于它所缠的弧对的圆周角推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等12、定理:平行两圆的连心线垂直平分两圆的公共弦13、定理:把圆分成n(n≥3):⑴依次联结各分点税金的多边形就是这个圆的内arccosn边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形14、定理:任何正多边形都存有一个外接圆和一个内切圆,这两个圆就是同心圆15、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆16、定理:正n边形的半径和边心距把也已n边形分为2n个全等的直角三角形17、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
圆的认识知识点总结圆是我们数学中的一个基本几何概念,在日常生活中也经常遇到。
本文将对圆的定义、性质及相关定理进行总结,希望能够更好地帮助大家理解和应用圆的相关知识。
一、圆的定义及基本术语1. 圆的定义:圆是平面上到一个固定点的距离等于定长的点的集合。
2. 圆心:圆形的中心点称为圆心,通常用大写字母O表示。
3. 半径:连接圆心和圆上任意一点的线段称为半径,通常用小写字母r表示。
4. 圆的直径:通过圆心并且两端点都在圆上的线段称为圆的直径,直径的长度等于半径长度的两倍。
5. 圆的弦:圆上的两个点之间的线段称为圆的弦。
二、圆的性质1. 圆上任意两点之间的线段都是弦,弦的长短决定了其距离圆心的远近。
2. 弦与其所对的圆心角,它们之间的关系是:当一个弦被圆分成两段时,两段弧所对的角相等;而当一个弧被多个弦分成几段时,各弦所对的角之和等于该弧所对的角。
3. 圆的半径相等,即圆的所有半径长度都相等。
4. 圆的直径是圆上最长的弦,并且它等于圆的半径长度的两倍。
5. 在同一个圆中,弧度越大,对应的圆心角越大。
三、圆的相关定理1. 圆心角定理:在同一个圆中,圆心角所对的弧长是一定的。
换句话说,圆心角相等的弧长相等,圆心角不等的弧长不等。
2. 弧长定理:在同一个圆中,两条相交弦所对的弧长之和等于这两条弦所对的圆心角所对应的弧长之和。
3. 弦切角定理:当一个弦与一个切线相交时,两个交角的差等于这条弦所对的弧的圆心角。
4. 切线定理:从圆外一点引圆的两条切线,这两条切线的切点与该外点构成的两个三角形是相似三角形。
5. 弦切线性质:从圆外一点引圆的切点与切线相连,该切线与引线所对的圆心角相等。
综上所述,圆是平面几何中的重要概念,其性质及相关定理也是我们应用数学知识解决问题的基础。
掌握了圆的定义、基本术语、性质和定理,我们就能更加深入地理解和运用圆的相关知识。
希望本文对大家的学习有所帮助。
第十讲 第二十四章 圆24.1.1圆的性质1.圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为圆心,定长称为半径,以点O 为圆心的圆记作“☉O”,读作“圆O”.2.确定圆的基本条件:(1)、圆心:定位置,具有唯一性,(2)、半径:定大小.3.连接圆上任意两点的线段叫做弦,如图线段AC ,AB ;4.经过圆心的弦叫做直径,如图24-1线段AB ;5.圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作AC ”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC 叫做优弧,•小于半圆的弧(如图所示)AC 或BC 叫做劣弧.6. 在同圆或等圆中,能过重合的两条弧叫做等弧.24.1.2 垂直于弦的直径垂径定理:垂直于弦的直径平分弦且平分弦所对的弧.推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论.推论2:圆的两条平行弦所夹的弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD证明过程已知:直径CD 、弦AB 且CD ⊥AB 垂足为M求证:AM=BM ,AC BC =,AD BD =.分析:要证AM=BM ,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA 、•OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB 在Rt △OAM 和Rt △OBM 中OA OBOM OM =⎧⎨=⎩∴Rt △OAM ≌Rt △OBM∴AM=BM∴点A 和点B 关于CD 对称 ∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,AC 与BC 重合,AD 与BD 重合. ∴AC BC =,AD BD =24.1.3 弧、弦、圆心角1.顶点在圆心的角叫做圆心角.圆心角的度数与他所对的弧的度数相等.2.圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等. 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD推导过程如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?DAB =''A B ,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴AB 与''A B 重合,弦AB 与弦A ′B ′重合∴AB =''A B ,AB=A ′B ′例1、如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF . (1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么AB 与CD 的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?练一练一、填选1、如图1,M 是⊙O 内一点,已知过点M 的⊙O 最长的弦为10 cm ,最短的弦长为8 cm ,则OM =_____ cm.2、如图2,⊙O 的直径AC =2,∠BAD =75°,∠ACD =45°,则四边形ABCD 的周长为_____(结果取准确值).3、如图3,⊙O 的直径为10,弦AB =8,P 是弦AB 上一动点,那么OP 长的取值范围是_____.课后作业1、在半径为5cm 圆中,有一条长为6cm 的弦,则圆心到此弦的距离为( )。
圆的必考基础知识2一、圆的八大定理的定义1、垂径定理:垂直于弦的直径( )这条弦,并且( )弦所对的两条弧平分2、相交弦定理:圆中两条相交弦被交点分成的两条线段长的( )是相等积3、切线长定理:从圆外一点到圆的两条切线的长( ),那点与圆心的连线( )切线的夹角。
相等,平分4、切割线定理:圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A、B两点,则有( )PC²=PA·PB5、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.圆外是P点,交点是ABCD,则有()PA.PB=PC.PD6、弦切角定理:弦切角( )对应的圆周角。
等于7、圆心角定理:在同圆或等圆中,相等的圆心角所对弧( ),所对的弦( ),所对的弦的弦心距( )。
相等8、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的( )。
一半二、圆的公式:圆的周长=弧长的公式 =以后看到22.5度,一般会有对应45度1、长度相等的两条弧是等弧(对或错 )错2、等弧的长度是相同的(对或错 )对3、在同圆或等圆中,长度相等的两条弧是等弧。
(对或错 )对4、周长相等的两个圆一定是等圆(对或错 )对5、同心圆就是圆心相同的圆。
(对或错 )错6、同心圆就是圆心相同,但半径不等的两个圆。
(对或错 )对7、相等的圆心角所对的弧相等(对或错 )错8、相等的圆心角所对的弦相等(对或错 )错9、等弦所对的弧相等(对或错 )错10、等弧所对的弦相等(对或错 )对11、在同圆或等圆中,相等的圆心角所对的弧( ),所对的弦( ),所对的弦的弦心距也( )相等12、在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距中,只要有一组量相等,那么它们所对应的其余各组量也分别相等13、平行四边形的4个顶点在同一个圆上。
(对或错 )错矩形的4个顶点在同一个圆上。
(对或错 )对菱形的4个顶点在同一个圆上。
(对或错 )错正方形4个顶点在同一个圆上。
《圆》章节知识点总结一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、垂径定理(重点)垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称知2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD中任意2个条件推出其他3个结论。
几何表示法: 推论1:(1)在⊙O 中,∵AB 是直径 AB CD ⊥∴CE DE = 弧BC =弧BD 弧AC =弧AD(2):在⊙O 中,∵AB CD ⊥ CE DE = ∴AB 是直径 弧BC =弧BD 弧AC =弧AD(3):在⊙O 中,∵AB 是直径 弧BC =弧BD (或弧AC =弧AD )∴AB CD ⊥ CE DE = 弧AC =弧AD (或弧BC =弧BD )三、圆心角、弧、弦、弦心距之间的关系圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
此定理也称知1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BD 几何表示法:在⊙O 中,∵AOB DOE ∠=∠∴AB DE = OC OF = 弧BA =弧BDB(重点)圆心角定理和推论可概括为:同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一组量相等,它们所对的其余各组量也相等。
自学资料一、圆的相关定义【知识探索】1.定理:不在同一直线上的三点确定一个圆.【说明】(1)过平面上一点能作无数多个圆;(2)过平面上两点能做无数多个圆,这些圆的圆心在两点连线的垂直平分线上;(3)过平面上三点:①三点不在同一直线上,能作唯一一个圆;②三点在同一直线上,不能作圆.【错题精练】例1.下列命题正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A. 1个B. 2个C. 3个D. 4个第1页共23页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】解:①过两点可以作无数个圆,正确;②经过三点一定可以作圆,错误;③任意一个三角形有一个外接圆,而且只有一个外接圆,正确;④任意一个圆有且只有一个内接三角形,错误,正确的有2个,故选:B.【答案】B例2.有下列四个命题,其中正确的有()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A. 4个B. 3个C. 2个D. 1个【答案】C例3.如图,在平面直角坐标系中,点A坐标为(﹣4,0),⊙O与x轴的负半轴交于B(﹣2,0).点P是⊙O上的一个动点,PA的中点为Q.当点Q也落在⊙O上时,cos∠OQB的值等于()A.B.C.D.【解答】第2页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】C例4.如图,已知△ABC.(1)尺规作图作△ABC的外接圆(保留作图痕迹,不写作法);(2)设△ABC是等腰三角形,底边BC=10,腰AB=6,求圆的半径r.【答案】解:(1)如图所示;(2)连接OB,连接OA交BC于点E,∵△ABC是等腰三角形,底边BC=10,腰AB=6,∴BE=CE=5,AE=√AB2−BE2=√11,在Rt△BOE中,r2=52+(r-√11)2∴r=18√11=18√1111.第3页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第4页 共页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【解答】【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,OM的长即为OP的最小值,∴4≤OP≤5.【答案】4≤OP≤55.已知:△ABC(如图)(1)求作:△ABC的外接圆(要求:用尺规作图,保留作图痕迹,不要求写作法及证明).(2)若∠A=60°,BC=8√3,求△ABC的外接圆的半径.【答案】解:(1)如图所示:⊙O即为所求△ABC的外接圆;(2)过点O作OD⊥BC于点D,∵∠A=60°,BC=8√3,∴∠COD=60°,CD=4√3,第5页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训∴CO=4√3sin60°=8,答:△ABC的外接圆的半径为8.二、圆心角、弧、弦、弦心距、圆周角之间的关系【知识探索】年份题量分值考点题型2015114圆内接四边形的性质;点与圆的位置关系选择、简答201613圆周角定理;填空2017219弧长面积;切线的性质;圆周角定理选择、填空、简答201824圆周角定理;填空2019216扇形面积;切线长定理;圆心角、圆周角、垂径定理填空、解答【错题精练】例1.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为α的方向行走,走到场地边缘B后,再沿着与半径OB夹角为α的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时∠AOE=52°,则α的度数是()A. 51.5°B. 60°C. 72°D. 76°【解答】解:连接OD.∵∠BAO=∠CBO=α,∴∠AOB=∠BOC=∠COD=∠DOE,∵∠AOE=52°,∴∠AOB=(360°-52°)÷4=77°,第6页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第7页 共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼 非学科培训∴α=(180°-77°)÷2=51.5°. 故选:A .【答案】A例2.如图,在△ABC 中,∠C=90°,以点C 为圆心,BC 为半径的圆交AB 于点D ,交AC 于点E .(1)若∠A=25°,求BD̂的度数. (2)若BC=9,AC=12,求BD 的长.【答案】解:(1)连接CD ,如图, ∵∠ACB=90°,∴∠B=90°-∠A=90°-25°=65°,∵CB=CD ,∴∠CDB=∠B=65°, ∴∠BCD=180°-2∠B=50°, ∴BD ̂的度数为50°;(2)作CH ⊥BD ,如图,则BH=DH , 在Rt △ACB 中,AB=√92+122=15, ∵12CH•AB=12BC•AC , ∴CH=9×1215=365, 在Rt △BCH 中,BH=√92−(365)2=275,∴BD=2BH=545.̂的度数为()例3.已知如图,在⊙O中,OA⊥OB,∠A=35°,则CDA. 20°B. 25°C. 30°D. 35°【解答】解:连接OC,∵OA⊥OB,∴∠AOB=90°,∵∠A=35°,∴∠OBC=90°-35°=55°,∴OB=OC,∴∠OBC=∠OCB=55°,∴∠COB=70°,∴∠COD=90°-70°=20°,̂的度数为20°,∴CD故选:A.【答案】A例4.已知AB是⊙O的直径,点C,D是⊙O上的点,∠A=50°,∠B=70°,连接DO,CO,DC (1)如图①,求∠OCD的大小:(2)如图②,分别过点C,D作OC,OD的垂线,相交于点P,连接OP,交CD于点M已知⊙O的半径为2,求OM及OP的长.第8页共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:(1)∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,∵OD=OC,∴△COD是等边三角形,∴∠OCD=60°;(2)∵PD⊥OD,PC⊥OC,∴∠PDO=∠PCO=90°,∴∠PDC=∠PCD=30°,∴PD=PC,∵OD=OC,∴OP垂直平分CD,∴∠DOP=30°,∵OD=2,∴OM=√32OD=√3,OP=4√33.例5.如图,AB为⊙O的直径,△ABC的边AC,BC分别与⊙O交于D,E,若E为BD̂的中点.(1)求证:DE=EC;(2)若DC=2,BC=6,求⊙O的半径【答案】解:(1)连结AE,BD,∵E为BD̂的中点,∴ED̂=BÊ,∴∠CAE=∠BAE,∵∠AEB是直径所对的圆周角,第9页共23页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训第10页 共23页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练 非学科培训∴∠AEB=90°, 即AE ⊥BC ,∴∠AEB=∠AEC=90°,在△AEC 和△AEB 中{∠CAE =∠BAE AE =AE ∠AEC =∠AEB ,∴△AEC ≌△AEB (ASA ), ∴CE=BE , ∴DE=CE=BE=12BC ;(2)在Rt △CBD 中,BD 2=BC 2-CD 2=32, 设半径为r ,则AB=2r , 由(1)得AC=AB=2r , AD=AC-CD=2r-2,在Rt △ABD 中AD 2+BD 2=AB 2, ∴(2r-2)2+32=(2r )2, 解得:r=4.5,∴⊙O 的半径为4.5.例6.如图,点A ,B ,C 在⊙O 上,AB ∥OC .(1)求证:∠ACB+∠BOC=90°;(2)若⊙O 的半径为5,AC=8,求BC 的长度.【答案】(1)证明:∵AB̂对的圆周角是∠ACB ,对的圆心角是∠AOB , ∴∠AOB=2∠ACB , ∵OB=OA ,∴∠ABO=∠BAO , ∵AB ∥OC ,∴∠ABO=∠BOC ,∠BAO+∠AOC=180°, ∴∠BAO+∠AOB+∠BOC=180°, 即2∠ACB+2∠BOC=180°, ∴∠ACB+∠BOC=90°;(2)延长AO 交⊙O 于D ,连接CD ,则∠ACD=90°,由勾股定理得:CD=√AD2−AC2=√(5+5)2−82=6,∵OC∥AB,∴∠BOC=∠ABO,∠COD=∠BAO,∵∠BAO=∠ABO,∴∠BOC=∠COD,在△BOC和△DOC中{OB=OD∠BOC=∠DOC OC=OC∴△BOC≌△DOC(SAS),∴BC=CD,∵CD=6,∴BC=6.例7.如图,AB是半圆O的直径,AC是弦,∠CAB=60∘,若AB=6cm.(1)求弦AC的长;(2)点P从点A开始,以1cm/s的速度沿AB向点B运动,到点B停止,过点P作PQ∥AC,交半圆O于点Q,设运动时间为t(s).①当t=1时,求PQ的长;②若△OPQ为等腰三角形,直接写出t(t>0)的值.【解答】(1)解:如图1中,∵OA=OC,∠CAB=60∘,∴△AOC是等边三角形,∴AC=OA=3(cm);(2)解:①如图2中,作OH⊥PQ于H,连接OQ,由题意得:AP=1,OP=2,∵PQ∥AC,∴∠OPH=∠CAB=60∘,在Rt△OPH中,∵∠POH=90∘−∠OPH=30∘,OP=2,∴PH=1OP=1,OH=√3PH=√3,2在Rt△QOH中,HQ=√OQ2−OH2=√6,∴PQ=PH+HQ=1+√6;②如图3中,∵△OPQ是等腰三角形,观察图象可知,只有OP=PQ,作PH⊥OQ于H.∵PQ∥AC,∴∠QPB=∠CAB=60∘,∵PQ=PO,PH⊥OQ,,∠POQ=∠PQO=30∘,∴OH=HQ=32∴OP=OH÷cos30∘=√3,∴AP=3+√3,∴t=3+√3秒时,△OPQ是等腰三角形.【答案】(1)3cm;(2)①1+√6;②t=3+√3.例8.如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.【解答】(1)解:△ABC为等腰三角形.理由如下:连结AE,如图,∵,∴∠DAE=∠BAE,即AE平分∠BAC,∵AB为直径,∴∠AEB=90∘,∴AE⊥BC,∴△ABC为等腰三角形;(2)解:∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=12BC=12×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE=√102−62=8,∵AB为直径,∴∠ADB=90∘,∴12AE⋅BC=12BD⋅AC,∴BD=8×1210=485,在Rt△ABD中,∵AB=10,BD=485,∴AD=√AB2−BD2=145,∴sin∠ABD=ADAB =14510=725.【答案】(1)略;(2)725.【举一反三】1.如图,弦AC、BD相交于点E,且AB̂=BĈ=CD̂,若∠AED=80°,则∠ACD的度数为()A. 20°B. 25°C. 30°D. 15°【解答】解:如图,设AB̂的度数为m,AD̂的度数为n,∵AB̂=BĈ=CD̂,∴BĈ、CD̂的度数都为m,∴3m+n=360°①∵∠AED=80°,∴∠C+∠D=80°,∴12m+12n=80°②,由①②组成{3m+n=360°12m+12n=80°,解得m=100°,n=60°∴∠ACD=12n=30°.故选:C.【答案】C2.已知△ABC内接于⊙O,点D平分弧BmĈ.(1)如图①,若∠BAC=2∠ABC.求证:AC=CD;(2)如图②,若BC为⊙O的直径,且BC=10,AB=6,求AC,CD的长.【答案】(1)证明:∵点D平分弧BmĈ,∴弧DC=弧DB,∵∠BAC=2∠ABC,∴弧BDC=2弧AC,∴弧CA=弧CD,∴AC=CD;(2)解:连结BD,如图②,∵BC为⊙O的直径,∴∠BAC=∠BDC=90°,在Rt △BAC 中,∵BC=10,AB=6,∴AC=√BC 2−AB 2=8;∵弧DC=弧DB ,∴DB=DC ,∴△BCD 为等腰直角三角形,∴CD=√22BC=5√2.3.如图,在⊙O 中,点C 是优弧ACB 的中点,D 、E 分别是OA 、OB 上的点,且AD=BE ,弦CM 、CN 分别过点D 、E .(1)求证:CD=CE .(2)求证:AM̂=BN ̂.【答案】(1)证明:连接OC .∵AĈ=BC ̂, ∴∠COD=∠COE ,∵OA=OB ,AD=BE ,∴OD=OE ,∵OC=OC ,∴△COD ≌△COE (SAS ),∴CD=CE .(2)分别连结OM ,ON ,∵△COD ≌△COE ,∴∠CDO=∠CEO ,∠OCD=∠OCE ,∵OC=OM=ON ,∴∠OCM=∠OMC ,∠OCN=∠ONC ,∴∠OMD=∠ONE ,∵∠ODC=∠DMO+∠MOD ,∠CEO=∠CNO+∠EON ,∴∠MOD=∠NOE ,∴AM̂=BN ̂.4.如图,已知△ABC中,AB=AC,以AB为直径的⊙O与边BC相交于点D,过点D作⊙O的切线与AC交于点E.(1)求BDBC的值.(2)判断DE与AC的位置关系,并证明你的结论.(3)已知BC:AB=2:3,DE=4√2,求⊙O的直径.【解答】(1)解:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=DC,∴BDBC =12;(2)解:DE⊥AC;连接OD,∵DE是⊙O的切线,∴DE⊥OD,∵AB=AC,∴∠B=∠C,∵OB=OD,∴∠B=∠ODB,∴∠ODB=∠C,∴AC∥OD,∴DE⊥AC;(3)解:∵BDBC =12且BC:AB=2:3,∴AB:CD=3,∵∠ADB =∠DEC =90∘,∠B =∠C ,∴△ABD ∽△DCE ,∴DC AB =CE BD =13,设CE =a ,则BD =CD =3a ,AB =9a ,在Rt△DEC 中,由勾股定理得:DE =2a √2=4√2,∴a =2,∴AB =18.【答案】(1)12;(2)DE ⊥AC ;(3)18.5.已知直径CD ⊥弦BF 于 E ,AB 为ʘO 的直径.(1)求证:FD̂=AC ̂; (2)若∠DAB=∠B ,求∠B 的度数.【答案】(1)证明:∵直径CD ⊥弦BF ,∴FD̂=BD ̂, ∵∠AOC=∠BOD ,∴BD̂=AC ̂, ∴FD̂=AC ̂; (2)解:由圆周角定理得,∠BOD=2∠DAB ,∵∠DAB=∠B ,∴∠BOD=2∠B ,∵CD ⊥BF ,∴∠B=30°.6.如图,⊙O 的半径为2,弦BC =2√3,点A 是优弧BC 上一动点(不包括端点),△ABC 的高BD 、CE 相交于点F ,连结ED .下列四个结论:①∠A 始终为60°;②当∠ABC =45∘时,AE =EF ;③当△ABC 为锐角三角形时,ED =√3;④线段ED 的垂直平分线必平分弦BC .其中正确的结论是 .(把你认为正确结论的序号都填上)【答案】①②③④.7.圆O的直径为10cm,A是圆O内一点,且OA=3cm,则圆O中过点A的最短弦长=__________cm【答案】88.如图,在圆O中,AB为直径,CD为弦,已知∠ACD=40°,则∠BAD=__________°【答案】501.如图,AB圆O的直径,点C在圆O上,若∠OCA=50°,AB=4,则弧BC的长为()πA. 103B. 109π C. 59πD. 518π【答案】B2.如图,将钢珠放在一个边长AB=8mm 的正方形的方槽内,测得钢珠顶端离零件表面的距离为8mm ,则这个钢珠的直径为______mm .【答案】103.如图,AB 是半圆的直径,E 是弦AC 上一点,过点E 作EF ⊥EB ,交AB 于点F ,过点A 作AD ∥EF ,交半圆于点D .若C 是BD ̂的中点,AF AE =√54,则EFAD 的值为 .【解答】解:延长BE 交AD 于A',∵AD ∥EF ,EF ⊥BE ,∴AA'⊥BA',∴∠AA'B=90°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴D 与A'重合,∵AFAE =√54,∴设AF=√5a,AE=4a,过F作FG⊥AE于G,∵C是BD̂的中点,∴CD̂=BĈ,∴∠DAC=∠BAC,∵AD∥EF,∴∠BFE=∠DAB=2∠BAC=∠BAC+∠AEF,∴∠BAC=∠AEF,∴AF=EF,∴AG=EG=2a,由勾股定理得:FG=a,∵∠DAE=∠GAF,∠ADE=∠AGF=90°,∴△ADE∽△AGF,∴ADAE =AGAF,∴AD4a =2a√5a,AD=8a√5,∴EFAD =√5a8a√5=58,故答案为:58.【答案】584.在⊙O的内接△ABC中,AD⊥BC于D,(1)①图1中,若作直径AP,求证:AB.AC=AD.AP;②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式及自变量x的取值范围;(2)图2中,点E为⊙O上一点,且弧AE=弧AB,求证:CE+CD=BD.【答案】5.在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
第一节:圆的有关性质一、两个定义二、两个元素三、三个区域;四、四个概念:五;两种圆:六、两条性质:辅助线的作法:作出半径,作出直径练习: .求证:直径是圆中的最大的弦。
已知:AB 是圆O 的直径,CD 是弦,CD 不经过点O 。
求证:AB >CD发生性定义:一条线段绕着它的一个端点旋转一周,另一个端点所形成的图形,就叫做圆同圆或等圆中的半径或直径相等 描述性定义:到定点的距离等于定长的所有点所组成的图形叫做圆 圆心---- 决定位置半径---- 决定大小 圆的内部 d< r圆上 d=r圆的外部 d>r 弦----直径 弧----半圆---优弧-----劣弧弦心距 弓形-----弓高 同心圆::圆心相同,半径不等的两个的圆 等圆 :圆心不同,半径不等的两个圆 .同圆或等圆中,直径是半径的2倍。
·ADC B第二节:垂径定理一.圆的轴对称性:二.如图所示,根据圆的轴对称性体会,当直径AB 垂直CD 时,找出图中相等的线段,相等的弧,是不是轴对称呢?三.垂径定理:几何推理语言:垂径定理的推论:几何推理语言:三.垂径定理的应用:1.定理的基本图形是:2.常见的辅助线的作法:(思路)(1)作弦心距 ―― 过点O 作OD ⊥AB 于D ―― 使用垂径定理。
(2)连出半径 ―― 构成直角三角形 ―― 使用勾股定理。
3.习题类型:A.证明题B.计算题C.作图题。
4.练习题:1.在⊙O 中,AB 、AC 是互相垂直的两条弦, AB =8cm ,AC =6cm 求⊙O 的半径OA 的长?ABAB DODA B·OABDCA P ODC E O AD B 2. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?3. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。
4.如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,求弦CD 的长。
第一节:圆的有关性质
一、两个定义
二、两个元素
三、三个区域;
四、四个概念:
五;两种圆:
六、两条性质:
辅助线的作法:作出半径,作出直径
练习: .求证:直径是圆中的最大的弦。
已知:AB 是圆O 的直径,CD 是弦,CD 不经过点O 。
求证:AB >CD
发生性定义:一条线段绕着它的一个端点旋转一周,另一个端点所形成的图形,就叫做圆
同圆或等圆中的半径或直径相等 描述性定义:到定点的距离等于定长的所有点所组成的图形叫做圆 圆心
---- 决定位置
半径---- 决定大小 圆的内部 d< r
圆上 d=r
圆的外部 d>r 弦----直径 弧----半圆---优弧-----劣弧弦心距 弓形-----弓高 同心圆::圆心相同,半径不等的两个的圆 等圆 :圆心不同,半径不等的两个圆 .同圆或等圆中,直径是半径的2倍。
·
A
D
C B
第二节:垂径定理
一.圆的轴对称性:
二.如图所示,根据圆的轴对称性体会,当直径AB 垂直CD 时,找出图中
相等的线段,相等的弧,是不是轴对称呢?
三.垂径定理:
几何推理语言:
垂径定理的推论:
几何推理语言:
三.垂径定理的应用:
1.定理的基本图形是:
2.常见的辅助线的作法:(思路)
(1)作弦心距 ―― 过点O 作OD ⊥AB 于D ―― 使用垂径定理。
(2)连出半径 ―― 构成直角三角形 ―― 使用勾股定理。
3.习题类型:
A.证明题
B.计算题
C.作图题。
4.练习题:
1.在⊙O 中,AB 、AC 是互相垂直的两条弦, AB =8cm ,AC =6cm 求⊙O 的半径OA 的长?
A
B
A
B D
O
D
A B
·O
A
B
D
C
A P O
D
C E O A
D B 2. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么?
3. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。
4.如图所示,OA 是圆O 的半径,弦CD ⊥OA 于点P ,已知OC=5,OP=3,求弦CD 的长。
5. 如图所示,在圆O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E , 求证:四边形ADOE 是矩形。
.6. 如图所示,AB 是圆O 的直径,弦CD ⊥AB ,E 为垂足,若AB=9,BE=1,求:CD 的长。
7. 如图所示,圆O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段 的OM 的长的取值范围是(
)
A. 3≤OM ≤5
B. 4≤OM ≤5
C. 3<OM <5
D. 4<OM <5
600
8. 圆的半径等于cm 2,圆内一条弦长23cm ,则弦的中点与弦所对弧的中点的距离等于_____________;
9. 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,求弦AB 与CD 之间的距离。
10.. 如图所示,圆O 的直径AB 和弦CD 交于E ,已知AE=6cm ,EB=2cm ,∠CEA=30°,求CD 。
(双解)
11. 圆O 中若直径为25cm ,弦AB 的弦心距10cm ,求弦长。
(双解)
12.. 若圆的半径2cm ,圆中一条弦长1cm ,则此弦中点到此弦所对劣弧中点之间的距离?
13. 圆内一条弦与直径的交角为30°,且分直径为1cm 和5cm 两段,求弦心距,弦长?
A
B
.. 半径为5cm 的圆O 中有一点P ,OP=4,则过P 的最短弦长_________,最长弦是__________,
15.(南京市)如图2,矩形ABCD 与与圆心在AB 上的⊙
O 交于点G 、B 、F 、E , GB =8cm
,AG =1cm ,DE =2cm ,则EF = cm .
16.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,图3是水平放置的破裂管道有水部分的截面.
(1)请你补全这个输水管道的圆形截面;
(2)若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.
17.已知: 求作:N 、M 、P 三点,使这三点把 四等分。
18.AB 是⊙O 的直径,CD ⊥AB ,AH=OH ,AB=6cm ,求CD 的长、∠DOC 图4
图3 B
AB AB
ACB
C
A
B
D
19.如图,一个弓形, 的半径为5,弦AB=8,求弓形的高CD 。
20.⊙O 的半径为25cm ,弦AB ∥CD ,且AB 、CD 在圆心O 的两侧,AB=40cm ,CD=48cm ,求(1)AB 和CD 的距离,(2)AC 的长。
21.在⊙O 中,点P 到圆上的点的最大距离为8cm ,最小距离为4cm ,求这个圆的半径。
(讨论:圆心的位置。
)
22.已知的半径为13cm ,AB 、CD 是⊙O 弦,且AB ∥CD ,AB=10cm ,CD=24cm ,求AB 和CD 之间的距离。
(讨论:两弦在圆心同侧或两侧的位置。
)
A
B
23.圆的半径为12cm ,弦AB 的长为12cm ,求弦AB 的中点到它所对弧AB 的中点的距离。
(讨论:优弧和劣弧两种情况。
)
24.⊙O 的半径是6cm ,弦AB=10cm ,弦CD=8cm 且AB ⊥CD 于P ,求OP 的长。
25.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点, (1)求证:CA=DB
(2) 若圆心O 到AB 的距离为OE=5cm ,大圆半径OA=13cm ,小圆半径为cm 41,求CD 、AC 的长。
第三节:圆心角等定理
一.1.圆的旋转对称性(中心对称性):
2.圆心角:
3.有关圆心角的性质:
(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
画出图形并用几何语言进行表示:
(2)在同圆或等圆中,。
如果两条弧相等,那么它们所对的圆心角 ,所对的弦 。
画出图形并用几何语言进行表示:
(3)在同圆或等圆中,。
如果两条弦相等,那么它们所对的圆心角 ,所对的弧 。
画出图形并用几何语言进行表示:
二.注意:1.定理不能丢掉“在同圆或等圆”这个前提条件。
2.在“同圆或等圆”这个前提条件下,将题设和结论的任何一项交换都是正确的。
3.思路:由相等的角――相等的线段――相等的弧 三.练习题:
1.在⊙中,AB=AC,
∠ACB=60O ,求证:∠AOB=∠BOC=∠AOC
2.如图,AB 是圆O 的直径,BC=CD=DE , ∠COD=35O ,求:∠AOE 的度数。
3.在半径为50mm 的圆O 中,弦AB 长为50mm ,求:∠AOB 的度数并计算点O 到AB
的距离。
⌒ ⌒ ·O A B C
⌒ ⌒ ⌒ ·O E D
C B A
· O
4.已知,如图,AD=BC.求证:AB=CD
5.如图,已知AB 和CD 是圆O 的直径,弦DE//AB ,弧DE 是半圆的9
2。
求:∠BOD 的度数。
6.已知,在圆O 中,弦AB 所对的劣弧为圆的3
1
,圆的半径为2cm ,求AB 的长。
7.探索:
(1)已知AB 和CD 是圆O 的两条弦, OM 和ON 分别是它们的弦心距,如果AB>CD,那么OM,ON 有怎样的关系?
(2)已知圆中的两条弧AB 和CD ,如果AB
=2CD, 那么弦AB 和CD 有怎样的关系?
· O
A
C
B
D
E
·O
A
B
C
D
E
· O A
B
⌒ ⌒ · O · O
A N M D C
B A
B
C
D
8.如图,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD ⊥OA,CE ⊥OB,CD= CE, 则AC =BC
9. .如图,AB 是⊙O 的直径,P 是AB 上一点,C 、D 分别是圆上的点,且∠CPB=DPB,DB =BC ,试比较线段PC 、PD 的大小关系.
10.已知:弦AB 和CD 相交于圆内的点P ,并且和经过点P 的直径成等角。
求证:AB =CD
11.六边形ABCDEF 的各个顶点在同一个圆上,且各边都相等,求这个六边形各边所对的圆心角的度数。
E D C B A O
⌒
⌒
B A ⌒
⌒ · O A
E D C
B F · O A F
E D C B。