同济大学(高等数学)_第四章_不定积分
- 格式:doc
- 大小:3.48 MB
- 文档页数:29
140 第四章 不定积分一般来说,在数学中一种运算的出现都伴随着它的逆运算.在第二章中,我们学习了导数与微分,导数与微分运算是否有逆运算?即已知函数()f x 的导数或微分,能否求出()f x ?这是我们这一章要讨论的问题.第一节 不定积分的概念与性质一、原函数与不定积分的概念如果在区间I 上,可导函数()F x 的导数为()f x ,即对任意x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =,则称()F x 为()f x 在区间I 上的原函数.例如,因为,x R ∀∈(sin )cosx x '=,所以sin x 是cos x 的一个原函数;(1,1)x ∀∈-,(arcsin )x '=arcsin x(1,1)-内的一个原函数.由此可见,微分学的逆问题是:已知导函数()F x ',求原函数()F x .事实上,研究原函数需要解决下面两个问题:(1)满足何种条件的函数存在原函数?(2)如果原函数存在,它是否唯一?关于第一个问题,我们用原函数存在定理回答.(原函数存在定理) 如果函数()f x 在区间I 上连续,则()f x 在区间I 上一定有原函数,即存在区间I 上的可导函数()F x ,使得对任一x ∈I ,有()()F x f x '=.将在第五章给出此定理的证明.这个定理简单地说就是:连续函数一定有原函数. 关于第二个问题的答案是如果原函数存在则不唯一.设()F x 是函数()f x 的一个原函数,即()()F x f x '=,则[()]()F x C f x '+=,其中C 是任意常数.这就是说,原函数存在的话,则有无穷多个.不妨假设()F x 与()G x 是函数()f x 的任意两个原函数, 则有()()F x f x '=,()()G x f x '=.从而有(()())0F x G x '-=,即()()F x G x C -=.因此,()f x 的任意两个原函数之间只相差一个常数.换句话说()f x 的原函数的全体可表示为()F x C +,其中C 为任意常数.据此,我们给出下述定义.在区间I 上,()f x 的带有任意常数项的原函数,称为()f x 在区间I 上的不定积分,记作()d f x x ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.由不定积分的定义,如果()F x 为()f x 的一个原函数,则()d ()f x x F x C =+⎰ (C 为任意常数).●●例1 因为 32()3x x '=,所以233d x x x C =+⎰.141●●例2 因为当0x >时,1(ln )x x '=;当0x <时,11[ln()]()x x x x ''-=-=-,所以1(ln ||)x x'=,因此有1d ln ||x x C x=+⎰.●●例3 设曲线过点2(e ,3),且其上任一点处的斜率等于该点横坐标的倒数,求此曲线 的方程.解 设所求曲线方程为()y f x =,其上任一点(,)x y 处切线的斜率为d 1d y x x=,从而 1d ln ||y x x C x==+⎰,由2(e )3f =,得1C =,因此所求曲线方程为ln ||1y x =+.在直角坐标系中,()f x 的任意一个原函数()F x 的图形我们称为()f x 的一条积分曲线,不定积分()d f x x ⎰在几何上表示一簇积分曲线,这些积分曲线可由某一条积分曲线沿y 轴方向平移得到,它们在横坐标相同点处的切线有相同的斜率,因而切线相互平行.●●例4 一物体由静止开始作直线运动,t 秒末的速度是23t (m /s ),问:(1)在3s 末,物体与出发点之间的距离是多少?(2)物体走完216m 需多少时间?解 设物体的位置函数为()s s t =,则d ()d s v t t =,即2d 3d st t=,从而23d s t t =⎰=3t C +,由(0)0s =,得0C =,于是有3s t =.当3t =时,物体与出发点之间的距离3(3)27s t ==(m); 当216s =时,6t =(s).由原函数与不定积分的概念可得:d()d ()d f x x f x x =⎰或 d ()d ()d f x x f x x =⎰; ()d ()F x x F x C '=+⎰ 或 d ()()F x F x C =+⎰.由此可见,微分运算与不定积分运算互为逆运算,对函数()f x 先积分再微分,作用互相抵消;对函数()F x 先微分再积分,其结果只差一个常数.二、基本积分表因为不定积分运算是导数运算的逆运算,所以不难从导数公式得到相应的积分公式.现将一些基本积分公式罗列如下,通常称之为基本积分公式表.(1) d k x kx C =+⎰ (k 为常数),(2) 1d 1x x x C μμμ+=++⎰ (1μ≠-), (3) d ln ||xx C x =+⎰, (4) 2d arctan 1xx C x =++⎰,(5) arcsin x C =+, (6) cos d sin x x x C =+⎰, (7) sin d cos x x x C =-+⎰, (8) 22d sec d tan cos x x x x C x ==+⎰⎰, (9) 22d csc d cot sin xx x x C x==-+⎰⎰, (10)sec tan d sec x x x x C =+⎰,142 (11) csc cot d csc x x x x C =-+⎰, (12)e d e x x x C =+⎰, (13) d ln xxa a x C a=+⎰,(14)sh d ch x x x C =+⎰,(15) ch d sh x x x C =+⎰.以上公式可以联系求导公式记忆,且要求能够灵活运用.三、不定积分的性质根据不定积分的定义,可以得到下列性质. 性质1 设函数()f x 及()g x 的原函数存在,则[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰.证 因为([()()]d )()()f x g x x f x g x '±=±⎰,[()d ()d ]f x x g x x '±=⎰⎰[()d ][()d ]f x x g x x ''±⎰⎰=()()f x g x ±.由不定积分及原函数的定义,性质1得证.性质1可以推广到有限个函数的情形.性质2 设函数()f x 的原函数存在,k 为非零常数,则()d ()d kf x x k f x x =⎰⎰. 证 与性质1的证明类似,从略.利用基本积分表和不定积分的两个性质,通过对被积函数作恒等变形,可以求出一些简单的不定积分,这种求积分的方法通常叫直接积分法.●●例5求解4133d 3x x xC C --=-+=+⎰.●●例6求5)d x x .解3225)d (5)d x x x x x =-⎰322d 5d x x x x =-⎰⎰532123x x C =-+3123x x C =-. 检验积分结果是否正确,只要对结果求导,看它的导数是否等于被积函数,相等时结果是正确的,否则结果是错误的.●●例7 求32(1)d x x x +⎰. 解 33222(1)331d d x x x x x x x x ++++=⎰⎰2313d x x x x ⎛⎫=+++ ⎪⎝⎭⎰ 211d 3d 3d d x x x x x x x=+++⎰⎰⎰⎰21133ln ||2x x x C x =++-+. ●●例8 求221d (1)x x x x x -++⎰.143解 22221(1)d d (1)(1)x x x x x x x x x x -++-=++⎰⎰211d d 1x x x x =-+⎰⎰ln||arctan x x C =-+. ●●例9 求23e d x x x ⎰.解 23e d xxx =⎰9e d xxx ⎰(9e)d xx =⎰(9e)ln(9e)x C =+23e 12ln3x xC =++. ●●例10 求2cot d x x ⎰.解 22cot d (csc 1)d x x x x =-⎰⎰2csc d d x x x =-⎰⎰cot x x C =--+.●●例11 求2cos d 2xx ⎰.解 2cos d 2x x ⎰1cos d 2x x +=⎰11d cos d 22x x x =+⎰⎰1(sin )2x x C =++.●●例12 设 1,1,()1,2,x x f x x x +≤⎧=⎨>⎩求()d f x x ⎰.解 因为当1x ≤时,()1f x x =+,即21()d ;2x f x x x C =++⎰当1x >时,()2f x x =,此时22()d f x x x C =+⎰.又因为()f x 的原函数在(,)-∞+∞上每一点都连续,所以211lim 2x x x C -→⎛⎫++= ⎪⎝⎭221lim()x x C +→+ 从而有121112C C ++=+,即1212C C +=.记1C C =,则 22,1,2()d 1, 1.2x x C x f x x x C x ⎧++≤⎪⎪=⎨⎪++>⎪⎩⎰由例12可知,当被积函数是一个分段连续函数时,它的原函数必定为连续函数,可以先分别求出各区间段上的不定积分,再由原函数的连续性确定各积分常数之间的关系,注意不定积分中只含有一个任意的常数.习 题 4-11.求下列不定积分:(1) 5d x -⎰; (2) 2(23)d x x x +⎰;(3) 221d (1)x x x x x +++⎰;(4) 2cot d x x ⎛⎫⎪⎭⎰;(5) 3102d x x x ⎰;(6) 2sin d 2xx ⎰;144 (7) cos2d cos sin xx x x+⎰;(8) 22cos2d cos sin xx x x⎰;(9) sec (sec tan )d x x x x -⎰; (10){}max ||,1d x x ⎰. 2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.第二节 换元积分法应用不定积分的性质和基本积分公式只能计算出一些简单的函数的不定积分,对计算较复杂的函数的不定积分,根据函数的不同形式,需要一定的计算技巧.本节与下节所讲的换元积分法和分部积分法是计算不定积分最基本、最常用的两种方法.一、第一类换元积分法设函数()F u 为函数()f u 的原函数,即()()F u f u '=或()d ()f u u F u C =+⎰.如果()u x ϕ=,且()x ϕ可微,则d[()]()()()()[()]()d F x F u x f u x f x x xϕϕϕϕϕ''''===. 即[()]F x ϕ为[()]()f x x ϕϕ'的原函数,从而()()[()]()d [()][()][()d ]u x u x f x x x F x C F u C f u u ϕϕϕϕϕ=='=+=+=⎰⎰.因此有如下定理:设()f u 存在原函数,()u x ϕ=可微,则()[()]()d [()d ]u x f x x x f u u ϕϕϕ='=⎰⎰ (1) 公式(1)称为第一类换元积分公式.由此定理可见,被积表达式中的d x 也可以当作变量x 的微分来看待.如何应用公式(1)来求不定积分呢?为了求不定积分()d g x x ⎰,把它凑成如下的形式[()]()d f x x x ϕϕ'⎰,作代换()u x ϕ=,于是得()d f u u ⎰,若()d f u u ⎰=()F u C +,再代回原来的变量x ,就求得积分()d [()]g x x F x C ϕ=+⎰.由于在积分过程中,将()x ϕ'与d x 凑成d ()x ϕ,所以第一类换元积分法也叫凑微分法.●●例1 求2sin 2d x x ⎰. 解 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+.●●例2 求1d 12x x-⎰.145解 11111d (2)d (12)d 12212212x x x x x x x '=--=-----⎰⎰⎰11d(12)212x x=---⎰, 令12u x =-,得1d 12x x =-⎰111d ln ||22u u C u -=-+⎰1ln |12|2x C --+=. ●●例3求x . 解x =2)d x x '--2)x =-- 令21u x =-,则xu =-1122d 2u u u C -=-=-+=-⎰1222(1)x C -+. 对换元法熟练后,可直接凑微分,省去换元、还原中间变量步骤. ●●例4 求22e d x x x ⎰.解 22e d x x x ⎰=22e ()d x x x '⎰222e d()e x x x C ==+⎰. ●●例5 求tan d x x ⎰.解 tan d x x ⎰=sin 1d d(cos )ln |cos |cos cos x x x x C x x=-=-+⎰⎰. 类似可求得cot d x x =⎰ln |sin |x C +. ●●例6 求221d (0)x a a x ≠+⎰.解 22222111111d d d arctan 11x x x x C a x a a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.类似地可求得arcsin xC a =+ (0)a >. ●●例7 求221d (0)x a x a ≠-⎰. 解 221111d d 2x x x a a x a x a ⎛⎫=- ⎪--+⎝⎭⎰⎰111[d()d()]2x a x a a x a x a=--+-+⎰⎰ 1[ln ||ln ||]2x a x a C a =--++ 1ln ||x a C x a -=++. ●●例8求x . 解xx =⎰2=⎰C =-.●●例9 求x .146 解xarcsin x x =⎰21arcsin d(arcsin )(arcsin )2x x x C ==+⎰.●●例10求x .解x1221d (arctan )d(arctan )1x x x x ==+⎰322(arctan )3x C =+. ●●例11 求2ed 1e x xx +⎰. 解 2e d 1exx x +⎰21e d 1e xx x =⋅+⎰21d(e )1(e )x x =+⎰arctan(e )x C =+. ●●例12 求1d ln x x x ⎰.解 1d ln x x x ⎰111d d(ln )ln |ln |ln ln x x x C x x x=⋅==+⎰⎰.下面积分的过程中,往往要用到一些三角恒等式.●●例13 求csc d x x ⎰.解 11csc d d d sin 2sin cos 22x x x x x x x ==⎰⎰⎰=21d 2tan cos 22x x x ⎰1d tan 2tan 2x x ⎛⎫= ⎪⎝⎭⎰=ln |tan |2x C +,因为tan 2x =2sin 2sin 1cos 22csc cot sin sin cos 2x x x x x x x -===-,所以 csc d x x =⎰ln |csc cot |x x C -+.●●例14 求sec d x x ⎰.解 sec d x x ⎰ππcsc()d()22x x =++⎰ππln csc()cot()22x x C =+-++ln |sec tan |x x C =++.●●例15 求5cos d x x ⎰.解 5cos d x x ⎰=4cos cos d x x x ⋅=⎰4cos d(sin )x x =⎰22(1sin )d(sin )x x -⎰=24(12sin sin )d(sin )x x x -+⎰=3521sin sin sin 35x x x C -++.●●例16 求33tan sec d x x x ⎰.解 33tan sec d x x x ⎰22tan sec tan sec d x x x x x =⋅⎰22tan sec d(sec )x x x =⎰22(sec 1)sec d(sec )x x x =-⎰42(sec sec )d(sec )x x x =-⎰5311sec sec 53x x C =-+.147●●例17 求2cos d x x ⎰.解 21cos21cos d d [d cos2d ]22x x x x x x x +==+⎰⎰⎰⎰ 11cos2d(2)sin 22424x x x x x C =+=++⎰. ●●例18 求4sec d x x ⎰. 解 4sec d x x ⎰=2222sec sec d sec d(tan )(tan 1)d(tan )x x x x x x x ⋅==+⎰⎰⎰31tan tan 3x x C =++. ●●例19 求24tan sec d x x x ⎰.解 24tan sec d x x x ⎰=222tan sec sec d x x x x ⋅⎰22tan sec d(tan )x x x =⎰22tan (tan 1)d(tan )x x x =+⎰42(tan tan )d(tan )x x x =+⎰5311tan tan 53x x C =++. ●●例20 求sin sin3d x x x ⎰.解 利用积化和差公式:1sin sin [cos()cos()]2αβαβαβ=-+--,sin sin3d x x x ⎰1[cos4cos(2)]d 2x x x =---⎰11cos4d cos2d 22x x x x =-+⎰⎰ 11cos4d(4)cos2d(2)84x x x x =-+⎰⎰ 11sin 4sin 284x x C =-++. 二、第二类换元积分法有些积分采用前面所学的积分方法来计算很困难甚至无法计算,而要采用下面将要介绍的所谓第二类换元积分法来求积分.设()x t ϕ=是单调的可导函数,且()0t ϕ'≠.又设[()]()f t t ϕϕ'具有原函数,则有换元公式()d f x x ⎰1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰, (2) 其中1()t x ϕ-=为()x t ϕ=的反函数.证 设[()]()f t t ϕϕ'的原函数为()t Φ,记1[()]()x F x ϕ-Φ=,利用复合函数及反函数的求导法则,得d d ()d d tF x t xΦ'=⋅=1[()]()()f t t t ϕϕϕ'⋅'[()]()f t f x ϕ==, 即()F x 是()f x 的一个原函数.所以有()d ()f x x F x C =+=⎰1[()]x C ϕ-Φ+1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰公式(2)称为第二类换元积分公式. ●●例21求x (0)a >.148 解 令sin x a t =,ππ()22t -<<cos a t =,d cos d x a t t =,因此有cos cos d x a t a t t =⎰22cos d a t t =⎰21cos2d 2t a t +=⎰22sin 224a a t t C =++22sin cos 22a a t t t C =++ . 因为sin x a t =,ππ()22t -<<,所以sin x t a=,arcsin ,xt a =cos t =于是x21arcsin 22a x C a =+.●●例22求 (0)a >.解 令tan x a t =,ππ22t -<<sec a t =,2d sec d x a t t =,因此有2111sec d sec d sec ln |sec tan |a t t t t a txt t C C a===++=+⎰⎰ln |x C =+其中1ln C C a =-.为了把新变量t 还原为x 的函数,可以根据tan xt a=作辅助三角形,俗称小三角形还原法,如图4-1所示.●●例23求(0a >).解 被积函数的定义域为x a >和x a <-两个区间,故在两个区间分别求不定积分.(1) 当x a >时,设πsec (0)2x a t t =<<,则tan a t ,且d sec tan d x a t t t =.故sec tan d sec d tan a t tt t ta t==⎰⎰ln(sec tan ).t t C =++为了把sec t 及tan t 换成x 的函数,依据sec xt a=作辅助三角形(图4-2),得tan t =,所以,1ln x C a ⎛=+ ⎝⎭ln(,x C =+其中1ln .C C a =- (2)当x a <-时,令x u =-,那么u a >,由以上分析有(1ln u C=-=-++1ln(x C=--+1C=+(ln x C=-+,其中12ln.C C a=-综合以上(1)与(2)两种分析情况,把以上两个结果合起来,可写成ln|x C=+.sinx a t=去根号;当被积时,作代换secx a t=换tanx a t=去根号.时,为了去根号,还可用公式22ch sh1t t-=,采用双曲代换sh,chx a t x a t==来去根号.如例22中,可设shx a t=,==cha t,即可去根号.有些积分的计算可采用所谓的倒代换.●●例24求.解设1,xt=那么21d dx tt=-,于是21d t-==-(arcsin)t C=-±+1arcsin||Cx=-+.在本节的几个例题中,有几个积分是以后经常会遇到的,所以它们也常被当作公式来使用,现罗列如下:(16)tan d ln|cos|x x x C=-+⎰, (17)cot d ln|sin|x x x C=+⎰, (18)sec d ln|sec tan|x x x x C=++⎰, (19)csc d ln|csc cot|x x x x C=-+⎰,(20)22d1arctanx xCa x a a=++⎰, (21)22d1ln2x x aCx a a x a-=+-+⎰, (22)arcsinxCa=+, (23)ln(x C=++, (24)ln x C=+.●●例25 求2d23xx x++⎰.解22d1d23212xxx x x x=+++++⎰⎰1)x=+,利用公式(20)便得2d23xCx x=++⎰.149150 ●●例26求解==利用公式(23)便得ln(1x C =+++ln(1x C =++.●●例27求解1d x ⎛⎫- ⎪=利用公式(22)便得21arcsin 3x C -=+. 习 题 4-21.填空:(1) 21d d()x x=;(2) 1d d()x x=;(3) e d d()x x =; (4) 2sec d d()x x =; (5) sin d d()x x =;(6) cos d d()x x =;d()x =;d()x =; (9) tan sec d d()x x x =;(10) 21d d()1x x =+;d()x =;(12) d d()x x =.2.求下列不定积分:(1) x ; (2)4ln d x x x⎰;(3) 12ed xx x ⎰;(4)23(e 2e 2)e d x x x x ++⎰;(5) ;(6)21ln d (ln )xx x x +⎰;(7) 1d ln lnln x x x x ⎰;(8)1d e ex xx -+⎰;(9) x ; (10) 32d 3x x x+⎰;151(11) x ;(12) 21d 2x x x --⎰;(13) 2sin ()d t t ωϕ+⎰;(14) x ;(15) ln cot d sin 2xx x⎰;(16) x ;(17) 4cos d x x ⎰;(18)x ; (19)3cos d x x ⎰(20)arccos xx ;(21)x(22)x ; (23)35sin cos d x x x ⎰ (24)35tan sec d x x x ⎰; (25)cos5sin 4d x x x ⎰; (26)34tan sec d x x x ⎰;(27)x; (28)x(29);(30)x ;(31)2x ; (32)21d 323x x x ++⎰(33)x ;(34)x第三节 分部积分法前面一节我们利用复合函数的求导法则得到了换元积分法,利用它可以求出一些函数的积分,但是对于形如e d x x x ⎰、ln d x x x ⎰、sin d x x x ⎰等的积分,用直接积分法或换元积分法都无法计算. 这些积分的被积函数都有共同的特点,即都是两种不同类型函数的乘积,这就启发我们把两个函数乘积的微分法则反过来用于求这类不定积分,这就是另一个基本的积分方法:分部积分法.设函数()u u x =、()v v x =具有连续导数,则有[()()]()()()()u x v x u x v x u x v x '''=+, 两端求不定积分,得()()()()d ()()d u x v x u x v x x u x v x x ''=+⎰⎰,移项得 ()()d ()()()()d u x v x x u x v x u x v x x ''=-⎰⎰, 或()d ()()()()d ()u x v x u x v x v x u x =-⎰⎰,152 为方便起见,简记为d d u v x u v vu x ''=-⎰⎰ (1) 或d d u v u v v u =-⎰⎰ (2) 公式(1)或(2)称为不定积分的分部积分公式.当()()d u x v x x '⎰不容易积分,但()()d u x v x x '⎰容易积分时,我们就可以用分部积分把不容易积分的()()d u x v x x '⎰计算出来. ●●例1 求sin d x x x ⎰.解 令u x =,sin (cos )v x x ''==-,代入分部积分公式得sin d d(cos )x x x x x =-⎰⎰cos cos d x x x x =---⎰cos sin x x x C =-++.值得注意,如在例1中,若是令sin u x =,22x v x '⎛⎫'== ⎪⎝⎭,代入分部积分公式得2sin d sin d()2x x x x x =⎰⎰22sin d(sin )22x x x x =-⎰22sin cos d 22x x x x x =-⎰.上式最后一个积分比原来的积分还复杂,由此可知,若u v 、的选取不当,可能使积分计算很复杂甚至计算不出来. ●●例2 求2e d x x x ⎰.解 22222e d d(e )e e d()e 2e d x x x x x x x x x x x x x x ==-=-⎰⎰⎰⎰22e 2de e 2(e e d )x x x x x x x x x x =-=--⎰⎰2e 2e 2e .x x x x x C =-++从例1和例2可以看出,当被积函数是幂函数与正弦(余弦)函数乘积或是幂函数与指数函数乘积,分部积分时,取幂函数为u ,其余部分凑为d v . ●●例3 求ln d x x x ⎰.解 22211ln d ln d()ln d(ln )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰()22222111ln d ln 22211ln .24x x x x x x x C x x x C ⎛⎫=-=-+ ⎪⎝⎭=-+⎰ ●●例4 求arctan d x x x ⎰.解 22211arctan d arctan d()arctan d(arctan )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰ 222221arctan d 2111arctan 1d 21x x x x x x x x x ⎛⎫=- ⎪+⎝⎭⎡⎤⎛⎫=-- ⎪⎢⎥+⎝⎭⎣⎦⎰⎰153()21arctan arctan 2x x x x C =-++. 从例3和例4可以看出,当被积函数是幂函数与对数函数乘积或是幂函数与反三角函数函数乘积,分部积分时,取对数函数或反三角函数为u ,其余部分凑为d v . ●●例5 求arcsin d x x ⎰.解 arcsin d x x ⎰arcsin d(arcsin )x x x x =-⎰arcsin x x x =-21arcsin )2x x x =+-arcsin x x C =.●●例6 求ln d x x ⎰.解 ln d x x ⎰ln d(ln )x x x x =-⎰1ln d x x x x x=-⋅⎰ln d x x x =-⎰ln x x x C =-+.从例5和例6可以看出,当某些被积函数(如对数函数、反三角函数)是单个函数时,可选v x =直接用分部积分法求积分. ●●例7 求e sin d x x x ⎰.解 e sin d sin de e sin e d(sin )x x x x x x x x x ==-⎰⎰⎰e sin e cos d e sin cos d(e )e sin [e cos e d(cos )]e sin e cos e sin d ,x x x x xxxx x x x x x x x x x x x x x x =-=-=--=--⎰⎰⎰⎰因此得 1e sin d e (sin cos )2x x x x x x C =-+⎰.●●例8 求3sec d x x ⎰.解 3sec d sec d tan sec tan tan d(sec )x x x x x x x x ==-⎰⎰⎰2233s e c t a n t a n s e c d s e c t a n (s e c 1)s e c d s e c t a n s e c ds e c ds e c t a n l n |s e ct a n |s e cd ,x x x x x x x x x x x x x x x x x x x x x x =-=--=-+=++-⎰⎰⎰⎰⎰因此得()31sec d sec tan ln |sec tan |2x x x x x x C =+++⎰ ●●例9 求22d ()n nxI x a =+⎰(n 为正整数).解 用分部积分法,当1n >时,有154 222122122d 2(1)d ()()()n n n x x x n x x a x a x a --=+-+++⎰⎰22212212212(1)d ()()()n n n x a n x x a x a x a --⎛⎫=+-- ⎪+++⎝⎭⎰, 即2112212(1)()()n n n n xI n I a I x a ---=+--+, 于是122211(23)2(1)()n n n xI n I a n x a --⎡⎤=+-⎢⎥-+⎣⎦. 以此作递推公式,并由11arctan xI C a a=+,即可得n I .在积分过程中,有时分部积分法与其他方法结合使用,会更加容易积分. ●●例10求x ⎰.解 令t =,则 2x t =,d 2d x t t =,因此e 2d 2e d 2de 2(e e )t t t t t x t t t t t t C ====-+⎰⎰⎰⎰1)C =+.习 题 4-3求下列积分: (1) sin 2d x x x ⎰; (2) e d x x x -⎰; (3) 2ln d x x x ⎰; (4) arccos d x x ⎰; (5) 2cos d x x x ⎰; (6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰; (9)x ;(10)23e d x x x ⎰; (11)cosln d x x ⎰;(12)()d xf x x ''⎰.第四节 几种特殊类型函数的积分我们已知道,任何一个初等函数的导数仍为初等函数,而相当多的初等函数虽然也存在原函数,但它们的原函数却不是初等函数,也就是通常说的“这个不定积分积不出来”.例如,sin d x x x ⎰, 2sin d x x ⎰,2e d x x -⎰.这些不定积分都积不出来.下面再举几个著名的积不出来的不定积分:x ,2d (1sin )x k x +⎰(01)k <<.155分别称为第一、二、三种椭圆积分.它们是在计算椭圆弧长时碰到的,故由此而得名.法国数学家刘维尔(Liouville)曾证明了它们的积分不能用初等函数表示,故积不出来.下面介绍几类特殊类型函数的不定积分.一、有理函数的积分形如10111011()()n n n nm m m ma x a x a x a P x Q xb x b x b x b ----++++=++++ (1)的函数称为有理函数.其中012,,,,n a a a a 及012,,,,m b b b b 为常数,且00a ≠,00b ≠.如果(1)式中多项式()P x 的次数n 小于多项式()Q x 的次数m ,则称此分式为真分式;如果多项式()P x 的次数n 大于或等于多项式()Q x 的次数m ,称分式为假分式.利用综合除法(带余除法)可得,任意一个假分式可转化为多项式与真分式之和.例如:422212111x x x x x x +++=-+++, 因此,我们只需研究真分式的积分.根据多项式理论,任一多项式()Q x 在实数范围内能分解为一次质因式和二次质因式的乘积,即220()()()()()Q x b x a x b x px q x rx s αβλμ=--++++(2)其中2240,,40p q r s -<-<.如果(1)的分母多项式分解为(2)式,则(1)式可分解为如下部分分式之和:121211()()()()()()()()B A A A B B P x Q x x a x a x a x b x b x b βαααββ--=+++++++++------11222212()()()M x N M x N M x N x p x q x p x q x p x qλλλλ-++++++++++++++ 11222212()()()R x S R x S R x S x rx s x rx s x rx s μμμμ-+++++++++++++(3)其中,,,,,i i i i i A B M N ,R 及i S 均为常数.例如 22221(1)(1)(1)x x x x x ++++1A x =+21A x +32(1)A x +++1121M x N x ++2221M x N x x ++++3322(1)M x N x x ++++. 把真分式写成部分分式的代数和时,每个k 重因子(一次或二次)一定要有k 项;每个一次因子所对应的部分分式分子是常数,每个二次质因式所对应的分式的分子是一次因式,含两个常数,分式中的常数可以用“待定系数法”或“赋值法”来确定.我们用具体例子来说明.●●例1 将真分式232(1)(2)x x x ++-分解为最简分式.解 设 231213232(1)(2)1(1)(1)2A A AB x x x x x x x +=++++-+++-,通分整理后,有156 ********(2)(1)(2)(1)(2)(1)x A x A x x A x x B x +=-++-++-++(4)3211213211()(3)(33)A B x A B x A A A B x =++++--+3211(222)A A A B +---+比较两端同类项系数,得方程组1121321132110313302222A B A B A A A B A A A B +=⎧⎪+=⎪⎨--+=⎪⎪---+=⎩解得 129A =-, 213A =, 31A =-, 129B =.或者在(4)式中应用赋值法,更简单些. 令1x =-,得 333A =-,31A =-.令2x =, 得 1627B =,129B =.令0x =, 得 32112222A A A B =---+.(5) 令1x =, 得 32113248A A A B =---+.(6)联立(5)与(6)式, 得129A =-,213A =,于是232322112(1)(2)9(1)3(1)(1)9(2)x x x x x x x +=-+-++-+++-.●●例2 求22d 23x x x x -++⎰.解 由于分母已为二次质因式,而且分子可写为12(22)32x x -=+-21(23)32x x '=++-,于是22222221(22)322d d 23231(23)d d 3223231d(23) 3223x x x xx x x x x x xx x x x x x x x x +--=++++'++=-++++++=-++⎰⎰⎰⎰⎰21ln(23)2x x C =+++. ●●例3 求44d 1x x -⎰.解 因为4241121111x x x x =----++,所以 424112d d 1111x x x x x x =----++⎰⎰2112d d d 111x x x x x x=---++⎰⎰⎰1572112d(1)d(1)d 111x x x x x x=--+--++⎰⎰⎰1ln 2arctan 1x x C x -=-++. 由上面的例子可知,把真分式分解为部分分式的代数和,并用待定系数法或赋值法求出分解式中的常数后,求有理函数的不定积分,可归结为求下列部分分式的不定积分A x a -,()kA x a -,2()k Mx N x px q +++ 前两类函数的不定积分我们都能求.关键是第三类函数的不定积分,下面讨论它的计算.把分母中的二次质因式配方,得22224p p x px q x q ⎛⎫++=++- ⎪⎝⎭,令2p x t +=,则d d x t =,并记222x px q t a ++=+,Mx N Mt b +=+,其中224p a q =-,2Mpb N =-,于是有 22222d d d ()()()n n n Mx N Mt t b tx x px q t a t a +=+++++⎰⎰⎰,当1n =时,有222222d d d 2ln()arctan .2Mx N Mt t b tx xpx q t a t a px M bx px q C aa +=++++++=++++⎰⎰⎰ 当1n >时,有222122d d ()2(1)()()n n n Mx N M tx b x px q n t a t a -+=-+++-++⎰⎰, 上式最后一个积分的求法见本章第三节例9.总之,有理函数的积分,理论上总可以积出来,它的原函数是初等函数,即有理函数的积分是初等函数.●●例4 求2221d (22)x x x x +-+⎰. 解 在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为2222221(22)(21)(22)(22)x x x x x x x x +-++-=-+-+222121.22(22)x x x x x -=+-+-+ 现分别计算部分分式的不定积分如下:122d d(1)arctan(1).22(1)1x x x C x x x -==-+-+-+⎰⎰158222221(22)1d d (22)(22)x x x x x x x x --+=-+-+⎰⎰222d(22)(22)x x x x -+=+-+⎰22d(1)(1)1x x -⎡⎤-+⎣⎦⎰2221d(1)22(1)1x x x x --=+-+⎡⎤-+⎣⎦⎰, 令1x t -=, 由递推公式,求得22d(1)(1)1x x -=⎡⎤-+⎣⎦⎰2222d 1d (1)2(1)21t t t t t t =++++⎰⎰ 2211arctan(1).2(22)2x x C x x -=+-+-+ 于是得到2222133d arctan(1)(22)2(22)2x x x x C x x x x +-=+-+-+-+⎰,其中12C C C =+. 二、可化为有理函数的积分举例由函数()u x 、()v x 及常数经过有限次四则运算所得的函数称为关于()u x 、()v x 的有理式,并用((),())R u x v x 来表示. 例如,(sin ,cos )d R x x x ⎰是关于sin x 、cos x 的有理式的不定积分.通过代换tan 2xu =(ππx -<<),可把这种类型的积分化为以u 为变量的有理函数的积分,因为22222sin cos 2tan2222sin 2sin cos ,221sin cos 1tan 222x x x x x u x x x x u ====+++ 2222222222cos sin 1tan 1222cos cos sin ,221sin cos 1tan 222x x x x x u x u ---=-===+++22d d(2arctan )d 1x u u u==+. 所以 2222212d (sin ,cos )d (,)111u u uR x x x R u u u -=+++⎰⎰. ●●例5 求1sin d sin (1cos )xx x x ++⎰. 解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+,159因此得22222211sin 2111d d (2)d sin (1cos )1221111ux u x u u u x x uu u u u u +++=⋅=++++⎛⎫-+ ⎪++⎝⎭⎰⎰⎰ 21(2ln ||)22u u u C =+++211tan tan ln |tan |42222x x xC =+++.●●例6 求cot d sin cos 1xx x x ++⎰.解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+, 因此得2221cot 22d d 21sin cos 11111u x u x u u u x x u u u -=⋅-+++++++⎰⎰1111d (d d )(ln ||)222u u u u u u C u u -==-=-+⎰⎰⎰1(ln tan tan )222x xC =-+. 一些简单的无理函数的积分可以通过变量代换化为有理函数的积分. ●●例7求解u =,得 32x u =-,2d 3d x u u =,代入得2223111d 3d 31d 111 3(ln |1|)2u u u u u u u u u uu u C-+⎛⎫===-+ ⎪+++⎝⎭=-+++⎰⎰⎰3ln |1C =+. ●●例8 求.解令16t x =,得5d 6d x t t =,代入得2563226d 1116d 6d ()1t t t t t tt t t t t t ⋅⎛⎫===-⎪+++⎝⎭⎰⎰⎰6[ln ln(1)]ln 1)t t C x C =-++=-+.●●例9 求x .解 t =,则2211t x t-=+,224d d (1)t x t t -=+;代入得160 x 2224d (1)(1)t t t t -=-+⎰2222d 11t t t ⎛⎫=+ ⎪-+⎝⎭⎰1ln2arctan 1t t C t -=+++C =+.例8、例9式为u ,这样的变换具有反函数,且反函数为有理函数,从而可将原积分化为有理函数的积分.习 题 4-4求下列不定积分:(1)3d 1x x x -⎰;(2)5438d x x x x x +--⎰; (3)2222213d (2)(1)x x x x x ++-+⎰; (4)226114d (1)x x x x x -+-⎰; (5)32d 1xx x x x -+-⎰; (6)2dx⎰;(7)x ; (8)x . 第五节 积分表的使用通过前面的讨论可以看出,积分的计算要比导数的计算显得更加灵活、复杂,我们会遇到更多不同类型的不定积分的计算问题,为了应用上的方便,把常用的积分公式汇集成表,这种表叫做积分表.积分表是按照被积函数的类型来排列的,求积分时,可根据被积函数的类型直接或经过简单的变形后,在表内查得所需的结果. 本书末附录4是一份简单的积分表,可供查阅.●●例1 求2d (1)xx x +⎰. 解 被积函数含有a bx +,在积分表(二)中查得公式(4)()221d ln x a x a bx C b a bxa bx ⎛⎫=+++ ⎪+⎝⎭+⎰, 现在1a =,1b =,于是21d ln 1(1)1x x x C x x =+++++⎰.●●例2求.解这个积分不能在表中直接查到,需要先进行变量代换.令2x u=2ux=,dd2ux=,于是1d2u==⎰34)1Ca=-+,现在2a=,x相当于u,于是有12C=-,再把2u x=代入,最后得到12C=.●●例3 求4sin d x x⎰.解在积分表(八)中查到公式(50)12sin cos1sin d sin dnn nx x nx x x xn n---=-+⎰⎰,现在4n=,于是有342sin cos3sin d sin d44x xx x x x=-+⎰⎰,对积分2sin d x x⎰,利用公式(48),得21sin d sin224xx x x C=-+⎰,从而所求积分为34sin cos31sin d sin24424x x xx x x C⎛⎫=-+-+⎪⎝⎭⎰.一般说来,查积分表可以节省计算积分的时间,但只有掌握了前面学习过的基本积分公式才能灵活地使用积分表,而且对一些比较简单的积分,应用基本积分法来计算比查表更快些,例如23sin cos dx x x⎰,用变换sinu x=很快就可得到结果,所以求积分时,究竟是直接计算,还是查表,或两者结合使用,应该具体问题具体分析,从而选择一个更快捷的方式.习题4-5利用积分表计算下列不定积分:(1);(2)3ln d x x⎰;(3)221d(1)xx+⎰;(4);161162 (5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.第六节 数学模型●●例 (石油的消耗量)近年来,世界范围内每年的石油消耗率呈指数增长,增长指数大约为0.07. 1970年初,消耗率大约为每年161亿桶.设()R t 表示从1970年起第t 年的石油消耗率,则0.07()161e t R t =(亿桶).试用此式估算从1970年到1990年间石油消耗的总量.解 设()T t 表示从1970年起(0t =)直到第t 年的石油消耗总量.我们要求从1970年到1990间石油消耗的总量,即求(20)T .由于()T t 是石油消耗的总量,所以()T t '就是石油消耗率()R t ,即()()T t R t '=,那么()T t 就是()R t 的一个原函数.0.070.070.07161()()d 161e d e 2 300e 0.07t tt T t R t t t C C ===+=+⎰⎰. 因为 (0)0T =,所以, 2 300C =-,得 0.07() 2 300(e 1)t T t =-.从1970年到1990年间石油的消耗总量为:0.0720(20) 2 300(e 1)7 027T ⨯=-≈(亿桶).第七节 数学实验利用Matlab 软件中的函数int 可以对不定积分进行符号计算,其调用格式和功能如下说明:在初等函数范围内,不定积分有时是不存在的,也就是说,即使()f x 是初等函数,但是不定积分()d f x x ⎰却不一定是初等函数.例如,2e x -,sin xx ,e x x,1log a x 是初等函数,而2ed x x -⎰,sin d x x x ⎰,e d xx x⎰,1d log a x x ⎰却不能用初等函数表示出来.比如,输入程序: >> syms x>> F=int(sin(x)/x) 运行后屏幕显示:F =sinint(x)其中sinint(x)是非初等函数,称作积分正弦函数.在使用int 函数求不定积分时,读者要注意这种情况.●●例1 求2sin dx x x⎰.解用符号积分命令int计算此积分,Matlab程序为>> syms x;>> int(x^2*sin(x))结果为ans =-x^2*cos(x)+2*cos(x)+2*x*sin(x) 如果用微分命令diff验证积分正确性,Matlab程序为>> diff(-x^2*cos(x)+2*cos(x)+2*x*sin(x))结果为ans =x^2*sin(x)●●例2 求下列函数的一个原函数:(1);(2)sec(sec tan)x x x-;(3)11cos2x+;(4(5)2arctanx x;(6)223310xx x++-解(1)相应的Matlab程序为>> clear all;>> syms x;>> f=x*sqrt(x);>> int(f,x)结果为ans =2/5*x^(5/2);(2)相应的Matlab程序为>> clear all>> syms x;>> f=sec(x)*(sec(x)-tan(x));>> int(f,x)结果为ans =sin(x)/cos(x)-1/cos(x);(3)相应的Matlab程序为>> clear all>> syms x;>> f=1/(1+cos(2*x));>> int(f,x)结果为ans =1/2*tan(x);(4)相应的Matlab程序为>> clear all>> syms x;>> f=log(x+1)/sqrt(x+1);>> int(f,x)结果为ans =2*log(x+1)*(x+1)^(1/2)-4*(x+1)^(1/2);(5)相应的Matlab程序为163164 >> clear all >> syms x ;>> f=x^2*atan(x); >> int(f,x)结果为ans =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1);(6)相应的Matlab 程序为 >> clear all >> syms x ;>> f=(2*x+3)/(x^2+3*x-10); >> int(f,x)结果为ans =log(x^2+3*x-10).●●例3 设曲线通过点(1,2),且其切线的斜率为2329x x +-,求此曲线的方程并绘制其图像.解 设所求的曲线方程为()y f x =,根据题意,2329y x x '=+-,所以2d (329)d y y x x x x '==+-⎰⎰相应的Matlab 程序为 >> syms x C ;>> f=3*x^2+2*x-9; >> F=int(f)+C ; >> y=simple(F)结果为y =x^3+x^2-9*x+C.即斜率为2329x x +-的曲线方程为329y x x x C =+-+.又因为曲线通过点(1,2),代入曲线方程,得9C =.于是,所求曲线方程为3299y x x x =+-+. 作曲线图,输入程序 >> clear>> x=-5:0.1:5; f=3*x.^2+2*x-9;y=x.^2+x.^3-9*x+9; >> x0=1;y0=2;>> plot(x0,y0,'ro',x,f,'g*',x,y,'b-') >> grid>> legend('点(1,2)','函数f=3x^2+2x-9的曲线','函数f=3x^2+2x-9过点(1,2)的积分曲线')运行结果如图4-3.函数2329f x x =+-过点(1,2)的积分曲线图4-3165本章复习题A一、填空1. 已知()F x 是sin xx的一个原函数,则2d[()]F x = . 2. 已知函数()y f x =的导数为2y x '=,且1x =时2y =,则此函数为 . 3. 如果()d ln f x x x x C =+⎰,则()f x = .4.已知()d sin f x x x x C =++⎰,则e (e 1)d xxf x +⎰= . 5.如果 2(sin )cos d sin f x x x x C =+⎰,则()f x = .二、求下列不定积分1. 21cos d 1cos2x x x ++⎰;2.d 1e xx+⎰; 3.2352d 4x xx x ⋅-⋅⎰;4.2(arcsin )d x x ⎰;5.;6.322d (1)x x x +⎰;7.8.x ; 9.54tan sec d x x x ⎰;10.;11.23e d x x x ⎰;12.ln ln d x x x⎰.三、设 1,0,()1,01,1,2,x f x x x x x <⎧⎪=+≤≤⎨⎪>⎩求()d f x x ⎰.四、若I tan d ,n n x x =⎰,,3,2 =n 证明121I tan I 1n n n x n --=--. 本章复习题B一、填空1.已知()F x 是2e x -= . 2.若22(sin )cos f x x '=,则()f x = .3.设()f x '=,则(1)d f x x -⎰= .4.已知()f x 的一个原函数是2e x -,则()d xf x x '⎰= . 二、求下列不定积分1.2arctan e d e xxx ⎰;2.d sin 22sin xx x+⎰;。
第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1.1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =,则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1。
1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数). 若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1。
授课教案
课程名称:高等数学
授课专业:
总学时:
开课单位:
制定人:
审核人:
制定时间:
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案
C
+
3
+5)5
C
+
新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案
新课和新上课的教师要求写详案。
4.要求教师每学期上交教案。
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
教案
新课和新上课的教师要求写详案。
4.要求教师上课必带教案。
5.“备注”填写历年更新的内容(手写)。
6.教案可带附件(课程内容补充材料)。
高等数学教案第四章不定积分第四章不定积分教学目的:1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§41不定积分的概念与性质一、原函数与不定积分的概念定义 1如果在区间 I 上可导函数 F(x)的导函数为 f(x)即对任一 x I 都有F (x) f(x) 或 dF(x)f(x)dx那么函数 F(x)就称为 f(x)( 或 f(x)dx)在区间 I 上的原函数例如因为 (sin x)cos x所以 sin x 是 cos x 的原函数又如当 x(1)时1 的原函数因为 (x)1所以x 是2 x2x提问 :cos x 和1还有其它原函数吗?2x原函数存在定理如果函数 f( x)在区间 I 上连续那么在区间 I 上存在可导函数F(x) 使对任一 x I都有F (x) f(x)简单地说就是连续函数一定有原函数两点说明第一如果函数 f(x)在区间 I 上有原函数 F(x) 那么 f(x)就有无限多个原函数 F(x) C 都是 f(x)的原函数其中C 是任意常数第二f(x)的任意两个原函数之间只差一个常数即如果(x)和 F(x)都是 f(x)的原函数则(x) F(x) C (C 为某个常数 )高等数学教案第四章 不定积分定义 2在区间 I 上 函数 f(x) 的带有任意常数项的原函数称为f( x)(或 f(x)dx )在区间 I 上的不定积分记作f ( x)dx其中记号 称为积分号 f(x)称为被积函数 f(x) dx 称为被积表达式 x 称为积分变量根据定义 如果 F(x)是 f(x)在区间 I 上的一个原函数那么 F(x) C 就是 f(x)的不定积分 即f (x)dx F (x) C因而不定积分f (x)dx 可以表示 f(x)的任意一个原函数例 1 因为 sin x 是 cos x 的原函数所以cos xdx sin x C因为x 是 1 的原函数所以2 x1 x dx x C2例 2. 求函数 f (x)1的不定积分x解:当 x>0 时 (ln x)1x1dx ln x C (x>0)x当 x<0 时 [ln(x)]1 ( 1) 1xx1dx ln( x) C (x<0)x合并上面两式得到1dx ln | x| C (x 0)x例 3设曲线通过点 (1 2) 且其上任一点处的切线斜率等于这点横坐标的两倍 求此曲线的方程解 设所求的曲线方程为 y f(x) 按题设 曲线上任一点 (x y)处的切线斜率为 y f (x) 2x, ,即 f(x)是 2x 的一个原函数因为2xdx x 2 C高等数学教案第四章不定积分故必有某个常数 C 使 f(x) x 2C 即曲线方程为 y x 2C因所求曲线通过点 (1 2) 故2 1 CC 1于是所求曲线方程为y x 2 1积分曲线 函数 f(x)的原函数的图形称为 f(x)的积分曲线从不定积分的定义即可知下述关系 d [ f (x)dx]f (x)dx或d[ f ( x)dx]f (x)dx又由于 F(x)是 F (x)的原函数所以F (x)dx F (x) C或记作dF (x) F (x) C由此可见 微分运算(以记号 d 表示)与求不定积分的运算(简称积分运算以记号表示)是互逆的当记号 与 d 连在一起时 或者抵消或者抵消后差一个常数二、基本积分表(1) kdx kx C (k 是常数 )(2) x dx1 x 1C1(3)1dx ln |x| Cx(4) e x dx e x C(5) a x dxa x Cln a(6) cos xdx sin x C(7) sin xdx cos x C(8)1dx2tan x C2sec xdxcos x(9) 1dx2cot x C2 csc xdxsin x(10)1 dx arctan x C 1 x2 (11) 1 2dxarcsin x C1x(12) secx tan xdx secx C(13) cscxcot dx cscx C(14) sh x dx ch x C (15) ch x dx sh x C例 41x 3dx 1x 3 1 C1C3 dx2x3 12x2515 172x 3x C例 5xxdx x 2dxC5x 22x 2 C177244 11例 6dx x 3dxx 3C 3x 3C3Cx 3 x4 1 3 x3三、不定积分的性质性质 1函数的和的不定积分等各个函数的不定积分的和即[ f ( x) g( x)]dxf (x)dxg(x)dx这是因为 , [ f ( x)dx g (x)dx] [ f (x)dx] [ g(x)dx]f( x) g(x).性质 2求不定积分时被积函数中不为零的常数因子可以提到积分号外面来即kf ( x)dx k f (x)dx ( k 是常数 k 0)例 7.x( x 2515)dx (x 2 5x 2 )dx51 51x 2 dx 5x 2 dxx 2 dx 5 x 2 dx732x252x2C73(x 1) 332例 8dxx 3x3x 1dx ( x 3 3 12 )dx22xxx xxdx3 dx 31dx 11 x 23x 3ln |x|1 Cx x dx2x例 9xxx(ex dx e dx3 cos xdxe3sinx C3cos )例 10例 11例 122x e x dx(2e)x dx (2e) x C 2x e x Cln( 2e)1 ln2 1 x x 2 2dxx (1 x 22)dx ( 121)dxx(1 x )x(1 x )1 xx1 12 dx1dx arctanx ln | x| Cxxx 42 dxx 4 1 1 ( x 2 1)( x 2 1) 11 x 1 x2 dx1 x 2dx(x211 2 )dxx 2dx dx1 12 dx1 xx1 x 3 x arctan x C 3例 13tan 2 xdx (sec 2 x 1)dx sec 2 xdx dxtan xx C例 14 sin2x dx1 cos x dx1(1 cos x)dx2221(x sin x) C21 2 x dx1 例 15sin 2 x4 sin 2 x dx4 cot x C2 cos 2§42换元积分法一、第一类换元法设 f(u)有原函数 F(u)u (x) 且 (x)可微 那么 根据复合函数微分法 有d F[ (x) ] d F(u) F (u)d u F [ (x) ] d ( x) F [ (x) ] (x)d x所以F [ ( x)] (x)dx F [ (x)] d (x) F (u)d u d F(u) d F[ (x) ] 因此F [ ( x)] (x)dxF [ (x)]d (x)F (u)dudF (u)dF [ ( x F [ x )] C)] (即f [ ( x)] (x)dxf [ ( x)]d (x) [ f (u)du]u (x)[F(u) C] u( x)F[ ( x)] C定理 1设 f(u)具有原函数 u(x)可导 则有换元公式f [ (x)] (x)dx f [ ( x)] d (x)f (u)du F (u) C F[ (x)]C被积表达式中的dx 可当作变量 x 的微分来对待从而微分等式(x)dx du 可以应用到被积表达式中在求积分 g(x)dx 时 如果函数 g(x)可以化为 g(x)f[ (x)] (x)的形式 那么g( x)dxf [ (x)] (x)dx [ f (u)du]u (x)例 1. 2cos 2xdx cos2x (2x) dxcos2xd(2x)cosudu sin u C sin 2x C例 2.111x dx11(3 2 )3 2 3 2 3 2x2x2x1 1dx 1ln |u | C1ln |3 2x| C2 u 22例 3.x 2x 22x 22xe dxe (x) dxe d (x)2uC e x 2Ce例 4. x 1 x 2 dx11 x2 (x 2) dx1221 1 x2 d (1 x 2)213(1 x 2) 2 C3e u du1 x2 dx 21 31 u 2du1u 2C23例 5.tan xdxsin x dx 1 d cos xcos xcos x1du ln |u | Culn|cos x| C即tan xdxln |cos x| C类似地可得cot xdx ln |sin x| C熟练之后 变量代换就不必再写出了例 6.1x 2dx11 dx a 2a 2x( )21 a1 1 d x 1 arctan xCa1 ( x )2a aaa即1 x2 dx 1arctanxCa 2aa例 7. ch xdx a ch x d xa sh xCa a a a 例 8. 当 a 0 时 ,1dx 11 x dx 1 x d x arcsin xCa 2 x 2 a1 ( ) 21 ( ) 2a aaa即 1x 2 dxarcsinxCa 2a例 9.111111 1dxx 2 a 2dx2a ( x a x a )dx2a[x adxx a]1 [1d (x a)1d( x a)]2a x ax a1[ln | x a| ln |x a |] C1ln |xa | C2a2a x a即1 dx 1ln |xa | Cx 2 a 22ax a例 10.dx d ln x 1 d(1 2ln x)x(12 ln x) 1 2 ln x2 1 2ln x1l n |1 2 ln x| C2例 11.e 3 x dx 2 e 3 x d x 2 e 3 x d3 xx 32 e3 x C3含三角函数的积分例 12. sin 3 xdx sin 2 x sin xdx (1 cos 2x)d cos xd cosxcos 2xd cosxcosx1cos 3 x C3例 13. sin 2 xcos 5xdx sin 2 xcos 4 xd sin xsin 2 x(1 sin 2 x)2 d sin x(sin 2 x 2 sin 4 x sin 6 x)d sin x1sin 3x2sin 5x1sin 7 x C357例 14. cos 2xdx1 cos2 x dx 1 ( dx cos 2xdx)2 2 1 dx 1cos2xd 2x1 x 1sin 2x C2 424例 15.4xdx2x 2dx1 x2 d x21 (1 2cos 2x cos 22x)dx 41 (32cos 2x 1cos4x)dx4221 ( 3 x sin 2x 1sin 4x) C 4 2 8 3 x 1sin 2x1sin 4x C8432例 16.xxdx 1 (cos x cos5x)dxcos3 cos2 21sin x1sin 5x C210例 17. cscxdx1 dx 1dxsin x2sin x cos x22d xd tan xln |tan x| C ln |csc x cot x | Cx2x2tan 2tan x22 cos 22即cscxdx ln |csc x cot x | C例 18. sec xdxx)dxln |csc(x) cot(x)| C222ln |sec x tan x | C即secxdx ln |sec xtan x | C二、第二类换元法定理 2 设 x (t)是单调的、可导的函数 并且 (t) 0 又设 f [ (t)] (t)具有原函数 F(t) 则有换元公式f (x)dxf [ (t)] (t)dt F (t) F [1(x)] C其中 t(x)是 x(t) 的反函数这是因为{ F[1(x)] } F (t)dtf [ (t)] (t) 1f [ (t )] f (x)dx dxdt例 19. 求 a 2 x 2dx (a>0)解 : 设 x a sin tt 那么 a 2 x 2a 2 a 2 sin 2 t acost22dx a cos t d t 于是a 2 x 2 dx acost acostdta 2 cos 2tdt a 2( 1 t 1 sin 2t ) C2 4 因为 t arcsin x, sin 2t 2sin t cost 2xa 2 x 2 所以aa aa2x 2dx a 2(1 t 1sin 2t) C a 2arcsin x 1x a 2 x 2 C2 42 a 2解 : 设 x a sin tt 那么22a 2 x 2 dx acost acostdta 2cos 2 tdt a 2( 1 t 1sin 2t ) Ca 2 arcsin x 1 x a 2 x 2 C2 42a 2提示 : a 2 x 2a 2 a 2 sin 2 t a cost dx acos tdt提示 : t arcsin x, sin 2t2sin t cost 2 xa 2 x 2aa a例 20. 求 dx(a>0) x 2 a 2解法一设 x a tan tt 那么22x 2 a 2a 2 a 2 tan 2 ta 1 tan 2t a sec t dx a sec 2t d t 于是dxa 2 a sec 2 t dt sectdt ln |sec t tan t | Cx 2 a sect因为其中sectx 2 a 2 atantdxx 2a2C 1 C ln ax 所以aln |sec t tan t | C ln(x x 2 a 2 2 a 2) C 1a) C ln(xxa解法一 设 xa tan tt那么22dx asec 2 t dt sectdt ln|sect tant| Cx 2 a 2a sectln(xx 2 a 2 ) C ln( xx 2a 2 ) Caa1其中C 1Cln a提示 : x 2 a 2 a 2 a 2 tan 2 t asect dx a sec 2t dt提示 : sectx 2 a 2 tantx aa解法二 : 设 x a sh t那么dx ach t dt dt t C arsh x Cx2 a 2ach t aln x( x)21C ln( x x2 a2 ) C1 a a其中 C 1 C ln a提示 : x2 a2 a 2sh2t a2 a ch t dx a ch t d tdx例23.求x2a2 (a>0)解 : 当 x>a 时设 x a sec t ( 0 t) 那么2x2 a2 a 2 sec2 t a 2 a sec2 t 1 a tan t于是dx a sect tant dt tdt ln |sec t tan t | Cx2a2 a tant sec因为tant x2 a 2x所以a sect adx ln |sec t tan t |C ln |xx2a2|C ln( x x2 a2 ) C x2 a 2a a1其中 C1C ln a当 x<a时令 x u则 u>a于是dxa 2du ln(u u2a2 )Cx2u2a2ln( x x2a2 )C ln( x x2 a2 ) C1ln x x2a2C ln( x x2a2 )C1a2其中 C1C2ln a综合起来有dxa2ln| x x2a2 |Cx2解 : 当 x>a 时设x a sec t ( 0t)那么2dxa sect tantdt sectdtx 2a 2a tantln |secttant | C ln(xx 2 a 2 ) Caaln( xx 2 a 2 ) C其中 C 1 C ln a当 x< a 时 令 x u 则 u>a 于是dxdu ln(u 2 2Cx 2 a 2u 2 a 2 u a )ln( xx 2 a 2 ) C ln xx 2 a 2 Ca 2ln( xx 2 a 2 ) C 1其中 C 1 C 2ln a提示 : x 2 a 2a 2 sec 2 t a 2a sec 2t 1 atant提示 : tantx 2 a 2sect xaa综合起来有dx a 2ln | xx 2 a 2 | Cx 2 补充公式(16) tan xdxln |cos x| Ccot xdx ln |sin x| C(18) secxdx ln |secx tan x| C(19) cscxdx ln |cscx cot x| C(20)1 x2 dx1arctanxCa 2aa(21)1a 2 dx1ln |xa | Cx 22ax a(22)1 x2 dxarcsinxCa 2a(23)dxa 2 ln( xx 2 a 2 ) Cx 2(24)dx ln |x x22x 2a | Ca 2§43分部积分法设函数 u u(x)及 v v( x)具有连续导数 那么 两个函数乘积的导数公式为 (uv) u v uv移项得uv (uv) u v对这个等式两边求不定积分得uv dx uv u vdx 或 udv uvvdu这个公式称为分部积分公式分部积分过程 :uv dx u dv uvvdu uv u vdx例 1 xcos xdx xd sin x xsin x sin xdx x sin x cos x C例 2 xe x dxxde x xe x e x dx xe x e x C例 3 x 2e x dx x 2de x x 2e x e x dx 2x 2e x 2 xe x dx x 2e x 2 xde x x 2e x 2xe x 2 e x dxx 2e x 2xe x 2e x C e x (x 2 2x 2 )C例 4xln xdx 1 ln xdx 21x 2ln x 1 x 21dx2 2 2x1x 2ln x 1 xdx 1x 2 ln x1 x2 C22 2 4例 5 arccosxdx xarccosxxd arccosxxarccosxx1x 2dx111xarccosx(1 x 2 ) 2d (1 x 2) xarccosx 1 x 2C2例 6x arctanxdx1arctanxdx 21x 2 arctan x1x 21 dx2221 x 212112 x arctanx 2 (1 1x 2)dx1x 2arctanx 1 x1arctan x C222例 7 求 e x sin xdx解 因为 e x sin xdx sin xde xe x sin x e x d sin xe x sin xe x cos xdx e x sin x cos xde xe x sin x e x cos x e x d cos x e x sin x e x cos xe x d cosxe x sin x e x cos x e x sin xdx所以e x sin xdx 1e x (sin x cosx) C2例 8求 sec 3 xdx解 因为sec 3 xdx secx sec 2 xdxsecxd tan xsecxtan xsecx tan 2 xdxsecx tanx secx(sec 2 x 1)dxsecx tanxsec 3 xdxsecxdxx tan x ln |sec x x |3xdxsec tan sec所以sec 3xdx1(secxtan x ln |secx tan x|) C2 例 9 求 I ndx其中 n 为正整数(x 2 a 2)n解 I 1x 2 dx 1arctan xCa 2 a a当 n 1 时,用分部积分法 有dxx2(n 1)x 2n dx22 n 122 n 1(x 22 ( x a )( x a )a )高等数学教案第四章不定积分x2(n1) [1a2n ]dx(x 22n 1(x22)n 1(x22)a )a a即I n 1(x 2x2( n 1)(I n 1 a 2 I n ) a 2 ) n1于是I n1[x(2n3) I n 1] 2a2 (n(x2a2) n 11)以此作为递推公式并由 I11xC 即可得 I n arctanaa例 10 求 e x dx解令 x t 2则dx 2tdt于e x dx 2 te t dt2e t (t1)C2e x(x1)C e x dx e x d(x) 2 2xe x d x2xde x2xe x 2 e x d x2xe x2xC2x (x1)Ce e第一换元法与分部积分法的比较:共同点是第一步都是凑微分f [ ( x)] (x)dx f [(x)] d( x)令 (x)u f (u)duu(x)v (x)dx u( x)dv(x)u(x)v(x)v(x)du( x)哪些积分可以用分部积分法?x cosxdx xe x dx x2 e x dxx ln xdx arccosxdx x arctanxdxe x sin xdx sec3 xdx2x2x22uxe dx e dx e dux2e x dx x2de x x2e x e x dx2高等数学教案第四章不定积分§4 4几种特殊类型函数的积分一、有理函数的积分有理函数的形式有理函数是指由两个多项式的商所表示的函数即具有如下形式的函数:P(x)a0 x n a1x n 1a n1x a nQ(x)b0x m b1x m 1b m 1x b m其中 m 和 n 都是非负整数a0a1 a2a n及 b0 b1b2b m都是实数并且 a0 0 b0 0当n m 时称这有理函数是真分式而当 n m 时称这有理函数是假分式假分式总可以化成一个多项式与一个真分式之和的形式例如x3x 1x(x21) 1x 1x21x21x2 1真分式的不定积分求真分式的不定积分时如果分母可因式分解则先因式分解然后化成部分分式再积分例1 求x3dx x25x6解x2x 3dx( xx 3dx(635)dx5x62)( x3)x x 263dxx5dx6ln|x 3|5ln| x 2|Cx2提示x3A B(A B) x ( 2 A3B)3)x3x2(x2)( x 3)( x 2)(xA B 13A2B3A6B5分母是二次质因式的真分式的不定积分例2 求x2dx x22x3解x2dx(12x 231)dxx22x 2 x22x323x2x 312x2dx3x21dx2x2 2 x32x31d( x22x3)3d (x1)2x22x3(x1)2( 2)21ln( x22x3)3arctanx1C222x 21(2x2)31x21提示2222322x 3 x2x 3 2 xx2x 3x 2x 3例3 求12dx x(x1)解1 1)2 dx [111 (x 12 ]dxx(xx x 1)1dx1dx1dx ln |x| ln |x 1|1 Cxx 1 ( x 1) 2x 1提示11 xx1 1x(x 1) 2x(x 1) 2x x 1) ( x 1) 2(1 x x1 111x(x 1)( x 1) 2 x x 1 (x 1)2二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数其特点是分子分母都包含三角函数的和差和乘积运算由于各种三角函数都可以用sin x 及 cos x 的有理式表示故三角函数有理式也就是sin x 、 cos x 的有理式用于三角函数有理式积分的变换 :把 sin x 、 cos x 表成 tan x的函数然后作变换 u tanx22xx 2 tanx2 tanx2usin x2sin cos222 22 x1 tan2 x1 u 2sec 2 2cos x cos 2xsin 2x1 tan 2x1 u 222 22 x 1 u 2sec2变换后原积分变成了有理函数的积分例 4 求1 sin x dxsin x(1 cosx)x2u1 u 2x 2arctan u2解 令 u tan 2 则 sin x 1 u2cos x 1 u2dx 1 u 2du(1 2u )于是1 sin x1 u2 211sin x(1 cos x)dx2u(1 1 u 2 ) 1 u 2du2 (u 2 u )du1 u21 u 21 ( u 22 ln | |) C 1 tan 2 x tan x 1ln |tan x | C2 2 u u4 2 2 2 2解 令 u tan x则21 sin x(1 2u )21 u2sin x(1 cos x) dx2u(11 u 21 u2 du21 u2 )1 u1 ( u 22u ln |u |) C 1 (u 2 1)du2 22u1 tan2 xtanx1ln | tan x| C4 2 2 2 2说明 : 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分例如cos x dx 1 d (1 sin x) ln(1 sin x) C1 sin x 1 sin x三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去例 5 求x 1dxx解 设 x 1 u即 x u 2 1 则x 1dxu 2udu2 u 2 duxu 2 1u 2 12 (112 )du 2(u arctanu) C1 u2( x 1 arctan x 1) C例 6 求dx3x 21解 设 3 x 2 u即 x u 3 2 则dx13u 2 du 3u 21 113 x21 u1 duu3 (u 11)du 3(u2u ln |1 u |) C1 u23 3(x 2)2 33 x 2 ln |1 3 x 2 | C2例 7 求dx3x) x(1 解 设 x t 6于是 dx 6t 5d t从而高等数学教案第四章不定积分dx6t 5 dt6 t 2dt 6 (11 )dt 6(t arctant) C(1 3 x) x(1 t 2)t 31 t 21 t 26(6 x arctan 6 x) C例 8 求11xdxxx解 设1 x t 即 x11于是xt 21 1 xdx (t 2 1)t(t 2 2t dtx x 1) 22t 22 (11 )dtt2dtt 211 2t ln |t1 | Ct 1 2 1 x ln 1 xx Cx 1 xx练习1求dx2 cos x解作变换 ttan x则有 dx2dtcos x1 t2 21 t 21 t 22dtdx1 t 221dt21dt2cos x21 t 23t 2 31 (t2 31 t 2)32arctant C2 arctan( 1 x C3 33 tan )3 22求sin 5 xdxcos 4x解sin 5 x dxsin 4 xd cos x(1 cos 2 x) 2cos 4cos 4xcos4xd cos xx(121)d cos xcos 2 xcos 4 xcos x21 Ccos x 3 cos 3x3求3x 1 dxx23 x 2高等数学教案第四章 不定积分解2 3x 1dx3 x 1 dx ( 74)dx x 3x 2(x 2)( x 1) x 2 x 17 1 4 1 dxdx xx 2 17ln|x 2| 4ln|x 1| C§ 4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂为了实用的方便 往往把常用的积分公式汇集成表 这种表叫做积分表 求积分时 可根据被积函数的类型直接地或经过简单变形后在表内查得所需的结果 积分表一、含有 ax b 的积分1.dx1ln |ax b | Cax b a2. (ax b) dx1(ax b)a( 1)3.x dx 1 (ax b b ln |axax b a 21C(1)b |) C4.x 2 dx 1 1(ax b)2 2b(ax b) b 2 ln |ax b | Cax ba 3 25.dx 1ln ax b Cx( ax b)b x6.2 dx1 a2 ln ax bCx (ax b)bx bx7.xb) 2 dx12 ln |ax b| b C(ax aax b 8.x 2 dx 1 ax b 2b ln |ax b|b 2(ax b) 2 3 Caax b 9.dx1 b) 1 ln ax bCx( ax b)2 b(ax b 2x例 1 求x4) 2dx(3x解 这是含有 3x 4 的积分 在积分表中查得公式(ax xdx 1 ln |ax b|b bCb)2a 2ax现在 a 3、 b 4 于是x4)2dx1 ln |3x 4| 4 C(3x 9 3x 4二、含有 ax b 的积分1.ax b dx 2 (ax b)3C3a2. x ax bdx2 (3ax 2b) (ax b)3C15a 23. x 2 ax b dx23(15a 2x 2 12abx 8b 2) (ax b)3 C105a4.x dx2 (ax 2b) ax b Cax b 3a 2x 2 b dx 25.ax15a 3(3a2x 24abx 8b 2) axb Cdx1lnax b b C (b 0)6.b ax b b x ax b2 arctan ax b C (b 0)b b 7.8.dx ax b adxx 2 ax b bx2b x ax b axb dx 2 ax b bdx xx ax b9.ax bdx ax b a x dx bx 2x 2 ax 三、含 x 2 a 2 的积分 1.x 2dx 1arctan xCa 2 aa2.dxx2n 3 dx(x 2 a 2)n 2(n 1)a 2(x 2 a 2)n 1 2(n 1)a 2 ( x 2a 2) n 13.x 2 dx1ln x a Ca 2 2a x a四、含有 ax 2 b(a 0)的积分dx 1 arctan a x C (b 0) 1.ab bax2b1a xblnC (b 0)2 a x bab2.x dx1ln |ax 2 b| Cax 2 b2a内蒙古财经大学统计与数学学院公共数学教研室3.x 2 dx x b dxax 2 ba a ax 2b4.dx 1 ln x 2Cx( ax2b)|ax22b b |5.dx1 a 1 dxx 2(ax 2b)bx bax 2b6.dxa ln|ax 2 b| 1Cx 3 (ax 2 b) 2b 2x 22bx 27.dxx11 dx(ax2b)22b(ax 2b)2b ax 2b五、含有 ax 2 bx c (a 0)的积分 六、含有 x 2 a 2 (a 0)的积分1.dxa 2arshxC 1 ln( xx 2x 2 a 2.dxxC( x 2a 2 )3a 2x 2a23.xdxx 2 a 2 Cx 2 a 24.xdx1C2a 2 )3x 2a 2( x5.x2dx x x2a2a 2ln(xx 2 a 2 226.x2dxxln( x( x 2 a 2 )3x 2a27. dx1lnx 2 a 2 a C x x 2 a 2a| x| 8.dxx 2 a 2 Ca 2a 2 xx 2 x 29.x2a 2dx x x 2 a 2 a 2ln( x 22例 3 求dx4 x29x解 因为dx1dx2x x 2 ( 3) 2x 4x 2 92a 2 ) Cx 2a 2 ) Cx 2 a 2 ) Cx 2 a 2 ) C所以这是含有x 2 a 2 的积分 这里 a3 在积分表中查得公式2内蒙古财经大学统计与数学学院公共数学教研室xdxa 21ln x 2 a 2a Cx 2 a|x|dx 1 2x 2( 3)23 1 4x 29 3于是ln22 C ln Cx 4x 292 3|x|3 2|x|七、含有 x 2 a 2 (a 0)的积分1.dxa 2x arch |x| C 1 ln |x x 2 a 2 | Cx 2 |x|a2.dxxC( x 2a 2 )3a2x 2a23.x a 2 dx x 2a 2 Cx 24.xdx1C( x 2a 2 )3x 2 a25.x 2dx x x 2 a 2 a 2x 2 a 2| Cx 2 a 22ln |x26.x 2 dx x ln|x x 2 22 a 2 )3 2 a 2 a | C( x x7.dx1arccos aCx x 2 a 2 a |x|8.dx x 2 a 2Cx 2x 2a2a 2x9.x 2 2 dxxx 22a 2 22 | C a 2 a2 ln | xx a八、含有a 2 x 2 (a 0)的积分1.dx arcsinxCa 2 x 2a2.dxxC(a2x 2 )3a 2a2x23.x dxa 2 x 2 Ca 2 x 24.x dx 1 C(a2x 2 )3a2x25.x 2 dxx a 2 x 2a 2 x Ca 22arcsinax 226.x2dx a 2 xx 2arcsinxC(a 2 x 2 )3a内蒙古财经大学统计与数学学院公共数学教研室7.dx1 ln a a2 x 2 Cx a 2 x 2a| x| 8.dxa 2 x 2 Cx2a2x2a 2x9.a 22dx xa 22a 2arcsin xCx 2x2 a九、含有 ax 2 bx c(a 0) 的积分十、含有x a 或 (x a)( x b) 的积分x b十一、含有三角函数的积分1. secxdx ln |secx tan x| C2. cscxdx ln |cscx cot x| C3. secx tan xdx secx C4. cscx cot xdx cscx C 5. sin 2 xdx6. cos 2 xdx 7. sin n xdxx1 sin 2x C2 4 x1sin 2x C 2 4 1 sin n 1 xcos x n 1 sin n 2 xdx n nn 1 cos n 2xdx n1 cos(a b)x2(a b)1sin(a b) x2(a b)1sin(a b)x2(a b)cos(a b) x C 2(a b)1 sin(a b) x C2(a b)1sin(a b)x C2(a b)12.dxa bsin x2a tanxb2 arctan2 2 C (a 2b 2 )a 2b a 2b9. sin axcosbxdx10. sin axsin bxdx11. cos axcosbxdx8. cos n xdx 1cos n 1 x sin x n内蒙古财经大学统计与数学学院公共数学教研室高等数学教案第四章 不定积分dx 2a tanxbb 2 a 222213.a bsin xb 2a 2ln a tanxbb 2 a 2 C (ab )214.dx a 2 a barctana b tan xC (a 2 b 2)a b cos x b a b a b 2dx2 a b ln tanxa b14.a 2b a C (a 2 b 2)a b cos x b b atan xa b2b a例 2 求dx5 4cos x解 这是含三角函数的积分在积分表中查得公式dx 2 b a barctana b tan xC (a 2 b 2 )a b cos x a aba b 2这里 a 5、 b 4 a 2b 2 于是5 dx5 2 4) 5 ( 4)arctan 5 ( 4) tan xC4cos x( 5 ( 4) 5( 4)22arctan 3tanxC32例 求 sin 4 xdx解 这是含三角函数的积分在积分表中查得公式sin nxdx1sinn1x cos x n1sinn2xdx sin 2xdxx 1sin 2x Cnn 2 4这里 n 4于是sin 4xdx1sin 3xcos x3sin 2xdx1sin 3xcos x 3 ( x1sin 2 x) C4444 2 4内蒙古财经大学统计与数学学院公共数学教研室。
积分学不定积分定积分微分与积分是一对互逆的运算第四章不定积分§1 不定积分的定义与性质1.问题的提出2.定积分的定义3.定积分的性质例, ,(sin )cos ()x x x '=∀∈-∞+∞一、原函数存在定理定义1若在I 上恒有F '(x )=f (x )(即d F (x )=f (x )d x ),称F (x ) 为f (x ) 在I 上的一个原函数。
上的一个在是原函数),( cos sin +∞-∞=∴I x x (1) 满足什么条件的函数有原函数?问题:(2) 若原函数存在,如何求出?复习:原函数存在定理:连续函数一定有原函数.(sin 1)(sin 3)(sin )cos ,x x x C x '''+=+=+=原函数F (x )不唯一,但只相差一个常数可以看出:简言之:原函数之间只相差一个常数。
⎰=xatt f x d )()(Φ例:积分常数积分号被积函数定义2:Cx F dx x f +=⎰)()(被积表达式积分变量函数f (x )在区间I 上的全体原函数称为f (x )在I 上的不定积分,记为:不定积分是全体原函数的集合。
⎰dx x f )(C 不可丢!前面两例可写作:⎰+=C x xdx sin cos , ,(sin )cos ()x x x '=∀∈-∞+∞问:不定积分的几何意义?不定积分的几何意义xyoxCx F y +=)()(x F y =是积分曲线上、下平移所得到一族积分曲线,称为积分曲线族.)(x F 在点处有相同的斜率,即这些切线互相平行.x )(x f x x f d )(⎰()F x C=+称为的积分曲线.不定积分的几何意义:的原函数的图形称为的积分曲线.的图形的所有积分曲线组成f d)xx(的积分曲线族.yxO0x每条积分曲线上,横坐标相同的点处的切线是平行的例1.设曲线通过点(1, 2), 且其上任一点处的切线斜率等于该点横坐标的两倍, 求此曲线的方程.解:所求曲线过点(1, 2) ,故有因此所求曲线为12+=x y yx)2,1(O[xd d)1(⎰x x f d )(])(x f =[d ⎰x x f d )(]x x f d )(=或C x +=⎰d )2()(x F ')(x F 或C +=⎰d )(x F )(x F 二.不定积分的性质微分运算与求不定积分的运算是互逆的:线性性质⎰=±dx x g x f )]()([)1(;)()(⎰⎰±dx x g dx x f ⎰=dx x kf )()2(.)(⎰dx x f k (k 是常数,)0≠k⎰+=k Ckx kdx ()1(是常数););1(1)2(1-≠μ++μ=+μμ⎰C x dx x ;||ln )3(⎰+=C x xdx ⎰=C dx 0⎰+=C x dx 1基本积分表⎰=xdx cos )6(;sin C x +⎰=xdx sin )7(;cos C x +-⎰=xdx 2sec ;tan C x +⎰=xdx 2csc ;cot C x +-=⎰dx e x )5(;C e x +=⎰dx a x )4(;ln 1C a a x +(8)(9)⎰=xdx x tan sec )12(;sec C x +⎰=xdx x cot csc )13(;csc C x +-=+⎰dx x211)11(C x +arctan =-⎰dx x 211)10(C x +arcsin C x arc +-=cot C x +-=arccos 注:检验积分结果正确与否的方法是积分结果求导= 被积函数。
第四章 不定积分4.1 复习笔记一、不定积分的概念与性质1.原函数与不定积分的概念(1)原函数①定义如果在区间I 上,可导函数的导函数为,即对任意一,都有,则函数就称为在区间I 上的一个原函数.②原函数存在定理如果函数在区间I 上连续,则在区间I 上存在可导函数使对任一都有即连续函数一定有原函数.③注意两点a .如果有一个原函数,则就有无限多个原函数.b .若和都是的原函数,则()Fx ()x φ()f x(C 0为某个常数)(2)不定积分在区间I 上,函数的带有任意常数项的原函数称为(或)在区间I上的不定积分,记作,其中称为积分号,称为被积函数,称为被积表达式,x称为积分变量.2.基本积分表3.不定积分的性质(1)性质1设函数的原函数存在,则注:性质1对于有限个函数都是成立的.(2)性质2设函数的原函数存在,k为非零常数,则二、换元积分法1.第一类换元法设具有原函数,可导,则有换元公式()[()]()[()]u x f x x dx f u du ϕϕϕ='=⎰⎰2.第二类换元法设是单调的可导函数,并且又设具有原函数,则有换元公式1()()[[()]()]t x f x dx f t t dtψψψ-='=⎰⎰其中的反函数.三、分部积分法1.分部积分法设函数具有连续导数,则两个函数乘积的导数公式为移项,得对这个等式两边求不定积分,得称为分部积分公式.注:2.运用分部积分法需注意(1)v 要容易求得;(2)要比容易积出;(3)遵循“反对幂指三”原则.①“反对幂指三”定义“反对幂指三”分别指反三角函数、对数函数、幂函数、指数函数和三角函数.②“反对幂指三”原则“反对幂指三”原则是指在用分部积分法计算积分时,若出现上面相关函数,把被积表达式按照“反对幂指三”的积分次序,排在前面的看成“u”,排在后面的看成“dv”.【例】3.常见函数的不定积分四、有理函数的积分1.有理函数的积分(1)相关概念①有理函数 两个多项式的商称为有理函数.②有理分式 有理函数又称有理分式.③真分式 当P(x)的次数小于Q(x)的次数时,称这有理函数为真分式.④假分式 当P(x)的次数大于Q(x)的次数时,称这有理函数为假分式.(2)真分式的分解对于真分式,如果分母可分解为两个多项式的乘积且Q 1(x)与Q 2(x)没有公因式,则它可分拆成两个真分式之和。
第四章 不定积分 一、基本内容(一)主要定义【定义4.1】 若在()f x 的定义区间M 上均满足()()F x f x '=,则称函数()F x 是()f x 在M 上的一个原函数.【定义4.2】 ()f x 的原函数的一般表达式()F x C +称为 ()f x 的不定积分,记成()().f x dx F x C =+⎰(二)性质与定理【定理4.1】 设()f x 在(,)a b 上连续,则必存在原函数. 性质 以下均假设()f x 和()g x 在所讨论的区间上连续,则 1、 (())()f x dx f x '=⎰, ()()d f x dx f x dx =⎰.2、 ()()f x d xf x C '=+⎰,()()df x f x C =+⎰. 3、 (()())()()f x g x d x f x d xg x d x±=±⎰⎰⎰. 4、()(),kf x dx k f x dx =⎰⎰ 常数0.k ≠(三) 基本积分公式 1、11(1)1x dx x C αααα+=+≠-+⎰, 2、1ln ,dx x C x=+⎰ 3、(0,1)ln xxa a dx C a a a=+>≠⎰, 4、,x x e dx e C =+⎰ 5、sin cos xdx x C =-+⎰ 6、cos sin xdx x C =+⎰7、tan ln cos xdx x C =-+⎰ 8、cot ln sin ,xdx x C =+⎰9、sec ln sec tan xdx x x C =++⎰ 10、csc ln csc cot ,xdx x C =-+⎰11、2sec tan xdx x C =+⎰ 12、2csc cot ,xdx x C =-+⎰13、2211tan x dx arc C a a a x =++⎰ 14、2211ln ,2a xdx C a a xa x +=+--⎰15、arcsinx C a =+ 16、ln .dx x C =+ (四)基本积分方法 第一类换元法(凑微分法)(())()(())()f x x dx f x d x φφφφ'=⎰⎰ 令()u x φ=()()(())f u du F u C F x C φ==+=+⎰常见的几种凑微分形式: 1、1()()(),0f ax b dx f ax b d ax b a a +=++≠⎰⎰2、2221()(2)()(),f ax bx c ax b dx f ax bx c d ax bx c a +++=++++⎰⎰3、1(ln )(ln )ln ,dx f x f x d xx a =⎰⎰ 4、2f f =⎰⎰ 5、(sin )cos (sin )sin ,f x xdx f x d x =⎰⎰ 6、(cos )sin (cos )cos ,f x xdx f x d x =-⎰⎰ 7、2(tan )sec (tan )tan ,f x xdx f x d x =⎰⎰8、(sin (sin )sin ,f arc x f arc x darc x =⎰⎰9、2(tan )(tan )tan .1dxf arc x f arc x darc x x=+⎰⎰ 第二类换元积分法设()f x 连续,()x t φ=具有连续导数()t φ',且()0,t φ'≠则()()()((())())t x f x dx x t f t t dt ψφφφ='=⎰⎰其中右边表示对t 积分后再以()x t φ=的反函数()t x ψ=代回成x 的函数. 常见的几种类型的换元法: 以下式子中,(,)R u v 表示,u v 的有理函数.1、(,(R x dx R x dx ⎰⎰型,0a >含,令sin ,cos ;x a t dx a tdt == 含 ,令tan ,x a t =2sec ;dx a tdt =含 ,令sec ,sec tan ;x a t dx a t tdt ==2、(R x dx ⎰型,0a ≠令1,,.mn mn t b mn t x dx t dt a a--===3、(R x dx ⎰型.2222(),,,()dt b a ad bc t t x dx dt a ct a ct --===--其中设0.ad bc -≠ 4、(sin ,cos )R x x dx ⎰型.令tan ,2x t =则2222212sin ,cos ,.111t t x x dx t t t -==+++ 分部积分法设()()u x v x 、均有连续导数,则()()()()()()u x dv x u x v x v x du x =-⎰⎰分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.如3xx e dx ⎰首先变形为3x x de⎰再用公式计算.二、典型例题解析(一) 填空题 【例4.1】= 解=C =+.C . 【例4.2】(98,数二)= .解1=2arcsin 2x C -=+. 解2===2arcsin 2C +. 故应填2arcsin2x C -+ 或2arcsin 2C +. 【例4.3】= . 解1=dx C =+=+⎰解2 令t =22(3)t dt =+⎰312(3)3t t C =++122(3)(6)3x x C =-++故应填122(3)(6)3x x C -++C . 【例4.4】 2xx e dx =⎰解2x x e dx =⎰2x x de ⎰22x x x e xde =-⎰222x x x x e xe e dx =-+⎰2(22)x e x x C =-++,故应填 2(22)x e x x C -++.【例4.5】2ln 1x dx x -=⎰ 解 2l n 1x dx x -=⎰1(l n 1)x d x --⎰2l n 1x d x x x -=-+⎰ln xC x=-+, 故应填. ln xC x-+ 【例4.6】()xf x dx ''=⎰解()xf x dx ''=⎰()xdf x '⎰()()xf x f x dx ''=-⎰. 故应填 ()()x f x f x C'-+ 【例4.7】22156x dx x x -=-+⎰ . 解 22156x dx x x -=-+⎰53()32dx x x ---⎰5l n 33l n 2x x C=---+ 53(3)ln (2)x C x -=+- 故应填 53(3)ln (2)x C x -+-. 【例4.8】(99,数二)25613x dx x x +=-+⎰ .解 25613x dx x x +=-+⎰21(26)82613x dx x x -+-+⎰2221(613)(3)82613(3)4d x x d x x x x -+-=+-+-+⎰⎰ 213ln(613)4arctan 22x x x C -=-+++ 故应填 213ln(613)4arctan22x x x C --+++. 【例4.9】x dx =⎰解 由于 ,0,0x x x x x ≥⎧=⎨-<⎩,所以x dx =⎰2122,02,02x C x x C x ⎧+≥⎪⎪⎨⎪-+<⎪⎩,由于x 是连续的,则存在可导的原函数,从而原函数在0x =连续,固12C C C ==. 从而x dx =⎰12x x C +,故应填 12x x C +. 【例4.10】 设2sin x 是()f x 的一个原函数,则2()x f x dx =⎰解1 ()f x 22(sin )2cos x x x '==,则2()x f x dx =⎰322cos x x dx ⎰22sin x d x =⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++,解2 由于2sin x 是()f x 的一个原函数,则2()x f x dx =⎰22sin x d x ⎰222sin 2sin x x x x dx =-⎰222sin cos x x x C =++, 故应填 222s i n c o s x x x C ++(二)选择题【例4.11】 下列结论正确的是 [ ] (A) 21x -在(1,1)-上的原函数为1x ;(B)121arctan ,1dx x C x -=-++⎰ 2211arctan ,1dx C xx -=++⎰ 即1arctan ,arctan x x-为同一个函数的原函数,彼此差一常数.(C) 符号函数sgn x 在(,)-∞+∞上存在原函数.(D )112sin cos ,0()0,0x x f x x xx ⎧-≠⎪=⎨⎪=⎩ 在(,)-∞+∞存在原函数,所以不连续函数也可以存在原函数.解 若()f x 在区间I 内有原函数()F x ,则()F x 在I 内一定是连续函数, ()f x 在I 内却不一定连续.(A )中函数1x 在0点不连续;(B )中函数1arctan x在0点不连续,因而与arctan x 不是同一函数的原函数;(C )中符号函数在(,)-∞+∞上不存在原函数;(D )中()f x 的原函数为21sin ,0()0,0x x F x xx ⎧≠⎪=⎨⎪=⎩,故选答案D. 【例4.12】 设()ln f x dx x x C =+⎰,则()f x = [ ](A )ln 1x + (B )ln x . (C )x (D )ln x x解 由不定积分定义()(ln )ln 1,f x x x C x '=+=+故选A.【例4.13】 设()F x 是()f x 的一个原函数,则等式成立的是 [ ] (A) (())()d f x dx F x =⎰ (B)()()F x dx f x C '=+⎰(C)()()F x dx F x '=⎰(D)(())()df x dx f x dx=⎰ 解 由不定积分的性质选答案D .【例4.14】 已知21f x x ⎛⎫'= ⎪⎝⎭,则下列式子中正确的是 [ ](A) 21()f x x d x C x ⎛⎫==-+ ⎪⎝⎭⎰ (B)3213x f x dx C x ⎛⎫==+ ⎪⎝⎭⎰,所以31()3f x C x =+(C) ()21,f x x'=211()f x dx C x x ==-+⎰ (D) 32()3x f x x dx C ==+⎰解 令1,t x =,则由题设有()21f t t '=,即()21,f x x'=因而选C. 【例4.15】 设()x f x e -=,则(ln )f x dx x '=⎰ [ ](A) x C + (B) x C -+ (C) 1C x+ (D) 2ln x C +解 (l n )f x dx x '=⎰(l n )(l n f x d x '⎰1(l n )f x C x==+,故选C.【例4.16】 若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩ (B) ,0()2,0x x e C x F x e C x -⎧+≥=⎨-++<⎩(C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩解 本题与[例4.9]类似,应选C .【例4.17】 (05,数二)设()F x 是连续函数()f x 的一个原函数,“M N ⇔”表示“M 的充要条件是N ”,则必有 [ ].(A) ()F x 是偶函数⇔()f x 是奇函数 (B) ()F x 是奇函数⇔()f x 是偶函数 (C) ()F x 是周期函数⇔()f x 是周期函数(D) ()F x 是单调函数⇔()f x 是单调函数 解 (B) 2()f x x =为偶函数,31()13F x x =+非奇非偶(C) ()sin f x x =为周期函数,cos 1,sin 0()cos 1,sin 0x x F x x x -+>⎧=⎨+<⎩不是周期函数(D) ()2f x x =为单调函数,但2()F x x =不是单调函数.故选A.注 当问题直接证明不易解答时,采用反例是非常有效的方法. (三)主观题 1.第二类换元法【例4.18】求下列积分 (1)d x a x -⎰; (2)d ln x x x ⎰; (3)x x ⎰.解 (1) d d()ln .x a -x a x C a x a x =-=--+--⎰⎰ (2) d d(ln )ln ln ln ln x x x C x x x==+⎰⎰.(3) 333332211221)(1)(1).3339xx x x C x C =+=⋅++=++⎰【例4.19】 求(1)(2)(ln(1)ln ).(1)x x dx x x +-+⎰ (3).⎰解 (1) 原式22.C ===+⎰(2) 原式()1111ln ln ln ln(1)1x x dx d x x x x x x ++⎛⎫⎛⎫⎛⎫=⋅-=⋅-+⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎰⎰ 21111ln ln ln .2x x x d C x x x +++⎛⎫⎛⎫⎛⎫=-⋅=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(3)原式22211()(arctan )(1)(1)x x x xx ==-=-++=3221(arctan ).3C x-+被积函数中含有xe 时,通常有效的方法是分子、分母同时乘以xe 或.xe -【例4.20】 求 (1)(1).(1)x x dx x xe ++⎰ (2)21.x xdx e e +⎰解 (1)原式(1)()11()()(1)(1)1x x xx x x x x x x e d xe dx d xe xe xe xe xe xe xe +===-+++⎰⎰⎰ ln .1x xxe C xe=++ (2)原式22222222()111xx x x xx x x e eeedx dx d e ee e --------⋅===-+++⎰⎰⎰2212(1)()1x x d e e--=--+⎰2222ln(1).x x e eC --=-+++以指数函数为基本元素且底不尽相同的被积函数式一般首先将被积函数式化为同底数幂的形式.【例4.21】 求 (1) 23.94x xxxdx -⎰ (2) 112510x x x dx +--⎰解 (1) 原式2212223ln 13233ln .2(ln 3ln 2)32221133xx x x x x x xd dx C ⎛⎫⎪⎛⎫⎝⎭ ⎪-⎝⎭===+-+⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎰⎰ (2) 原式12525xx dx dx --=-⎰⎰=2152ln 55ln 2x xC ---++. 被积函数为三角函数,利用凑微分法积分时,通常“奇化偶,偶降幂,中间穿插恒等式”.【例4.22】 求 (1)3sin xdx ⎰. (2)6sec xdx ⎰(3)3sin cos dxx x ⎰解 (1) 原式222sin sin sin cos (1cos )cos x xdx xd x x d x ==-=--⎰⎰⎰=31cos cos 3x x C -++ (2) 原式 22222(sec )sec (1tan )tan x xdx x d x ==+⎰⎰24(12tan tan )tan x x d x =++⎰=3521tan tan tan 35x x x C +++. (3) 原式223sin cos sin cos x xdx x x+=⎰=32sin 1cot cos cos x dx x dx x x +⎰⎰ =21(tan )2cos tan d x x x +⎰21ln tan 2cos x C x=++. 2.变量代换法形如(,(,0R x dx R x dx a >⎰⎰的积分含 ,令sin ,cos ;x a t dx a tdt ==含 ,令2tan ,sec ;x a t dx a tdt ==含,令sec ,sec tan ;x a t dx a t tdt ==【例4.23】 求 (1)2.dx x⎰(2) 5. (3)解 (1)令sin x t =,则cos dx tdt =,原式2222cos cos 1sin csc cot sin sin t t t dt dt tdt t t t C t t⋅-===-=--+⎰⎰⎰arcsin .x C =-+(2) 令tan ,x t =则2sec dx tdt =,原式5422tan sec tan sec (sec 1)sec t tdt td t t d t ===-⎰⎰⎰5224121sec sec sec (843.5315t t t C x x C =-++=-+ 注t =更简单;还可以分部积分将5x 的次数降低求解. (3) 令sec ,x t =则sec tan dx t tdt =,原式sec tan 1arccos .sec tan t t dt tdt t C C t t x==±=+=+⎰⎰ 注此题还可分别令1x cht t x t===、求出相应的解. 【例4.24】 求下列积分(1); (2)解 (1)(法一)原式=2sec sec 2sec t dt tdt t ==sec tan 2C tt =++212C x =++.(法二)原式2122x C ==+++21x C =+++. (2)原式2===arcsin(21)x C =-+.【例4.25】 求解1,u =则222ln(1),.1ux u dx u =-=-原式2112ln ln .11u du C C u u -==+=++-⎰ 解2原式222xx--===-22ln(xeC -=-++.3.分部积分法分部积分法的关键就是选择好()()u x v x 与,其中()u x 的选取顺序为对数函数、反三角函数、幂函数、指数函数、三角函数这五种函数位置靠前者.【例4.26】 求 (1)3xx e dx ⎰. (2)2tan x xdx ⎰(3)()2arctan x x dx ⎰解 (1) 原式33232336x x x x x xx de x e x de x e x e xde ==-=-+⎰⎰⎰32366.x x x xx e x e xe e C =-+-+(2) 原式=2(sec 1)x x dx -⎰21tan 2xd x x =-⎰ 21tan tan 2x x x xdx =--⎰ 21tan ln cos 2x x x x C =-+++. (3) 原式()221arctan 2x d x ⎛⎫= ⎪⎝⎭⎰()2222111arctan arctan 21x x x x dx x +-=-+⎰ ()221arctan arctan 2x x xdx =-⎰21arctan 1x dx x +⋅+⎰ ()2221arctan arctan 21x x x x x dx x ⎛⎫=-- ⎪+⎝⎭⎰arctan arctan xd x +⎰ ()()22211arctan arctan ln 122x x x x x =-++()21arctan 2x C ++【例4.27】 求322ln .(1)x xdx x+⎰解原式ln xd ⎛⎫=-=+⎰=+1ln .C x ⎛=-++ ⎝【例4.28】求.x解1原式222x ===⎰,u =则222ln(2),,2ux u dx du u =+=+22222u du u C u ==-++⎰原式2.C =解2,u =则222ln(2),,2ux u dx du u =+=+ 原式222ln(2)(2)2(2)u u udu u u ++⋅=+⎰ 222222ln(2)2ln(2)22u u du u u du u =+=+-+⎰⎰22l n (2)42a n u uu C =+-+22a r 1.C = sin ,cos x x e xdx e xdx ⎰⎰型, 连续用两次分部积分公式,移项解方程可得.注 对于分部积分也可用下列快速计算表格法:uu 'u ''v 'vv⎰......++-(1)n-(1)n u +1(1)(1)n n nu v++-⎰⎰⎰⎰v⎰⎰()n u nv⎰⎰⎰上一行代表对u 不断求导,下一行代表对v 不断积分,斜线代表两个函数相乘,竖线代表两函数乘积后再积分,连线上符号代表乘积后的符号,上表格用式子写出来即为(1)()()()(1)(1)()(1)(2)(2)()(1)(2)1(1)d d d d (1)d n n n n n n n n n n n n n n n uvx uv u v x uv u v u v xuv u v u v u v x uv u v u v u v x+-------++''''=-=-+'''''' =-+-''' ==-+-+-⎰⎰⎰⎰⎰常用于以下类型的分部积分:①d ,sin d ,kxx e x x kx x μμ⎰⎰一般设u x μ=②ln d ,arctan d ,x x x x x x μμ⎰⎰一般设()n v x μ=③sin d ,xekx x μ⎰,u v 可以任意设.对于含多项式的积分,如类型①②,须求导至0或易积分时为止,而对于循环类型③,须求导至上下函数乘积与原积分函数相同时为止.【例4.29】求32(2)d xx x e x -+⎰.解 取32u x x =-+原式2321111[(2)(31)66]24816x e x x x x C =-+--+⋅-⋅+2321(4627)8xe x x x C =-+++ 【例4.30】求cos 2d xe x x ⎰.解 取cos 2u x =32x x -+231x -6x 2xe 212x e 214x e ++--2116x e 218xe 6cos 2x2sin 2x -4cos 2x-2xe 212xe 4x e +-+22211cos 2d (cos 2sin 2)cos 2d 22x x xe x x e x x e x x =+-⎰⎰ 原式21(cos 2sin 2)4xe x x =+. 【例4.31】 求sin(ln )x dx ⎰解s i n (l n )x d x⎰s i n (l n )c o s (l n x x x d x=-⎰ sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰故s i n (l n )x d x⎰[s i n (l n )c o s (l n )].2xx x C =-+ *【例4.32】 设sin n n dxI x =⎰,试建立递推公式.解 221sin sin sin n nx xI dx x-+=⎰ 22cos sin n n xdx I x-=+⎰2111cos ()1sin n n xd I n x --=-+-⎰ 2211cos 11sin 1n n n x I I n x n ---=--+--211cos 21sin 1n n x n I n x n ---=-+-- *【例4.33】 求22,()n n dxI x a =+⎰其中n 为正整数.解 当1n >时,有21221221222212(1)()()()()n n n n n dx x x dx xI n x a x a x a x a ----==+-=++++⎰⎰ 2212212222112(1)2(1)()()()()n n n n n a xn dx n I a I x a x a x a ---⎡⎤+--=+--⎢⎥+++⎣⎦⎰ 122211(23)2(1)()n n n xI n I a n x a --⎡⎤∴=+-⎢⎥-+⎣⎦1221arctan dx xI C x a a a==++⎰.【例4.34】 已知()f x 的一个原函数是2,x e -求().xf x dx '⎰解 原式()()()xdf x xf x f x dx ==-⎰⎰2222()(21)x x x x e e C x e C ---'=-+=--+注 这类问题一般直接用分部积分,而不是先求出()f x '后代原积分求解. 4.有理函数的积分【例4.35】 求 (1)422331.1x x dx x +++⎰ (2)4611x dx x ++⎰ 解 (1) 原式=23213arctan .1x dx dx x x C x =+=+++⎰⎰ (2) 原式=422611x x x dx x -+++⎰22232332()113()11()x x dx dx x x -+=+++⎰⎰ 321arctan 31dx x x =++⎰31arctan arctan 3x x C =++. 注 拆项求解有理函数的积分是一种简洁有行之有效的方法. 【例4.36】 求2(1)dxx x +⎰.解 设221(1)1A Bx C x x x x +=+++,去分母221(1),A x Bx Cx =+++比较多项式系数得1,1,0A B C ==-=.故22211ln ln(1)2(1)1dx xdx dx x x C x x x x =-=-++++⎰⎰⎰l .C =+ 注 比较系数法可以与赋值法同时使用.如上例代入0x =直接可得 1.A = 【例4.37】 求42.21dxx x -+⎰解 设422222111121(1)(1)(1)(1)A B C Dx x x x x x x x ==+++-+-+-+-+上式两边乘以21(1),1,4x x C -→=并令得; 上式两边乘以21(1),1,4x x +→-=并令得D ;上式两边乘以,,0x x →+∞=并令得A +B ; 用0x =代入上式得1,2B A -=从而11,44A B =-=. 原式1111ln .4111x C x x x ⎛+⎫=+-+ ⎪--+⎝⎭幂次较高的有理函数积分一般采用降幂或恒等变形凑微分法.【例4.38】 求 (1)91088x dx x x -+⎰ (2)7.(1)dx x x +⎰ (3)2100.(1)x dxx -⎰ 解 (1) 原式998(8)x dx x x -=+⎰9899(8)(8)x x dx x x -=+⎰9999912(8)9(8)x x dx x x -+=+⎰92ln 8ln 9x x C =+-+ (2) 原式6777771(1)7(1)x dx dx x x x x ==++⎰⎰ 77771()7(1)dx dx x x =-+⎰⎰771ln 71x C x =++. 变形方法不唯一,也可为()()87777111711dx x dx d x x x x x ----+==-+++⎰⎰⎰71ln 17x C -=-++ (3) 原式210099100111(1)(1)(1)(1)x x d x dx dx x x x -++-==-----⎰⎰⎰ 989999121(1)(1)99(1)dx dx x x x =-+---⎰⎰979899121.97(1)98(1)99(1)C x x x =-++--- 5.三角有理式的积分形如(sin ,cos )R x x dx ⎰的积分,原则上令tan 2xt =利用万能公式做变换.但计算中由于此法复杂,通常采用三角恒等式变形.【例4.39】 求sin 1sin cos xdx x x ++⎰ 解1 令tan 2xt =,原式=22(1)(1)tdt t t ++⎰2111t dt dt t t +=-++⎰⎰21arctan ln(1)ln 12t t t C =++-++ =ln sec ln 1tan 222x x xC +-++. 解2 原式=22sin cos 222sin cos 2cos 222x x dx x x x +⎰sin2sin cos22xdx x x =+⎰(sin cos )(cos sin )22222sin cos22x x x x x d x x +--=+⎰ (sin cos )222sin cos22x x d x x x +=-+⎰ =ln sin cos 222x x xC -++. 解3 原式分子分母同乘1(sin cos )x x -+, 原式=sin (1sin cos )2sin cos x x x dx x x ---⎰1(1sin cos )2cos x x dx x--=-⎰11sin 1ln ln cos 41sin 22x x x C x -=--+++ 【例4.40】 求 (1) 21cos dx x +⎰ (2) 1tan dx x +⎰ (3) cos()4sin cos x dx x xπ+⎰ 解 (1)原式222tan .cos (1sec )2tan dx d x C x x x ===+++⎰⎰ (2) 原式 cos 1cos sin cos sin cos sin 2cos sin xdx x x x xdxx x x x++-==++⎰⎰ 1(cos sin )22cos sin x d x x x x +=++⎰1ln cos sin .22x x x C =+++ (3)原式=sin )2sin cos x x dx x x -⎰11()sin cos dx x x=-⎰csc cot ln sec tan )x x x x C =++++. 形如sin cos mx nxdx ⎰,sin sin mx nxdx ⎰或cos cos mx nxdx ⎰的积分,一般用积化和差公式先将被积函数变形后再积分.【例4.41】 求sin sin 2sin 3x x xdx ⎰. 解 sin sin 2sin 3x x x ()1cos3cos sin 32x x x =-- 1(sin 3cos3cos sin 3)2x x x x =--1111sin 6sin 4sin 22222x x x ⎛⎫=-++ ⎪⎝⎭()1sin 6sin 4sin 24x x x =-++原式()1sin 6sin 4sin 24x x x dx =-++⎰111cos 6cos 4cos 224168x x x C =+++ 形如s i n c o s s i n c o sa xb xdx c x d x ++⎰的三角函数有理式的积分可采用拆项的方法,拆成(s i n c o s )(s i n c o s )s i n c o s s i n c o s A c x d x B c x d x d x d x c x d x c x d x+++++⎰⎰通过待定系数法确定的,A B 值.【例4.42】 求3sin 2cos 2sin 3cos x x dx x x ++⎰解 设3sin 2cos (2sin 3cos )(2sin 3cos )x x x x x x αβ'+=+++, 解得 125,1313αβ==- . 原式12(2sin 3cos )125ln 2sin 3cos .132sin 3cos 1313x x dx dx x x x C x x '+=-=-+++⎰⎰ 形如(sin ,cos )R x x dx ⎰的三角有理式的积分,若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设cos t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x -=-,则可设sin t x =; 若满足(sin ,cos )(sin ,cos )R x x R x x --=,则可设tan t x =.【例4.43】 求 (1)254cos (2cos )sin xdx x x ++⎰ (2) 66sin 2sin cos xdx x x +⎰解 (1) 令cos t x =,则原式=2254(2)(1)t dt t t +-+-⎰2222(2)(1)(2)(1)t t dt t t ++-=-+-⎰2211(2)dt dt t t =---+⎰⎰111ln 212t C t t -=++++111c o sln 2s 21cos x C co x x-=++++. (2) 令2tan ,sec ,t x dt xdx ==则原式2242222131()24tdt dt C t t t ⎛⎫===+-+-+⎰⎰21r c t a .C =+ 6.无理函数的积分形如(R x dx ⎰;(,0.R x dx a ≠⎰的积分,分别令2222(),,,()dt b a ad bc tt x dx dt a ct a ct --===--其中设0ad bc -≠;,t = 1,mn mn t b mn x dx t dt a a--==【例4.44】 求 (1)(2)(3).dx解 (1)令t =则321,3x t dx t =-=原式22211333(ln(1)).1112t dt t t dt t t C t t t ⎛⎫-==+=-+++ ⎪+++⎝⎭⎰⎰3ln(1.C =+++(2)原式=, 令t =3211x t =+-原式=3322dt t C -=-+⎰.C = (3) 令65,6x t dx t dt ==,则原式211666ln .11()dt t dt C C t t t t t ⎛⎫==-=+=+ ⎪+++⎝⎭⎰⎰【例4.45】 求 (1). (2)解 (1)原式=(x x dx ⎰3211(1)32x x =-- 332211(1)33x x C =--+.(2) 原式==332221(31)(21)93x x C =++++.注 当分母是无理式时,有时分母有理化会简化计算. 7.综合杂例【例4.46】 设1,01(ln ),1x f x x x ≤≤⎧'=⎨<<+∞⎩求(),(ln )f t f x .解 令ln t x =,则1,0(),0tt f t e t -∞<<⎧'=⎨<<+∞⎩,,0(),0t t C t f t e D t +-∞<≤⎧=⎨+<<+∞⎩, 由()f t 的连续性得1C D =+,因此有1,0(),0tt D t f t e D t ++-∞<≤⎧=⎨+<<+∞⎩, l n 1,01(l n ),1x D t f x x D x ++<≤⎧=⎨+<<+∞⎩.【例4.47】 设()f x 的导函数为()f x '开口向下的二次抛物线,且()f x 的极小值为2,极大值为6,试求()f x .解()(2),(0)f x ax x a '=-<,所以32()(2)()3x f x ax x dx a x C =-=-+⎰由(0)0,(2)0f f ''==,且(0)0,(2)0f f ''''><,故()f x 的极小值为(0)2,f C ==极大值322(2)(2)26,33f a a =-+=⇒=-,所以32()32f x x x =-++.【例 4.48】设()F x 是()f x 的一个原函数,(1)4F =,若当0x >时有()()f x F x =,试求()f x .解 由于()F x 是()f x 的一个原函数,()()F x f x '=()()F x F x '=()()F x dF x =⎰,221()2F x C =+,又(1)4F =,所以0C =,()F x =故 ()f x =.【例4.49】 设()y y x =是由22()y x y x -=所确定的隐函数,求2dx y ⎰.解 令y tx =,则由22()y x y x -=可得211,(1)(1)x y t t t t ==--,3223(1)tdx t t -+=- 原式=23t dt t -+⎰32ln t t C =-+32ln y yC x x=-+. 注 这种隐函数的不定积分一般通过变量代换将x 和y 用另一个变量表示,然后求解.三、综合测试题综合测试题A 卷一、填空题(每小题4分,共20分) 1、函数2x为 的一个原函数.2、已知一阶导数 (())f x dx '=⎰,则(1)f '= 3、若()arctan xf x dx x C =+⎰,则1()dx f x ⎰=4、已知()f x 二阶导数()f x ''连续,则不定积分()xf x dx ''⎰=5、不定积分cos cos ()xxd e ⎰=二、选择题(每小题4分,共20分)1、已知函数2(1)x +为()f x 的一个原函数,则下列函数中是()f x 的原函数的是 [ ] (A) 21x - (B) 21x + (C) 22x x - (D) 22x x + 2、已知()sin x x e f x dx e x C =+⎰,则()f x dx ⎰= [ ] (A) sin x C + (B) cos x C + (C) cos sin x x C -++ (D) cos sin x x C ++ 3、若函数ln xx 为()f x 的一个原函数,则不定积分()xf x dx '⎰= [ ] (A)1ln x C x -+ (B) 1ln xC x ++ (C)12ln x C x -+ (D) 12ln xC x++ 4、已知函数()f x 在(,)-∞+∞内可导,且恒有()f x '=0,又有(1)1f -=,则函数()f x = [ ](A) -1 (B) -1 (C) 0 (D) x5、若函数()f x 的一个原函数为ln x ,则一阶导数()f x '= [ ](A)1x (B) 21x- (C) ln x (D) ln x x 三、解答题 1、(7分)计算22(1)dxx x +⎰. 2、(7分)计算1x dx e +⎰.3、(7分)计算 321x dx x +⎰. 4、(7分)计算 254dxx x ++⎰.5、(8分)计算.6、(7分)计算23xx e dx ⎰.7、(8分)已知222(sin )cos tan 01f x x xx '=+<< ,求()f x .8、(9分)计算 cos ax I e bxdx =⎰.综合测试题A 卷答案 一、填空题1、2ln 2x2 3、241124x x C ++ 4、()()xf x f x C '-+5、cos (cos 1)x ex C -+二、选择题1、D2、C3、C4、A5、B 三、解答题 1、1arctan x C x --+ 2、ln(1)x x e C -++ 3、2211ln(1)22x x C -++4、11ln 34x C x +++5、C6、2221()2x x x e e C -+7、21()ln(1)2f x x x C =---+8、22(sin cos )axe b bx a bx C a b +++综合测试题B 卷一、填空题(20分)1、不定积分(sin d =⎰.2、已知()(),f x dx F x C =+⎰则()()F x f x dx =⎰ .3、若21(ln ),2f x dx x C =+⎰则()f x dx =⎰ .4、1)dx +=⎰ .5、2ln x dx =⎰.二、选择题(25分) 1、若2(),f x dx xC =+⎰则2(1)xf x dx -=⎰ [ ](A) 222(1)x C --+ (B) 222(1)x C -+ (C) 221(1)2x C --+ (D) 221(1)2x C -+ 2、设()2,x f x dx x C =++⎰则()f x '= [ ](A) 2l n 22x x C ++ (B) 2l n 21x + (C) 22l n 2x (D) 22l n 21x + 3、11dx x =-⎰ [ ](A )ln 1x C -+ (B ) l n (1)x C -+ (C )ln (1)x C -++ (D )ln 1x C --+4、存在常数A 、B 、C ,使得21(1)(2)dx x x =++⎰ [ ](A )2()12A B dx x x +++⎰ (B ) 2()12Ax Bx dx x x +++⎰ (C )2()12A Bx C dx x x ++++⎰ (D )2()12Ax B dx x x +++⎰5、若xe 在(,)-∞+∞上的不定积分是()F x C +,则 [ ](A) ,0(),0x x e C x F x e C x -⎧+≥=⎨-+<⎩(B) ,0()2,0x xe C x F x e C x -⎧+≥=⎨-++<⎩ (C) ,0()2,0x x e x F x e x -⎧≥=⎨-+<⎩ (D) ,0(),0x x e x F x e x -⎧≥=⎨-<⎩三、计算题(48分) 1、(7分)求积分2arccos x . 2、(7分)求.3、(7分)2(1)dx x x +⎰. 4、(01,数二,8分)求.5、(8分)求积分1sin cos dx x x ++⎰.6、(06,数二,11分)求arcsin xxe dx e⎰. 四、(7分)计算2ln sin sin x dx x ⎰综合测试题B 答案 一、填空题1、C 2、2()2F x C + 3、xe C + 4、335222353x x x x C +--+ 5、2ln 2x x x C -+ 二、选择题1、C2、C3、D4、C5、C 三、计算题1、2arccos 1102ln10xC -+ 2、1)C + 3、221ln .21x C x ++ 4、C =+ 5、ln 1tan 2x C =++6、解 arcsin x x e dx e⎰arcsin arcsin x x x x x xe de e e e ---=-=-+⎰⎰a r c s i n x xxee --=-+a r c s i n xx xe e --=-- s e cx t e -=令s e c t a n a r c s i n t a n xxt tdt e e t-=--⎰a r c s i n s e c x xe e tdt -=--⎰a r c s i n l n s e c t a n x xe e t t C -=--++a r c s i n l n 1x x x e e e C--=--+ 四、 2ln sin sin xdx x ⎰cot ln sin cot x x x x C =-⋅--+.。
第四章 不定积分一、学习要求1、理解原函数与不定积分的概念及性质。
2、掌握不定积分的第一类换元法、第二类换元法及分部积分法。
二、练习1.在下列等式中,正确的结果是( C ). A.'()()f x dx f x =⎰ B.()()df x f x =⎰ C.()()d f x dx f x dx =⎰D.[()]()d f x dx f x =⎰ 2.若ln x 是函数()f x 的一个原函数,则()f x 的另一个原函数是( A ); A. ln ax B.1ln ax a C.ln x a + D.21(ln )2x 3.设()f x 的一个原函数是2x e -,则()f x =( B );A. 2x e -B. 22x e --C. 24x e --D. 24x e -4.''()xf x dx =⎰( C ).A.'()xf x C +B. '()()f x f x C -+C. '()()xf x f x C -+D. '()()xf x f x C ++.5.将化为有理函数的积分,应作变换x =( D ). A. 3t B. 4t C. 7t D. 12t 6.dx = 1/7 ()73d x -,2cos 2dx x = 1/2 ()tan 2d x ,219dx x =+1/3 ()arctan3d x ; 7. 已知(31)x f x e '-=,则()f x =133x e c ++.8.设()f x 是可导函数,则'()d f x x ⎰为()f x C +.9.过点(1,2)且切线斜率为34x 的曲线方程为41y x =+10.已知()cos xf x dx x C =+⎰,则()f x =sin x x- 11.求下列不定积分解: (1) 2232tan 1tan tan tan 1sin 3x dx xd x x c x ==+-⎰⎰ (2) 22arctan 11x xx x x x x dx e dx de e c e e e e -===++++⎰⎰⎰ 5342(3)tan sec tan sec sec x xdx x xd x ⋅=⋅⎰⎰222(sec 1)sec sec x xd x =-⋅⎰ ()642sec 2sec sec sec x x x d x =-+⎰753121sec sec sec 753x x x c =-++(4)(1(11(1)xdx dxx==--+⎰⎰322(1)3x x c=-+++2,1,t x t==-()23212122(1)13t tdt t t dt t t ct-⎛⎫==-=-+⎪+⎝⎭⎰⎰()31213x c=-++322(1)3x x c=-+++(5)2222111(1)ln(1)1212xdx d x x cx x=+=++++⎰⎰(6)3332ln ln ln ln333x x xx xdx xd x d x==⋅-⎰⎰⎰2333111ln ln3339xx x dx x x x c=⋅-=-+⎰(7)()22111ln(1) 111x xdx dx dx x dx x c x x x-=+=-+++ +++⎰⎰⎰⎰21ln(1)2x x x c=-+++(8)2arctan arctan2xx xdx xd=⎰⎰22arctan arctan22x xx d x=-⎰2221arctan221x xx dxx=-⋅+⎰2211arctan1221xx dxx⎛⎫=--⎪+⎝⎭⎰21arctan arctan222x xx x c=-++(9) ⎰212,,33tt x dx tdt-===-则原式222122()(1)339tt t dt t t dt-=⋅-=--⎰⎰33245522122()()99352745t tt t dt t c t c=--=--+=-++⎰(10)22223221222222x xdx dx dxx x x x x x++=+++++++⎰⎰⎰222211(22)(1)ln 22arctan(1)22(1)1d x x d x x x x C x x x =++++=+++++++++⎰⎰12.曲线过点2(,3)e ,且在任意点处的切线斜率等于该点的横坐标的倒数,试求此曲线方程.解:令所求曲线为()y f x =,任意点为(,)x y ,由已知条件可得: '1()k f x x =切线=, 则 1()ln f x dx x C x ==+⎰; 又因为曲线过点2(,3)e ,可得 23ln 1e C C =+⇒=, 所以此曲线方程为()ln 1f x x =+.13.选做题:求-.x e dx ⎰解:当0x ≥时,--1,x x x e dx e dx e C -==-+⎰⎰ 当0x <时,-2,x x x e dx e dx e C ==+⎰⎰()12,0;,0x x e C x F x e C x -⎧-+≥⎪∴=⎨+<⎪⎩ ()()()1200lim lim 0,2.x x F x F x F C C C +-→→==∴==+ ()2,0,0x x e C x F x e C x -⎧-++≥⎪=⎨+<⎪⎩ 14. 选做题(1)若x e -是()f x 的原函数,则()2ln x f x dx ⎰= ,若()f x 是xe -的原函数,则()lnf x dx x ⎰=. (2) ;(3)4sin xdx ⎰.解:(1) ()()x x f x e e --'==-,则()ln 1ln x f x e x-=-=-, ()22211ln 2x f x dx x dx xdx x c x =-⋅=-=-+⎰⎰⎰. 又()x f x e -'=,则()x x f x e dx e C --==-+⎰,()ln 111ln xf x e C C x-=-+=-+ ()112ln 11ln f x C dx dx C x C x x x x ⎛⎫=-+=++ ⎪⎝⎭⎰⎰.(2) ((222arcsin arcsin C ====+⎰⎰⎰((22C==+⎰(3)()241cos 2sin 4x xdx dx -=⎰⎰()212cos 2cos 24x x dx -+=⎰1cos 412cos 213cos 422cos 24422x x x dx x dx +⎛⎫-+ ⎪⎛⎫⎝⎭==-+ ⎪⎝⎭⎰⎰ 31cos 431sin 4cos 2sin 28288432x x x dx x x c ⎛⎫=-+=-++ ⎪⎝⎭⎰ 15.选做题已知()sin ,01,0,x x x f x e x ≥⎧⎨-<⎩=求()1f x dx -⎰.解:(1) ()()()1sin 1,1sin ,011,0,1,1,x x x x x x f x f x e x e x -⎧-≥≥⎧⎪-⎨⎨-<-<⎪⎩⎩== 当1x ≥时,()()()11sin 1cos 1f x dx x dx x C -=-=--+⎰⎰ 当1x <时, ()()11211x x f x dx e dx e x C ---=-=-+⎰⎰-----精心整理,希望对您有所帮助!。
同济第七版高等数学教材同济大学出版社出版的《高等数学(第七版)》是一本广泛应用于中国高等学校的数学教材。
本教材系统地介绍了高等数学的基本概念、理论和方法,涵盖了微积分、线性代数、多变量统计以及常微分方程等内容。
该教材以其精准的推导和详细的解释,成为广大数学学习者的良师益友。
第一章微积分微积分是高等数学的核心内容。
本章主要介绍函数的极限、导数和微分,并深入探讨了它们的性质和应用。
学习者通过本章的学习能够掌握函数极限的计算方法,理解导数的几何和物理意义,以及在实际问题中应用导数求解最优化问题、曲线的切线和法线等。
第二章近似计算与误差分析在科学计算和实际问题求解中,近似计算是非常重要的。
本章介绍了泰勒公式、函数的近似计算和误差估计等内容。
学习者通过本章的学习能够灵活运用泰勒公式进行函数的逼近计算,理解误差的来源和计算方法,并能够在实际问题中进行误差分析。
第三章微分学应用微分学是数学的一个重要分支,也是物理学、工程学等应用科学的基础。
本章主要介绍微分学在实际问题中的应用,包括相关变化率、微分方程和最优化等内容。
学习者通过本章的学习能够熟练应用微分学方法解决实际问题,如最优化问题、变化率问题等。
第四章不定积分不定积分是微积分的重要内容,通过不定积分可以求出函数的原函数。
本章重点介绍了不定积分的基本性质和计算方法,包括换元积分法、分部积分法和有理函数的积分等。
学习者通过本章的学习能够掌握不定积分的计算方法,能够灵活运用积分法解决实际问题。
第五章定积分定积分是微积分的核心概念之一,它表示曲线下面的面积或曲线的弧长。
本章主要介绍了定积分的定义、性质和计算方法,包括定积分的几何和物理意义以及应用。
学习者通过本章的学习能够理解定积分的概念和性质,并能够灵活运用定积分解决实际问题。
第六章微分方程微分方程是描述自然界中变化规律的一种数学工具。
本章介绍了常微分方程的基本理论和常见的解法,包括一阶常微分方程和二阶常系数线性齐次微分方程等内容。
第四章 不定积分前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法.第1节 不定积分的概念与性质1。
1 不定积分的概念在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为()s s t =, 则质点在时刻t 的瞬时速度表示为()v s t '=.实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t 的瞬时速度()v v t =,求出质点的位移函数()s s t =.即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.1。
1.1原函数定义1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数.例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以sin x 是cos x 在(,)-∞+∞上的一个原函数.1(ln )'(0),x x x=>所以ln x 是1x在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢?这里我们给出一个充分条件.定理 1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有()()'=F x f x .简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数.定理1的证明,将在后面章节给出。
关于原函数,不难得到下面的结论:若()()'=F x f x ,则对于任意常数C ,()+F x C 都是()f x 的原函数.也就是说,一个函数如果存在原函数,则有无穷多个.假设()F x 和()φx 都是()f x 的原函数,则[()()]0'-≡F x x φ,必有()()φ-F x x =C ,即一个函数的任意两个原函数之间相差一个常数.因此我们有如下的定理:定理2 若()F x 和()φx 都是()f x 的原函数,则()()-=F x x C φ(C 为任意常数).若()()'=F x f x ,则()+F x C (C 为任意常数)表示()f x 的所有原函数.我们称集合{}()|F x C C +-∞<<+∞为()f x 的原函数族.由此,我们引入下面的定义.1.1。
2不定积分定义2 在区间I 上,函数()f x 的所有原函数的全体,称为()f x 在I 上的不定积分, 记作()d ⎰f x x .其中⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量. 由此定义,若()F x 是()f x 的在区间I 上的一个原函数,则()f x 的不定积分可表示为()d ()=+⎰f x x F x C .注 (1)不定积分和原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素.(2)求不定积分,只需求出它的某一个原函数作为其无限个原函数的代表,再加上一个任意常数C .例1 求23d x x ⎰.解 因为32()3,'=x x 所以233d x x x C =+⎰.例2 求sin cos d x x x ⎰.解 (1)因为2(sin )2sin cos ,'=x x x 所以21sin cos d sin 2x x x x C =+⎰.(2)因为2(cos )2cos sin ,'=-x x x 所以21sin cos d cos 2x x x x C =-+⎰. (3)因为(cos 2)2sin 24sin cos ,'=-=-x x x x 所以1sin cos d cos 24=-+⎰x x x x C . 例3 求1d x x⎰. 解 由于0x >时,1(ln )'=x x ,所以ln x 是1x在(0,)+∞上的一个原函数,因此在(0,)+∞内,1d ln x x C x=+⎰.又当0x <时,[]1ln()x x '-=,所以ln()-x 是1x在(,0)-∞上的一个原函数,因此在(,0)-∞内,1d ln()=-+⎰x x C x.综上,1d ln x x C x=+⎰.例4 在自由落体运动中,已知物体下落的时间为t ,求t 时刻的下落速度和下落距离. 解 设t 时刻的下落速度为()=v v t ,则加速度d ()d va t g t==(其中g 为重力加速度). 因此()()d d v t a t t g t gt C ===+⎰⎰,又当0t =时,(0)0=v ,所以0C =.于是下落速度()=v t gt . 又设下落距离为()=s s t ,则ds()dt=v t .所以 21()()d d 2===+⎰⎰s t v t t gt t gt C , 又当0t =时,(0)0=s ,所以0C =.于是下落距离21()2=s t gt . 1。
1。
3不定积分的几何意义设函数()f x 是连续的,若()()F x f x '=,则称曲线()y F x =是函数()f x 的一条积分曲线.因此不定积分()d ()f x x F x C =+⎰在几何上表示被积函数的一族积分曲线.积分曲线族具有如下特点(如图4.1):(1)积分曲线族中任意一条曲线都可由其中某一条平移得到;(2)积分曲线上在横坐标相同的点处的切线的斜率是相同的,即在这些点处对应的切线都是平行的.图4—1例5 设曲线通过点(1,2),且其上任一点处的切线斜率等于这点横坐标的两倍,求此曲线方程.解 设曲线方程()=y f x ,曲线上任一点(,)x y 处切线的斜率d 2d yx x=,即()f x 是2x 的一个原函数.因为22d =+⎰x x x C ,又曲线过(1,2),所以21C =+,1C =.于是曲线方程为21y x =+.1.2 基本积分公式由定义可知,求原函数或不定积分与求导数或求微分互为逆运算,我们把求不定积分的运算称为积分运算.既然积分运算与微分运算是互逆的,那么很自然地从导数公式可以得到相应的积分公式.例如,因11x μμ+'⎛⎫ ⎪+⎝⎭=x μ,所以11x x dx C μμμ+=++⎰(1μ≠-). 类似可以得到其他积分公式,下面一些积分公式称为基本积分公式. ①d k x kx C =+⎰(k 是常数); ②1d 1x x x C μμμ+=++⎰(1μ≠-); ③1d ln x x C x=+⎰; ④sin d cos x x x C =-+⎰; ⑤cos d sin x x x C =+⎰; ⑥221d sec d tan cos x x x x C x==+⎰⎰; ⑦221d csc d cot sin x x x x C x==-+⎰⎰; ⑧sec tan d sec x x x x C =+⎰; ⑨csc cot d csc x x x x C =-+⎰; ⑩21d arctan C 1x x x =++⎰,21d cot 1x arc x C x -=++⎰;⑪arcsin x x C =+,arccos x x C =+⎰;⑫e d e x x x C =+⎰;⑬d ln xxa a x C a=+⎰;以上13个基本积分公式,是求不定积分的基础,必须牢记.下面举例说明积分公式②的应用.例6求不定积分x x ⎰.解xx ⎰52d x x =⎰512512x C +=++7227x C =+. 以上例子中的被积函数化成了幂函数x μ的形式,然后直接应用幂函数的积分公式②求出不定积分.但对于某些形式复杂的被积函数,如果不能直接利用基本积分公式求解,则可以结合不定积分的性质和基本积分公式求出一些较为复杂的不定积分.1。
3 不定积分的性质根据不定积分的定义,可以推得它有如下两个性质.性质1 积分运算与微分运算互为逆运算(1)()d ()'⎡⎤=⎣⎦⎰f x x f x 或d ()d ()d ⎡⎤=⎣⎦⎰f x x f x x . (2)()d ()'=+⎰F x x F x C 或d ()()=+⎰F x F x C 性质2 设函数()f x 和()g x 的原函数存在,则[]()()d ()d ()d +=+⎰⎰⎰f x g x x f x x g x x .易得性质2对于有限个函数的都是成立的.性质3 设函数()f x 的原函数存在,k 为非零的常数,则()d =⎰kf x x ()d ⎰k f x x .由以上两条性质,得出不定积分的线性运算性质如下:[]()()d ()d ()d +=+⎰⎰⎰kf x lg x x k f x x l g x x .例7 求23d 1⎛⎫+⎝⎰x x. 解23d 1⎛⎫+⎝x x213d 21x x x =-+⎰3arctan x =2arcsin x -C +.例8 求221d (1)+++⎰x x x x x .解 原式=22(1)d (1)+++⎰x x x x x 211d 1x x x ⎛⎫=+ ⎪+⎝⎭⎰3arctan 3x x x C =-++. 例9 求2e d x x x ⎰.解 原式(2e)d xx =⎰1(2e)ln 2exC =+2e 1ln 2x x C =++. 例10 求1d 1sin x x+⎰.解 1d 1sin x x+⎰()()1sin d 1sin 1sin xx x x -=+-⎰21-sin d cos x x x=⎰ 2(sec sec tan )d =-⎰x x x x tan sec x x C =-+.例11 求2tan d x x ⎰.解 2tan d x x ⎰=2(sec 1)d tan -=-+⎰x x x x C .注 本节例题中的被积函数在积分过程中,要么直接利用积分性质和基本积分公式,要么将函数恒等变形再利用积分性质和基本积分公式,这种方法称为基本积分法.此外,积分运算的结果是否正确,可以通过它的逆运算(求导)来检验,如果它的导函数等于被积函数,那么积分结果是正确的,否则是错误的.下面再看一个抽象函数的例子:例12 设22(sin )cos '=f x x ,求()f x ?解 由222(sin )cos 1sin '==-f x x x ,可得()1'=-f x x , 从而21()2=-+f x x x C .习题4—11.求下列不定积分.(1)41d x x⎰; (2)x ⎰; (3); (4)()2d ax b x -⎰;(5)22d 1x x x +⎰;(6)4223d 1x x x x +++⎰;(7)x ; (8)22d 1x x ⎛⎫+⎝⎰; (9)32e d x x x⎛⎫- ⎪⎝⎭⎰; (10)()22d 1xxx+⎰;(11)x ;(12)2tan d x x ⎰; (13)2sin d 2x x ⎰; (14)cos 2d cos sin x xx x-⎰;(15)21cos d 1cos 2xx x++⎰;(16)()sec sec tan d x x x x +⎰;(17)2352d 3x x x x ⋅-⋅⎰; (18)x .2.已知某产品产量的变化率是时间t 的函数,()=+f t at b (a ,b 为常数).设此产品的产量函数为()p t ,且(0)0=p ,求()p t .3.验证12arcsin(21)arccos(12)=-+=-+x C x C 3C =. 4.设33()d f x x x C '=+⎰,求()f x ?第2节 换元积分法和不定积分法2。