4不定积分
- 格式:ppt
- 大小:766.51 KB
- 文档页数:33
第四章 不定积分内容:不定积分的概念和性质、换元积分法、分部积分法、几种特殊类型函数的积分、简单无理函数的积分、积分表的使用。
要求:理解不定积分的概念和性质,掌握不定积分的基本公式、换积分法和分部积分法,理解有理函数的积分,了解简单无理函数的积分重点:不定积分的概念和性质;不定积分的基本公式;换元积分法、分部积分法、 难点:凑微分、三角代换法、分部积分法到目前为止,我们已经学会了对函数作如下运算:四则、复合、求导. 在四则运算中, 加减法互为逆运算, 积商也互为逆运算; 我们能将简单函数复合, 也能将复合函数分解. 于是, 我们自然会想到这点: 既然我们能求得任一函数的导数, 我们当然也想知道谁的导数是一个任意给定的函数呢? 即研究求导的逆运算.例: 对于变速直线运动, 若已知位移函数)(t s s =, 则即时速度)(t s v '=, 反之, 若已知)(t v v =, 能否求得位移函数?§1. 不定积分的概念与性质一、原函数与不定积分的概念1. 原函数定义: 设)(),(x F x f 在区间I 上有定义, 若∀x ∈I, 有)()(x f x F =' (或dx x f x dF )()(=)则称)(x F 为)(x f 在I 上的原函数.例: -sinx 是cosx 的原函数, x ln 是x1的原函数. 我们自然会提出三个问题:(1) 是不是任一函数都有有原函数. (2) 一个函数的原函数是否唯一.(3) 若不唯一, 不同的原函数间的关系. 逐一回答:(1) 定理: 若)(x f 在I 上连续, 则存在)(x F , 使得)()(x f x F ='. (2) 常数的导数为0. 若)()(x f x F =', 则())()(x f C x F ='+. (3) 若)()()(x G x f x F '==', 则()0)()(='-x F x G . 回忆中值定理得到的重要结果, 可得:Cx F x G Cx F x G +==-)()()()(综合(2), (3), 得出结论: 若)(x F 是)(x f 的一个原函数, 则 1°所有的)(x F +C 也是)(x f 的原函数. 2°)(x f 的任一原函数也写成)(x F +C.即})({C x F +(C 为任意常数)是)(x f 的所有原函数的集合. 命名之. 2. 不定积分定义: 函数)(x f 的全体原函数称为)(x f 的不定积分, 记作⎰dx x f )(.若)()(x f x F =', 则⎰dx x f )(=)(x F +C.⎰: 积分符号; )(x f 被积函数; dx x f )(被积表达式;x : 积分变量; C: 积分常量. 例1.C x xdx C x dx x +=+=⎰⎰sin cos ,4143例2. 证明:C x dx x +=⎰ln 1.证一: ⎩⎨⎧<->=0)ln(0ln ln x x x xx()⎪⎪⎩⎪⎪⎨⎧<-->='0101ln x xx x x证二: 2ln ln x x =为简便, 记C x dx +=⎰ln 1.(曲线族中任意一条曲线都可由另一条曲线经过上下平移而得到, 表现在图形上, 即: 所有平行于y 轴的虚线被相同的两条积分曲线所截得的长度都相同.)3. 不定积分与导数、微分的关系()()Cx F x dF C x F dx x F dxx f dx x f dx f dx x f +=+='=='⎰⎰⎰⎰)()(,)()()2()()(),()()1(不定积分与导数、微分互为逆运算. 注2: 导数是一个函数, 不定积分是一族函数.二、基本积分公式由导数公式,可直接得出积分公式Caa dx a C e dx e C x xdx x C x xdx x C x xdx dx x C x xdx dx x Cx xdx C x xdx Cx dx x Cx dx x Cx dx x C x dx x C kx kdx xxx x +=+=+-=⋅+=⋅+-==+==+-=+=+=-+=++=-≠++=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+ln )13()12(csc cot csc )11(sec tan sec )10(cot csc sin 1)9(tan sec cos 1)8(cos sin )7(sin cos )6(arcsin 11)5(arctan 11)4(ln 1)3()1(11)2()1(2222221μμμμ三、不定积分的运算法则[]⎰⎰⎰⎰⎰⎰±±±=±±±=dxx f dx x f dx x f dx x f x f x f dxx f k dx x kf n n )()()()()()()2()()()1(2121.例1.⎰⎰+--+dxx x xdxx e x )213114()2()cos 52()1(2 例2.()⎰⎰-=dx x xdx 1sec tan22例3. ⎰⎰+-+=+dt t t dt t t 22221111例4. ⎰⎰+=dt xx x x dt x x 222222cos sin cos sin cos sin 1§2. 换元积分法积分的许多方法都是来源于求导(微分)公式,凑微分法来源于复合函数求导公式,或者说是一阶微分形式不变性.一、第一类换元法(凑微分法)(){}()⎰⎰⎰=='=='⇒'=⋅'=+='⇒'⋅='⋅='⋅'='duu f dx x x f du u F dx x F x F d C x F dx x x f x x f u u f u u F x F x u x x u f u F xx u x)()()]([)()]([)]([)]([()()]([)()]([)()()]([)()()()(ϕϕϕϕϕϕϕϕϕϕϕϕ定理 设)(u f 有原函数,)(x u ϕ=可导,则)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='此定理的实质是将对变量x 的积分转化为对x 的函数)(x ϕ的积分.1. b ax x +=)(ϕ例1.⎰xdx 2sin 2不能对⎰xdx 2sin 直接积分, 但若令u=2x, 则可对⎰udu sin 直接积分, 只需将原积分中的“dx ”转化为“du ”即“d(2x)”.Cx C u udu x xd xdx xu +-=+-===⎰⎰⎰=2cos cos sin )2(2sin 2sin 22 熟练后可省略例2. []⎰⎰⋅++=+21)12()12sin()12sin(x d x dx x 例3. ⎰-dx x 100)45(, ⎰-dx x 23)45(若是二或三次方, 或许可以考虑二项展开, 但对于100次或是非正整数次方显然不适用.例4.⎰⎰+→+dx x dx x a 222111例5.⎰⎰-→-dx xdx xa 222111一般地, ⎰⎰++=+)()(1)(b ax d b ax f a dx b ax f . 2.b ax x +=2)(ϕ例6. ⎰dx xe x 22 例7.⎰-dx x a x2一般地,⎰⎰++=+)()(21)(222b ax d b ax f adx b ax xf . 利用1111+++=μμμμdx x dx x , 我们常用的凑微分法有: ⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅xd f dx x fxd f dx x f dx f dx f x 2131232例8.⎰dx x x 1tan 122例9.⎰dx xe x33. 其它类型例10. ⎰⎰=dx xxxdx cos sin tan , ⎰xdx cot 例11.⎰+dx x x 21arctan把对x 积分转化为对)(x ϕ积分,即)()(x d f dx f x ϕϕ⋅→⋅',这实际上也是一个积分过程,只是这个积分较为直接明了,因此,所有积分公式都可以被考虑用于凑微分.如:⎰⎰⋅=⋅x d f dx f x ln 14. 综合性凑微分(先变形, 再凑) ① 代数变形例12. ⎰-dx x x2例13. C ax ax a dx x a C a x ax a dx a x +-+=-++-=-⎰⎰ln 211,ln 2112222例14.⎰⎰++=++dx x dx x x 2)3(1116122例15.⎰⎰-+=--dx x x dx x x )1)(3(12312总之: ⎰⎪⎩⎪⎨⎧→→→++arctanln12不可分解因式可分解因式dx c bx ax 例16.⎰⎰+-=--dx x dx xx 22)1(21211例17.⎰⎰+=dx x xdx 212cos cos 2例18. C x x x dx x xdx +++=⎪⎭⎫ ⎝⎛+=⎰⎰832sin 414sin 321212cos cos 24例19. ⎰⎰--=x d x xdx cos )cos 1(sin 23例20. ⎰⎰--=x xd x xdx x cos cos )cos 1(cos sin2223例21.⎰⎰+=dx xx xdx x 22sin 8sin 3cos 5sin总结之:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222例22.⎰xdx csc()Cx x xx C x x C x x C x x x d x dx xx dx x xdx ++-=+-=+-+-=+-+-=++-=--===⎰⎰⎰⎰)cot ln(csc sin cos 1ln cos 1cos 1ln 21cos 1cos 1ln 211cos 1cos ln 21cos cos 11sin sin sin 1csc 2222 Cx x xdx C x x xdx ++-=++=⎰⎰)cot ln(csc csc )tan ln(sec sec 总结: 三角函数微分、积分公式记忆: (1) 弦函数↔ 弦函数; 切函数↔ 割函数 (2) 正函数→ 正号; 余函数→ 负号例23.⎰⎰⎰-=--=+dx x xdx x x dx x 22cos sin 1sin 1sin 1sin 11在积分过程中, 分母中的正减号是积分的障碍.二、第二类换元法(变量置换法)定理 设)(t x ψ=是单调且可导的函数,0)(≠'t ψ. 又设)()]([)(t t f t g ψψ'=有原函数, 则[]⎰⎰-='=)(1)()]([)(x t dt t t f dx x f ψψψ.事实上:[]C t G dt t g dt t t f t d t f dxx f x t t x +=='=⋅=⎰⎰⎰⎰-==)()(1)()()()]([)]([)]([)(ψψψψψψ第二类换元的实质是将f (x )复杂式变简单或将明显不可积变为可积. 1. 三角代换例1.⎰+dx x 112Ct t tdt t t d t dxx t x ++=⋅==+⎰⎰⎰=)tan ln(sec sec sec 1)(tan sec 1112tan 2不定积分是被积变量的函数, 故需写成x 的函数. 而用反函数代入的方法显然很繁琐.1tan tan x t t x =⇒=, 即在直角三角形中, t 是一个锐角, x 是其对边, 1是其邻边.⎰⎰+++=++++=++==C x a x dx a x C x x dx x x t t )ln(1)1ln(1111cos 1sec 2222222例2.⎰-dx ax 221xCa x x C aa x a x C t t tdtt t t a d t a dxax xa t ta x +-+=+-+=++=⋅==-==⎰⎰⎰)ln()ln()tan ln(sec tan sec tan 1)sec (tan 12222cos sec 22积分公式:⎰++±=±C x a x dx a x )ln(12222例3.⎰-dx x a 2C ax a a x a x a C t t t a dt t a tdtat td adx x a ax t t a x +-⋅+=++=+===-⎰⎰⎰⎰==)(arcsin 2)cos sin (2)2cos 1(2cossin cos 22222222sin sin 2三角代换的实质:用六角形公式消去根式(或分母)中平方和、平方差.2. 根式代换例4.⎰++dx x 1211Cx x C t t dt t t t d t dxx t x t x +++-+=++-=+-+=-+=++⎰⎰⎰=+-=)121ln(12)1ln(11121111211212212例5.⎰+xx dx)1(322a x -xCt t dt t t dt t t xx t x tx +-=+-+=+=+⎰⎰⎰==arctan 661116)1(1)1(22632366例3.dx xx⎰-+11 (选讲、习题课) 法一:()dt t t t td t xxt t x ⎰⎰+=+-==-++-=2222111114)121(22 法二:()⎰⎰⎰⎰⎰+=--=-=--=--==dt t dt tt dt t t dx x x dx x x t x )sin 1(sin 1sin 1sin 1cos 111122sin 222法三:()()⎰⎰⎰⎰-+-=-+=-+=2222221121111111x d x dx xdx xx dx x x§3.分部积分法由导数的乘法公式:())()()()()()(x g x f x g x f x g x f '+'=',可知)()(x g x f 是)()()()(x g x f x g x f '+'的一个原函数,即[])()()()()()()()()()()()()()()()()()(x df x g x g x f x dg x f dx x g x f x g x f dx x g x f C x g x f dx x g x f x g x f ⎰⎰⎰⎰⎰-=⇔'-='⇒+='+' 其实质是将被积函数看作两个函数的乘积,将其中一个函数先凑到d 的后面(做一部分积分),从而变形为求另一个函数的积分.简言之,将被积表达式写成d 前面一部分,d 后面一部分,再交换前后两部分的位置.分部积分公式:⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u 例1.⎰xdx x sinx,sinx 都可以放到d 的后面去,但是,变形后的结果截然不同:前者变形为求⎰xdx xsin 2,后者变形为求⎰xdx cos ,显然选择后者.注: 选择u,v(d 前函数,d 后函数)的原则: (1)v 明显可求(2)简单比v u u v ''(即新得到的积分比原积分简单) 例2.⎰dx xe x例3. ⎰dx e x x 2例4.⎰xdx x ln 2例5. ⎰xdx ln , ⎰xdx 2ln例6. ⎰xdx arcsin例7. ⎰xdx e xsin例8. ⎰=xdx x I sec tan 2(选讲)⎰⎰⎰⎰⎰⎰⎰--=+-=-=-==⋅==xdxI x x xdx x x x xdx x x x xd x x xxd xdx x x xdxx I sec sec tan sec )1(tan sec tan sec sec tan tan sec sec tan sec tan sec tan tan sec tan 232 注2.分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx x ax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e ax ax ax ax cos sin sin cos cos sin cos sin )3(\例9.⎰dx ex例10. dx xexdx e xx⎰⎰-=22cos 1sin 2例11. dx xe dx x e xx ⎰⎰=22sin cos sin 例12. ()dx x x xdx x ⎰⎰-=1sec tan 22 例13. ⎰=dx x I )sin(ln例14.⎰+++dx xx x 221)11ln(不定积分小结一积分公式(分类分组) 1.幂函数类⎪⎩⎪⎨⎧-≠⎰⎰dx xdx x 11(μμ ⎪⎪⎩⎪⎪⎨⎧-+⎰⎰dx ax dx ax 222211⎪⎪⎩⎪⎪⎨⎧±-⎰⎰dx a x dx x a 222211 2.指数函数类⎪⎩⎪⎨⎧⎰⎰dx a dxe xx3.三角函数类⎪⎩⎪⎨⎧⎰⎰xdx xdx cos sin⎪⎩⎪⎨⎧⎰⎰x d x x d x s e c t a n⎪⎩⎪⎨⎧⎰⎰x d x x d x c s c c o t⎪⎩⎪⎨⎧⎰⎰xdx xdx 22csc sec⎪⎩⎪⎨⎧⎰⎰x d x x x d x x c s c c o t s e c t a n 二、凑微分法)()()()]([)()]([x u duu f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='常用的凑微分法有:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⋅=⋅⋅-=⋅⋅=⋅⋅=⋅+⋅=⋅xd f dx x fx d f dx x f dx f dx f x dx f dx xf b ax d f a dx f 213121)(12322⎰⎰⎰⎰⎰⎰⋅=⋅⋅⋅-=⋅⋅⋅=⋅xxdef dx f e x d f dx f x x d f dx xfcos sin ln 二、变量置换法[])()(1)()]([)]([)]([)(x t t x dt t t f t d t f dx x f -==⎰⎰⎰'=⋅=ψψψψψψ 常用代换:1. 三角代换⎰⎰⎰⎰⎰⎰====-=+=-tdtt t a f a dx a x f tdtt a f a dx x a f tdtt a f a dx x a f ta x ta x ta x tan sec )tan ()(sec )sec ()(cos )cos ()(22sec 22222tan 2222sin 222. 根式代换⎰⎰--=+=⋅=++dt t t t f anmdxb ax b ax f nm n m ab tx b ax t mn nmnm 1),(),( 三、分部积分法⎰⎰⎰⎰'-=-=='dx u v uv vdu uv udv dx v u分部积分法主要类型:dxe ax ax x e ax ax d x dxe ax ax x ax n ax n ax n ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⎰⎰⎰-sin cos sin cos cos sin )1(1\函数类型不变求导后积分后降次求导dx xax ax x n ⎰⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅ 类型趋同求导后类型不变积分后ln arctan arcsin )2(dx x d x ax ax n ⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→+幂函数1ln arctan arcsin方程二次分部积分函数类型不变求导后积分→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧⋅→⎭⎬⎫⎩⎨⎧→⎭⎬⎫⎩⎨⎧⋅⎰⎰⎰⎰dx bx bx e dx bx bx e e d bx bx dxbx bx e axax ax axcos sin sin cos cos sin cos sin )3(\ 注2:有些函数经过变形、代换后成为上述类型.注3:选择u,v(d 前函数,d 后函数)的原则:留在d 前的函数求导后变易, 进入d 的函数积分后不变难.四、特殊函数积分归类 归类1:⎰⎪⎩⎪⎨⎧→→→++arctan ln 12平方和平方差dx c bx ax 归类2:⎰⎩⎨⎧→<→>→++arcsin 0012a a dx c bx ax 三角代换 归类3:⎰⎰⎰→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⋅⋅⋅→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧→⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++积分化和差公式平方和公式并换元倍角公式降次dx Bx Ax Bx Ax Bx Ax dx x x dx x x n n n ncos cos sin sin cos sin )3(cos sin )2(cos sin )1(121222 归类4:有理函数.。
第四章不定积分§ 4.1不定积分概念微分学的基本问题是:已知一个函数,求它的导数。
但是,在科学技术领域中往往还会遇到与此相反的问题:已知一个函数的导数,求原来的函数,由此产生了积分学。
''积分'是•微分、旳逆运算一、原函数1、原函数定义我们在讨论导数的槪念时,解决了这样一个问题:已知某物体作直线运动时,路程随时间/变化的规律为S = s(t),那么,在任意时刻/物体运动的速度为V(r) = s\t)。
现在提岀相反的问题:例1 已知某物体运动的速度随时间/变化的规律为V = V(r),要求该物体运动的路程随时间变化的规律S = s(0。
显然,这个问题就是在关系式V(r) = S f(t)中,当W/)为已知时,要求$(/)的问题。
例2 已知曲线y = /(x)上任意点(x,y)处的切线的斜率为2x,要求此曲线方程,这个问题就是要根拯关系式y = 2x ,求出曲线y = /(A)。
从数学的角度来说,这类问题是在关系式F\x) = /(x)中,当函数/(x)已知时,求出函数F(x) o由此引岀原函数的槪念。
定义4.1 :设f(x)是左义在某区间/内的已知函数,如果存在一个函数F(x),对于每一点xe/,都有:F3 = f(x)或dFg = f\x) • dx则称函数F(x)为已知函数f(x)在区间/内的一个原函数例如,由于(sinx)' = cosx,所以在(YO,+S)内,sinx是cosx的一个原函数:又因为(sinx + 2)'= cosx ,所以在(Y>,+s)内,sinx+2是cosx的一个原函数:更进一步,对任意常数C,有(sinx + C)'= cosx,所以Id在(Y\+8)内,sinx+C都是cosx的原函数。
2、原函数性质(1)如果函数/(x)在区间/内连续,则/(兀)在区间/内一定有原函数;(2)若F f(x) = /(x),则对于任意常数C, F(A)+C都是/(X)的原函数“即如果/(X)在/上有原函数,则它有无穷多个原函数;(3)若F(x)和G(x)都是/(X)的原函数,则F(x) - G(x) = C,(C为任意常数)。
第四章 不定积分(A)1、求下列不定积分1)⎰2x dx 2)⎰x x dx 23)dx x ⎰-2)2( 4)dx x x ⎰+221 5)⎰⋅-⋅dx xxx 32532 6)dx x x x ⎰22sin cos 2cos 7)dx x e x)32(⎰+8)dx x x x)11(2⎰-2、求下列不定积分(第一换元法)1)dx x ⎰-3)23( 2)⎰-332xdx3)dt tt ⎰sin 4)⎰)ln(ln ln x x x dx5)⎰x x dx sin cos 6)⎰-+x x e e dx7)dx x x )cos(2⎰ 8)dx xx ⎰-4313 9)dx x x ⎰3cos sin 10)dx x x⎰--249111)⎰-122x dx 12)dx x ⎰3cos 13)⎰xdx x 3cos 2sin 14)⎰xdx x sec tan 315) dx x x ⎰+239 16)dx x x ⎰+22sin 4cos 31 17)dx x x ⎰-2arccos 2110 18)dx x x x ⎰+)1(arctan3、求下列不定积分(第二换元法)1)dx xx⎰+211 2)dx x ⎰sin3)dx x x ⎰-42 4)⎰>-)0(,222a dx xa x5)⎰+32)1(x dx 6)⎰+xdx 217)⎰-+21xx dx 8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdx xs ⎰ 2)⎰xdx arcsin3)⎰xdx x ln 24)dx x e x ⎰-2sin 25)⎰xdx x arctan 2 6)⎰xdx x cos 27)⎰xdx 2ln 8)dx x x 2cos 22⎰5、求下列不定积分(有理函数积分)1)dx x x ⎰+332)⎰-++dx x x x 1033223)⎰+)1(2x x dx(B) 1、一曲线通过点)3,(2e ,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
第四章不定积分讲授内容:§4-1不定积分的概念与性质教学目的与要求:1、理解不定积分的概念,理解不定积分与微分之间的关系.2、掌握不定积分的性质,会用常见不定积分公式和不定积分性质求一些不定积分.3、熟练掌握常用积分公式.教学重难点:重点——理解的概念与性质;熟练掌握常用积分公式.难点——不定积分的公式熟练掌握。
教学方法:讲授法教学建议:1、加深对原函数、不定积分的理解.2、对15个积分公式要进行大量练习。
3、求不定积分一定注意不能漏C.学时:2学时教学过程:第二章我们研究了如何求一个函数的导函数问题,本章将讨论它的反问题,即要寻求一个可导函数,使它的导函数等于已知函数.这是积分学的基本问题之一.一原函数与不定积分的概念1.定义:如果在区间I上,函数F(x)和f(x),使得:F′(x)=f(x)或dF(x)=f(x)dx,x∈I。
称F(x)为f(x)(或f(x)dx)在区间I上的原函数。
'=,则cos x是sin x的一个原函数.如:(sin)cosx x1(ln )x x '=,1x 是ln x 的一个原函数,问ln 2x 是否是1x的原函数。
2. 定理(原函数的存在定理):连续函数必有原函数。
即:如果f (x )在I 上连续,则在I 上必有F (x ),使得:F ′(x )=f (x ). x ∈I .注:①初等函数在定义区间上必有原函数,但原函数并非都是初等函数.②函数在区间上连续只是在区间上有原函数的充分条件,不连续的函数也可能有原函数。
3. 两个原函数的关系如果F(x)为f(x)在区间I上的一个原函数,则F(x)+C为f(x)的原函数。
因为[F(x)+C]′=f(x),如果F(x)和G(x)为f(x)的两个原函数,则有F(x)=G(x)+C.因为[F(x)—G(x)]′=0 F(x)=G(x)+C.4.定义:在区间I上,函数f(x)的带有任意常数项的原函数称为f (x)(或f(x)dx)在I上的不定积分,记为: xx(.f d)即∫f(x)dx=F(x)+C.其中∫为积分符号,f(x)为被积函数,f(x)dx为被积表达式,x为积分变量.注:①不定积分∫f (x )dx 可以表示f (x )的任意一个原函数。
. 1 .第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数).4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。
不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='.. 2 .例2 设C xdx x f +=⎰2sin 2)(,求)(x f . 解 积分运算与微分运算互为逆运算,所以2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰.例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以C C x f dx x f x +=+='⎰2ln 2)()(.例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13.例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin .例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分.C x dx x dx xdx xxx +===⋅⎰⎰⎰-+15261511533115332615.. 3 .例7 求不定积分⎰++++dx xx x x x 32313. 解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln .例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分.⎰⎰=-dxxdx x 2sin 212cos 11 ⎰=xdx 2csc 21C x +-=cot 21.例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec t an 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.⎰⎰+-=+dx x x dx x x )sec 1(sec )sec (tan2222⎰-=dx x )1sec 2(2C x x +-=t a n2.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan .. 4 .例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分⎰⎰++--+=+dx x x x x x x dx x x )1(1)1(124442224⎰⎪⎭⎫⎝⎛++-=dx x xx2241111C x xx +++-=arctan 1313.例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(. (曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx xx +=+⎰322)(arctan 311)(arctan ; 2)()C e dx e x x ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xe e e C e +≠+='++111)1ln(, 计算结果不正确,即()C e dx ex x++≠+⎰1ln 11.. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21.. 6 .注 由于被积函数中含有x t a n ln ,表明0t a n >x ,故x d x d xt a nln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) ⎰+⎪⎪⎭⎫⎝⎛+-+=)ln 1(ln 11ln 1x d x x C x x ++-+=2123)ln 1(2)ln 1(32.2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x C x x ++-+=101102)1(1011)1(1021. 例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2. 解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) C x +--=22)1(21.例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1.. 7 .例18 计算不定积分⎰+dx x x )1(124.【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111 ⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+ 3111a r c t a n 3C x x x=-+-+. 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 1ln 244tC t =++ 661ln 244x C x =++. 分部积分⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分.目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,. 8 .则2t x =,tdt dx 2=,⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=t d t t t arcsin arcsin 2⎰--=dttt t t 212arcsin 222arcsin (1)t t t =+-Ct t t +-+=212arcsin 2C x x x +-+=12arcsin 2.解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2⎰--=dt tt t t 212arcsin 2C t t t +-+=212a r c s i n 2C x xx +-+=12a r c s i n 2.例 21 已知)(x f 的一个原函数是2x e-,求⎰'dx x f x )(.【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故⎰⎰=')()(x xdf dx x f x ⎰-=dx x f x xf )()(()C ee x x x+-'=--22C e e x x x +--=--2222.. 9 .例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,)1()(+='t e t t f .⎰+=dt e t t f t )1()(⎰⎰+=tdt tde t22t dt e te tt+-=⎰C t e te tt ++-=22,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成23332()()2x x x x x x x x x x -+-+-++-,把分式化为多项式与真分式的和542233221x x x x x x x x x x+-+-=+++--; 再将真分式232x x x x+--化为最简分式的和,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++, 于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 322ln ln 132x x x x x C =+++-++.. 10 .例24 求不定积分⎰+-dx x x x )1(188.解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181 (换元,令8x u =) ⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81 ()C x x ++-=81ln 41||ln . 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan . 例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t+-+=+⎰ ⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116 ()Ct t t +++-=arctan 61ln 3322()3311ln 313x x ++-+=C x +++61arctan 6.。
高等数学教案第四章不定积分教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I上, 可导函数F(x)的导函数为f(x), 即对任一x∈I, 都有F '(x)=f(x)或dF(x)=f(x)dx,那么函数F(x)就称为f(x)(或f(x)dx)在区间I上的原函数.例如因为(sin x)'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为(x)'=1, 所以x是1的原函数. 2x2x提问:cos x和1还有其它原函数吗? 2x原函数存在定理如果函数f(x)在区间I上连续, 那么在区间I上存在可导函数F(x), 使对任一x ∈I 都有F '(x)=f(x).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f(x)在区间I上有原函数F(x), 那么f(x)就有无限多个原函数,F(x)+C都是f(x)的原函数, 其中C是任意常数.第二, f(x)的任意两个原函数之间只差一个常数, 即如果Φ(x)和F(x)都是f(x)的原函数, 则Φ(x)-F(x)=C (C为某个常数).高等数学课程建设组1高等数学教案第四章不定积分定义2 在区间I上, 函数f(x)的带有任意常数项的原函数称为f(x)(或f(x)dx )在区间I上的不定积分, 记作⎰f(x)dx.其中记号⎰称为积分号, f(x)称为被积函数, f(x)dx称为被积表达式, x 称为积分变量. 根据定义, 如果F(x)是f(x)在区间I上的一个原函数, 那么F(x)+C就是f(x)的不定积分, 即⎰f(x)dx=F(x)+C.因而不定积分⎰f(x)dx可以表示f(x)的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以⎰cosxdx=sinx+C.因为x是1的原函数, 所以 2x例2. 求函数f(x)=1的不定积分. x解:当x>0时, (ln x)'=1, x⎰1dx=lnx+C(x>0); x当x<0时, [ln(-x)]'=1⋅(-1)=1, -xx⎰1dx=ln(-x)+C(x<0). x合并上面两式, 得到⎰1dx=ln|x|+C(x≠0). x例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解设所求的曲线方程为y=f(x), 按题设, 曲线上任一点(x, y)处的切线斜率为y'=f'(x)=2x,,即f(x)是2x 的一个原函数.因为⎰2xdx=x2+C,高等数学课程建设组2 ⎰1dx=x+C. x高等数学教案第四章不定积分故必有某个常数C使f(x)=x 2+C, 即曲线方程为y=x 2+C.因所求曲线通过点(1, 2), 故2=1+C, C=1.于是所求曲线方程为y=x2+1.积分曲线: 函数f(x)的原函数的图形称为f(x)的积分曲线.从不定积分的定义, 即可知下述关系: d[⎰f(x)dx]=f(x), dx或 d[⎰f(x)dx]=f(x)dx;又由于F(x)是F '(x)的原函数, 所以⎰F'(x)dx=F(x)+C,或记作⎰dF(x)=F(x)+C.由此可见, 微分运算(以记号d表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)⎰kdx=kx+C(k是常数), (2)⎰xμdx=1xμ+1+C, +1(3)⎰1dx=ln|x|+C, x(4)⎰exdx=ex+C, x(5)⎰axdx=a+C, lna(6)⎰cosxdx=sinx+C,(7)⎰sinxdx=-cosx+C, (8)⎰1dx=sec2xdx=tanx+C, ⎰cos2x(9)⎰12=⎰csc2xdx=-cotx+C, sinx高等数学课程建设组3高等数学教案第四章不定积分(10)⎰1=arctanx+C, 1+x(11)⎰1=arcsinx+C, -x2(12)⎰secxtanxdx=secx+C,(13)⎰cscxcotdx=-cscx+C,(14)⎰sh x dx=ch x+C,(15)⎰ch x dx=sh x+C.例4例5 ⎰xdx=⎰x-3dx=-3+1x-3+1+C=-2x+C.111⎰x2xdx=⎰5x2dx7+1122=x+C=x2+C=2x3+C. +17725例6 ⎰dx=⎰xx-4x3dx=-4+1x3-+13+C-1=-3x3+C=-3+C. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰[f(x)+g(x)]dx=⎰f(x)dx+⎰g(x)dx.这是因为, [⎰f(x)dx+⎰g(x)dx]'=[⎰f(x)dx]'+[⎰g(x)dx]'=f(x)+g(x).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即⎰kf(x)dx=k⎰f(x)dx(k是常数, k ≠0).例7. ⎰x(x-5)dx=⎰5x2dx-725(x21-5x2)dx 5x2dx-51x2dx =⎰⎰15x2dx3=⎰⎰22 =x2-5⋅x2+C. 7332(x-1)3x-3x+3x-1=(x-3+3-1)dx 例8 ⎰dx=⎰⎰22xx2xx=⎰xdx-3⎰dx+3⎰1dx-⎰1=1x2-3x+3ln|x|+1+C. x2xx高等数学课程建设组4高等数学教案第四章不定积分例9 ⎰(ex-3cosx)dx=⎰exdx-3⎰cosxdx=ex-3sinx+C. 例10 ⎰2xexdx=⎰(2e)xdx=xx(2e)x+C=2e+C. ln(2e)1+ln22x+(1+x2)1+x+x 例11 ⎰=⎰=⎰(12+1)dx 22x(1+x)x(1+x)1+xx=⎰12dx+⎰1dx=arctanx+ln|x|+C. x1+x44(x2+1)(x2-1)+1xx-1+1 例12 ⎰=⎰=⎰dx 1+x21+x21+x2=⎰(x2-1+1dx=⎰x2dx-⎰dx+⎰11+x1+x=1x3-x+arctanx+C. 3例13 ⎰tan2xdx=⎰(sec2x-1)dx=⎰sec2xdx-⎰dx= tan x - x + C .例14 ⎰sin2x dx=⎰1-cosxdx=1⎰(1-cosx)dx 222=例15 1(x-sinx)+C. 2⎰1=4⎰12=-4cotx+C. sinxsin2cos222高等数学课程建设组5高等数学教案第四章不定积分 §4. 2 换元积分法一、第一类换元法设f(u)有原函数F(u), u=ϕ(x), 且ϕ(x)可微, 那么, 根据复合函数微分法, 有d F[ϕ(x) ]=d F(u)=F '(u)d u= F' [ϕ(x) ] dϕ(x)= F '[ϕ(x) ]ϕ'(x)d x ,所以 F '[ϕ(x)]ϕ'(x)dx= F '[ϕ(x)] dϕ(x)= F '(u)d u= d F(u)=d F[ϕ(x) ],因此⎰F'[ϕ(x)]ϕ'(x)dx=⎰F'[ϕ(x)]dϕ(x)=⎰F'(u)du=⎰dF(u)=⎰dF[ϕ(x)]=F[ϕ(x)]+C.即⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=[⎰f(u)du]u=ϕ(x)=[F(u) +C] u = ϕ(x) = F[ϕ(x)]+C.定理1 设f(u)具有原函数, u=ϕ(x)可导, 则有换元公式⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)=⎰f(u)du=F(u)+C=F[ϕ(x)]+C .被积表达式中的dx 可当作变量x的微分来对待, 从而微分等式ϕ'(x)dx =du可以应用到被积表达式中.在求积分⎰g(x)dx时, 如果函数g(x)可以化为g(x)= f[ϕ(x)]ϕ'(x)的形式, 那么⎰g(x)dx=⎰f[ϕ(x)]ϕ'(x)dx=[⎰f(u)du]u=ϕ(x).例1. ⎰2cos2xdx=⎰cos2x⋅(2x)'dx=⎰cos2xd(2x)=⎰cosudu=sinu+C=sin 2x+C .例2. ⎰3+2x=2⎰3+2x(3+2x)'dx=2⎰3+2xd(3+2x) 11111=1⎰1dx=1ln|u|+C=1ln|3+2x|+C. 2u22例3. ⎰2xexdx=⎰ex(x2)'dx=⎰exd(x2)=⎰eudu=eu+C=ex+C.例4. ⎰x-x2dx=1⎰-x2(x2)'dx=1⎰-x2dx2 22=-1⎰-x2d(1-x2)=-1⎰u2du=-1u2+C 223=-1(1-x2)2+C. 3高等数学课程建设组6 3132222高等数学教案第四章不定积分例5. ⎰tanxdx=⎰sinxdx=-⎰1dcosx cosxcosx =-⎰1du=-ln|u|+C u=-ln|cos x|+C .=-ln|coxs|+C. 即⎰tanxdx类似地可得⎰cotxdx=ln|sinx|+C.熟练之后, 变量代换就不必再写出了.例6. ⎰a+xdx=a⎰111dx1+(2a=1⎰1x=1arctanx+C. a1+()2aaaa即 n+C. ⎰a2+x2=aarcta11x例7. ⎰chx=a⎰chxx=a shx+C. aaaa例8. 当a>0时,1=111xdx=⎰dx=arcs+C. ⎰aaaxxa2-x222-(-(aa⎰即⎰1=arcsx+C. 22a-x例9. ⎰x2-a2dx=2a⎰x-a-x+a)dx=2a[⎰x-adx-⎰x+adx] 1111111=1[⎰1d(x-a)-⎰1(x+a)] 2ax-ax+a=1[ln|x-a|-ln|x+a|]+C=1ln|x-a|+C. 2a2ax+a即⎰x-a=2aln|x+a|+C.⎰x(1+2lnx)=⎰1+2lnx=2⎰dxdlnx1d(1+2lnx) 1+2lnx11x-a 例10.=1ln|1+2lnx|+C. 2高等数学课程建设组7高等数学教案第四章不定积分例11. ⎰e=2⎰ed=2⎰e3xdx 3x=2e+C. 3含三角函数的积分:例12. ⎰sin3xdx=⎰sin2x⋅sinxdx=-⎰(1-cos2x)dcosx=-⎰dcosx+⎰cos2xdcosx=-cosx+1cos3x+C. 3例13. ⎰sin2xcos5xdx=⎰sin2xcos4xdsinx=⎰sin2x(1-sin2x)2dsinx=⎰(sin2x-2sin4x+sin6x)dsinx=1sin3x-2sin5x+1sin7x+C. 357例14. ⎰cos2xdx=⎰1+cos2xdx=1(⎰dx+⎰cos2xdx) 22=1⎰dx+1⎰cos2xd2x=1x+1sin2x+C. 2424例15. ⎰cos4xdx=⎰(cos2x)2dx=⎰[1(1+cos2x)]2dx 2=1⎰(1+2cos2x+cos22x)dx 4=1⎰3+2cos2x+1cos4x)dx 422=1(3x+sin2x+1sin4x)+C 428=3x+1sin2x+1sin4x+C. 8432例16. ⎰cos3xcos2xdx=1⎰(cosx+cos5x)dx 2=1sinx+1sin5x+C. 2101dx 例17. ⎰cscxdx=⎰1dx=⎰sinx2sincos22高等数学课程建设组8高等数学教案第四章不定积分dxdtanx=ln|tanx|+C=ln |csc x -cot x |+C . =⎰=⎰2tancos2tan222xdx 即⎰csc=ln |csc x -cot x |+C .例18. ⎰secxdx=⎰csc(x+πdx=ln|csc(x+ π)-cot(x+ π)|+C 222=ln |sec x + tan x | + C.xdx 即⎰sec=ln |sec x + tan x | + C.二、第二类换元法定理2 设x =ϕ(t)是单调的、可导的函数, 并且ϕ'(t)≠0. 又设f [ϕ(t)]ϕ'(t)具有原函数F(t), 则有换元公式⎰f(x)dx=⎰f[ϕ(t)]ϕ'(t)dt=F(t)=F[ϕ-1(x)]+C.其中t=ϕ-1(x)是x=ϕ(t)的反函数.这是因为{F[ϕ-1(x)]}'=F'(t)dt=f[ϕ(t)]ϕ'(t)1=f[ϕ(t)]=f(x). dxdt例19. 求⎰2-x2dx(a>0).解: 设x=a sin t , - π<t< π, 那么a2-x2=2-a2sin2t=acost, 22dx =a cos t d t , 于是⎰a2-x2dx=⎰acost⋅acostdt=a2⎰cos2tdt=a21t+1sin2t)+C. 24因为t=arcsin22x, sin2t=2sintcost=2x⋅a-x, 所以 aaa⎰2a11a-xdx=a(t+sin2t)+C=arcsinx+1xa2-x2+C. 2a224222解: 设x=a sin t , - π<t< π, 那么 22高等数学课程建设组9高等数学教案第四章不定积分⎰a2-x2dx=⎰acost⋅acostdt2 =a2⎰cos2tdt=a21t+1sin2t)+C=aarcsinx+1xa2-x2+C. 2a224提示:2-x2=a2-a2sin2t=acost, dx=acos tdt .22提示: t=arcsinx, sin2t=2sintcost=2x⋅-x. aaa例20. 求⎰dx(a>0). x2+a2解法一: 设x=a tan t, - π<t< π, 那么 22x2+a2=2+a2tan2t=a+tan2t=a sec t , dx=a sec 2t d t , 于是⎰2dxasect=sectdt= ln |sec t + tan t |+C . =⎰⎰asectx2+a222因为sect=x+a, tant=x, 所以 aa⎰dx= ln |sec t + tan t |+C=ln(x+x2+a2)+C=ln(x+x2+a2)+C, 1aax2+a2其中C 1=C-ln a .解法一: 设x=a tan t, - π<t< π, 那么 22⎰dx=asec2tdt=sectdt=ln|sect+tant|+C ⎰asect⎰x2+a222xx+a =+)+C=ln(x+x2+a2)+C1, aa其中C 1=C-ln a .提示:x2+a2=2+a2tan2t=asect , dx=a sec 2t dt ,22提示:sect=x+a, tant=x. aa解法二: 设x=a sh t , 那么高等数学课程建设组10高等数学教案第四章不定积分⎰dx=⎰ach t=⎰dt=t+C=arshx+C ach tax2+a2 ⎛⎫ =ln x+(x)2+1⎪+C=ln(x+x2+a2)+C1, a⎝a⎭其中C 1=C-ln a .提示: x2+a2=2sh2t+a2=a ch t , dx =a ch t d t .例23. 求⎰dx(a>0). x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2x2-a2=a2sec2t-a2=a2t-1=a tan t ,于是⎰dx=⎰asecttant=⎰sectdt= ln |sec t + tan t |+C . atantx2-a222因为tant=x-a, sect=x, 所以 aa⎰dx= ln |sec t + tan t |+C =ln|x+x2-a2|+C=ln(x+x2-a2)+C, 1aax2-a2其中C 1=C-ln a .当x<a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a2=-ln(-x+x2-a2)+C=ln(-x-x2-a2)+C1,22-x-x-a=ln+C=ln(-x-x2-a2)+C1, a其中C 1=C-2ln a .综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2解: 当x>a 时, 设x=a sec t (0<t< π), 那么 2高等数学课程建设组11高等数学教案第四章不定积分⎰dx =⎰asecttant=⎰sectdt22atantx-a22 =ln|sect+tatn|+C=lnx+x-a)+C aa(+x2-a2)+C, =lnx其中C 1=C-ln a .当x<-a 时, 令x=-u , 则u>a, 于是⎰dx=-⎰du=-ln(u+2-a2)+C x2-a22-a22222-x-x-a =-ln(-x+x-a)+C=ln+C a =ln(-x-x2-a2)+C1,其中C 1=C-2ln a .提示:x2-a2=2sec2t-a2=a2t-1=atant .22x-a提示:tant=, sect=x. aa综合起来有⎰dx=ln|x+x2-a2|+C. x2-a2补充公式:(16)⎰tanxdx=-ln|cosx|+C,(17)⎰cotxdx=ln|sinx|+C,(18)⎰secxdx=ln|secx+tanx|+C,(19)⎰cscxdx=ln|cscx-cotx|+C, (20)⎰(21)⎰(22)⎰(23)⎰1=1x+C, aaa+x221=1ln|x-a|+C,2ax+ax-a1=arcsinx+C, aa2-x2 dx=ln(x+x2+a2)+C, x2+a2高等数学课程建设组12高等数学教案第四章不定积分(24)⎰dx=ln|x+x2-a2|+C. x2-a2§4. 3 分部积分法设函数u=u(x)及v=v(x)具有连续导数. 那么, 两个函数乘积的导数公式为(uv)'=u'v+uv',移项得 uv'=(uv)'-u'v.对这个等式两边求不定积分, 得⎰uv'dx=uv-⎰u'vdx, 或⎰udv=uv-⎰vdu,这个公式称为分部积分公式.分部积分过程:⎰uv'dx=⎰udv=uv-⎰vdu=uv-⎰u'vdx= ⋅⋅⋅.例1 ⎰xcosxdx=⎰xdsinx=xsinx-⎰sinxdx=x sin x-cos x+C .例2 ⎰xexdx=⎰xdex=xex-⎰exdx=xex-ex+C.例3 ⎰x2exdx=⎰x2dex=x2ex-⎰exdx2=x2ex-2⎰xexdx=x2ex-2⎰xdex=x2ex-2xex+2⎰exdx=x2ex-2xex+2ex+C =ex(x2-2x+2 )+C.例4 ⎰xlnxdx=1⎰lnxdx2=1x2lnx-1⎰x2⋅1dx 222x=1x2lnx-1⎰xdx=1x2lnx-1x2+C. 2224例5 ⎰arccosxdx=xarccosx-⎰xdarccosx=xarccosx+⎰x1 -x21- =xarccosx-1⎰(1-x2)d(1-x2)=xarccosx--x2+C. 2例6 ⎰xarctanxdx=1⎰arctanxdx2=1x2arctanx-1⎰x2⋅1dx 2221+x=1x2arctanx-1⎰(1-1dx 221+x高等数学课程建设组13高等数学教案第四章不定积分 =1x2arctanx-1x+1arctanx+C. 222例7 求⎰exsinxdx.解因为⎰exsinxdx=⎰sinxdex=exsinx-⎰exdsinx=exsinx-⎰excosxdx=exsinx-⎰cosxdex=exsinx-excosx+⎰exdcosx=exsinx-excosx+⎰exdcosx=exsinx-excosx-⎰exsinxdx,所以⎰exsinxdx=1ex(sinx-cosx)+C. 2例8 求⎰sec3xdx.解因为⎰sec3xdx=⎰secx⋅sec2xdx=⎰secxdtanx=secxtanx-⎰secxtan2xdx=secxtanx-⎰secx(sec2x-1)dx=secxtanx-⎰sec3xdx+⎰secxdx=secxtanx+ln|secx+tanx|-⎰sec3xdx,cxdx=1(secxtanx+ln|secx+tanx|)+C. 所以⎰se32例9 求In=⎰dx, 其中n为正整数. (x+a) 解 I1=⎰2dx2=1x+C; ax+aa当n>1时,用分部积分法, 有2dxxx ⎰=+2(n-1)⎰ (x+a)(x+a)(x+a)高等数学课程建设组14高等数学教案第四章不定积分 =x1a2dx, +2(n-1)[-⎰(x+a)(x+a)(x+a)x+2(n-1)(In-1-a2In), 22n-1(x+a)即 In-1=于是 In=1[x+(2n-3)In-1]. 2a(n-1)(x+a)以此作为递推公式, 并由I1=例10 求⎰edx. 1xarctan+C即可得In. aa解令x =t 2 , 则 , dx=2tdt. 于⎰edx=2⎰tetdt=2et(t-1)+C=2e(x-1)+C.⎰edx=⎰ed(x)2=2⎰xed=2⎰xdex=2xex-2⎰exdx=2xe-2e+C=2e(x-1)+C.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰f[ϕ(x)]ϕ'(x)dx=⎰f[ϕ(x)]dϕ(x)令ϕ(x)=u⎰f(u)du,⎰u(x)v'(x)dx=⎰u(x)dv(x) =u(x)v(x)-⎰v(x)du(x).哪些积分可以用分部积分法?⎰xcosxdx, ⎰xexdx, ⎰x2exdx;⎰xlnxdx, ⎰arccosxdx, ⎰xarctanxdx;⎰exsinxdx, ⎰sec3xdx.⎰2xexdx=⎰exdx2=⎰eudu= ⋅⋅⋅ ,⎰x2exdx=⎰x2dex=x2ex-⎰exdx2= ⋅⋅⋅ .高等数学课程建设组15 22高等数学教案第四章不定积分 §4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:P(x)a0xn+a1xn-1+⋅⋅⋅+an-1x+an , =Q(x)b0xm+b1xm-1+⋅⋅⋅+bm-1x+bm其中m和n都是非负整数; a0, a1, a2, ⋅⋅⋅ , an及b0, b1, b2, ⋅⋅⋅ , bm都是实数, 并且a0≠0, b0≠0. 当n<m时, 称这有理函数是真分式; 而当n≥m时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如x3+x+1=x(x2+1)+1=x+1. x2+1x2+1x2+1真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰解 x+3dx. x2-5x+6x+3⎰x-5x+6dx=⎰(x-2)(x-3)dx=⎰(x-3-x-2)dx x+365=⎰6dx-⎰5dx=6ln|x-3|-5ln|x-2|+C. x-3x-2提示: (A+B)x+(-2A-3B)x+3, =A+B=(x-2)(x-3)x-3x-2(x-2)(x-3)A+B=1, -3A-2B=3, A=6, B=-5.分母是二次质因式的真分式的不定积分:例2 求⎰解 x-2dx. x+2x+32⎰x2+2x+3dx=⎰2x2+2x+3-3x2+2x+3)dx x-212x+21=1⎰22x+2-3⎰21 2x+2x+3x+2x+3d(x2+2x+3)d(x+1)1 =⎰2 -3⎰2x+2x+3(x+1)2+()2=1ln(x2+2x+3)-3arctanx+1+C. 21(2x+2)-3x-2=1⋅x-2-3⋅1=提示: .x+2x+3x+2x+32x+2x+3x+2x+3例3 求⎰1dx. x(x-1)2高等数学课程建设组16高等数学教案第四章不定积分解⎰x(x-1)2dx=⎰[x-x-1+(x-1)2dx 1111=⎰1dx-⎰1dx+⎰12dx=ln|x|-ln|x-1|-1+C. xx-1x-1(x-1)提示: 1=1-x+x=-1+1 x(x-1)(x-1)2x(x-1)2x(x-1)2=-1-x+x+12=1-1+12. x(x-1)(x-1)xx-1(x-1)二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x、cos x表成tanx的函数, 然后作变换u=tanx: 222tanx2tanx==2u, sinx=2sinxcosx=22sec21+tan21+u2221-tan2x=1-u2. cosx=cos2x-sin2x=22sec21+u2变换后原积分变成了有理函数的积分.例4 求⎰1+sinxdx. sinx(1+cosx)2x2u2du. 1-u 解令u=tan, 则sinx=, cosx=, x=2arctan u , dx=2221+u1+u1+u2(1+2u)2du=1(u+2+1)du 于是⎰1+sinxdx=⎰sinx(1+cosx)2⎰u2u(1+1-u1+u1+u1+u21u=(+2u+ln|u|)+C=1tan2x+tanx+1ln|tanx|+C. 2242222解令u=tanx, 则 2高等数学课程建设组17高等数学教案第四章不定积分(1+2u2 ⎰1+sinxdx=⎰⋅22du 2sinx(1+cosx)2u(1+1-u1+u1+u21+u22 =1u+2u+ln|u|)+C=1⎰(u+2+1du 222u=1tan2x+tanx+1ln|tanx|+C. 42222说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如, 三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰x-1dx. x解设x-1=u, 即x=u2+1, 则⎰1+sinxdx=⎰1+sinxd(1+sinx)=ln(1+sinx)+C. cosx1⎰x-1dx=u⋅2udu=2u2⎰u2+1⎰u2+1x=2⎰(1-1)du=2(u-arctanu)+C 1+u=2(x-1-arctanx-1)+C.例6 求⎰dx. 1+x+2 解设x+2=u. 即x=u3-2, 则dx=1⋅3u2du=3u2-1+1du ⎰1++2⎰1+u⎰1+u2 =3⎰(u-1+1du=3(u-u+ln|1+u|)+C 1+u2=3x+2)2-x+2+ln|1+x+2|+C. 2例7 求⎰dx. (1+x)x 解设x=t 6, 于是dx =6t 5d t , 从而高等数学课程建设组18高等数学教案第四章不定积分 dx6t5dt=6t2=6(1-1)dt=6(t-arctant)+C=⎰(1+x)x⎰(1+t2)t3⎰1+t2⎰1+t2=6(x-arctanx)+C.例8 求⎰1+xdx. xx解设+x=t, 即x=21, 于是 xt-1-2t ⎰1+xdx=⎰(t2-1)t⋅xx(t-1)2 =-2⎰tdt=-2⎰(1+1)dt t-1t-1=-2t-ln|t-1|+C t+1=-2+x-ln+x-x+C. x+x+练习1. 求⎰dx. 2+cosx1-t2x2 解: 作变换t=tan, 则有dx=, x=dt, cos1+t221+t22dt221tdx1=⎰1+t2=2⎰⎰ =ddt⎰2t1-t2+cosx3+t31+()22+1+t23=2arctant3+C=231xtan)+C. 232. 求⎰sin5xdx. 4cosx4(1-co2sx)2sin5xsinx 解: ⎰dx=-⎰dcosx=-⎰dcosx cos4xco4sxco4sx21 =-⎰(1-+)dcosx cos2xcos4x=-cosx-3. 求⎰3x+1dx. x2-3x+221++C. 3cosx3cosx高等数学课程建设组19高等数学教案第四章不定积分解: ⎰3x+13x+174=dxdx=(-⎰(x-2)(x-1)⎰x-2x-1)dx x2-3x+211dx-4⎰dx x-2x-1=7ln|x-2|-4ln|x-1|+C.§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax+b的积分 =7⎰1.⎰dx=1ln|ax+b|+C ax+ba2.⎰(ax+b)μdx=3.⎰1(ax+b)μ+1+C(μ≠-1) a(μ+1)xdx=1(ax+b-bln|ax+b|)+C ax+ba224.⎰xdx=13[1(ax+b)2-2b(ax+b)+b2ln|ax+b|]+C ax+ba25.⎰6.⎰7.⎰8.⎰9.⎰dx=-1lnax+b+C x(ax+b)bxdx1+alnax+b+C =-x2(ax+b)bxb2xx1(ln|ax+b|+b)+C dx=(ax+b)2a2ax+bx2dx=1ax+b-2bln|ax+b|-b2)+C (ax+b)2a3ax+bdx11lnax+b+C =-x(ax+b)2b(ax+b)b2xxdx. (3x+4)2例1求⎰解: 这是含有3x+4的积分, 在积分表中查得公式x1b⎰(ax+b)2dx=a2(ln|ax+b|+ax+b)+C.高等数学课程建设组20高等数学教案第四章不定积分现在a=3、b=4, 于是x14⎰(3x+4)2dx=9ln|3x+4|+3x+4)+C. 二、含有+b的积分1.⎰ax+bdx=2ax+b)3+C 3a2.⎰x+bdx=22(3ax-2b)ax+b)3+C 15a3.⎰x2+bdx=4.⎰5.⎰2(15a2x2-12abx+8b2)ax+b)3+C 105a3xdx=2(ax-2b)+b+C 3a2+bx2dx=2(3a2x2-4abx+8b2)+b+C 15a3+b1ln+b-+C (b>0)ax+b+ 2arctanax+b+C (b<0)-b-b⎧⎪6.⎰dx=⎨x+b⎪⎩7.⎰dx=-+b-a⎰dx bx2bx+bx2+b8.⎰+bdx=+b+b⎰dx xx+b9.⎰2+bdx=-+b+a⎰dx xx2x+b三、含x2±a2的积分1.⎰2.⎰3.⎰x2+a2dx=1arctanx+C aadxx2n-3dx =+⎰(x2+a2)n2(n-1)a2(x2+a2)n-12(n-1)a2(x2+a2)n-1dx=1lnx-a+C x2-a22ax+aax+C (b>0)b x-b+C (b<0)x+b四、含有ax2+b(a>0)的积分⎧1arctandx=⎪1.⎰2⎨ax+b⎪1ln⎩2ab2.⎰xdx=1ln|ax2+b|+C ax2+b2a高等数学课程建设组21高等数学教案第四章不定积分 3.⎰4.⎰5.⎰6.⎰7.⎰x2dx=x-bdx ⎰2ax+baaax2+bdx1lnx2+C =x(ax2+b)2b|ax2+b|dxx2(ax2+b)1dx =-1-a⎰2bxbax+bdxaln|ax2+b|-1+C =x3(ax2+b)2b2x22bx2dx=x11dx+⎰(ax2+b)22b(ax2+b)2bax2+b五、含有ax2+bx+c (a>0)的积分六、含有x2+a2 (a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=arshx+C=ln(x+x2+a2)+C a1x2+a2dxx+C x2+a2)3a2x2+a2x=x2+a2+Cx2+a2x1dx=-+C x2+a2)3x2+a2x2=xx2+a2-a2ln(x+x2+a2)+C 22x2+a2x2xdx=-+ln(x+x2+a2)+C 22322x+a)x+a22dx=1lnx+a-a+C |x|xx2+a2ax22+a2dx=-x2+C ax2+a2 9.⎰x2+a2dx=xx2+a2+aln(x+x2+a2)+C 222例3求⎰dx. xx2+9dxdx=1⎰, xx2+92xx2+(322解: 因为⎰所以这是含有x2+a2的积分, 这里a=3. 在积分表中查得公式 2高等数学课程建设组22高等数学教案第四章不定积分 dx1ln2+a2-a+C. =⎰xx2+a2a|x|x2+(3)2-3dx+C=1lnx2+9-3+C. 于是⎰=1⋅2ln|x|32|x|xx2+923七、含有x2-a2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰7.⎰8.⎰dx=xarch|x|+C=ln|x+x2-a2|+C 1ax2-a2|x|dxx=-+C x2-a2)3a2x2-a2xdx=x2-a2+C 22x-ax1dx=-+C x2-a2)3x2-a2x2dx=xx2-a2+a2ln|x+2-a2|+C 22x2-a2x2xdx=-+ln|x+x2-a2|+C x2-a2)3x2-a2dx=1arccosa+C |x|xx2-a2ax222dx=x2-a+C ax2-a29.⎰2-a2dx=xx2-a2-aln|x+x2-a2|+C 222八、含有2-x2(a>0)的积分1.⎰2.⎰3.⎰4.⎰5.⎰6.⎰dx=arcsinx+C a2-x2dxx=-+C a2-x2)3a22-x2xdx=2-x2+C 22-xx1dx=+C a2-x2)32-x2x2dx=-x2-x2+a2arcsinx+C 22a2-x2x2xdx=-arcsinx+C aa2-x2)32-x2高等数学课程建设组23高等数学教案第四章不定积分 7.⎰8.⎰22dx=1lna--x+C |x|x2-x2ax222dx=-2-x+C ax2-x229.⎰a2-x2dx=x2-x2-aarcsinx+C 22a九、含有ax2+bx+c(a>0)的积分十、含有±x-a或x-a)(x-b)的积分 x-b十一、含有三角函数的积分1.⎰secxdx=ln|secx+tanx|+C2.⎰cscxdx=ln|cscx-cotx|+C3.⎰secxtanxdx=secx+C4.⎰cscxcotxdx=-cscx+C5.⎰sin2xdx=x-1sin2x+C 246.⎰cos2xdx=x+1sin2x+C 247.⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx nn8.⎰cosnxdx=1cosn-1xsinx+n-1⎰cosn-2xdx nn9.⎰sinaxcosbxdx=-1cos(a+b)x-1cos(a-b)x+C 2(a+b)2(a-b)1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)10.⎰sinaxsinbxdx=-11.⎰cosaxcosbxdx=1sin(a+b)x+1sin(a-b)x+C 2(a+b)2(a-b)atanx+bdx2=arctan+C (a2>b2) 12.⎰2222a+bsinxa-b-b高等数学课程建设组24高等数学教案第四章不定积分atanx+b-2-a2dx=213.⎰ln+C (a2<b2) a+bsinx2-a2atan+b+2-a2214.⎰dxa+barctan(a-btanx)+C (a2>b2) =2a+bcosxa+ba-ba+b2a+b+C (a2<b2) a+bb-atanx+dxa+bln14.⎰=2a+bcosxa+bb-atanx-2例2求⎰dx. 5-4cosxdx2a+barct(a-btax)+C (a2>b2). a-ba+b25+(-4)5-(-4)x)+C arct(ta5-(-4)5+(-4)2解: 这是含三角函数的积分. 在积分表中查得公式 =⎰a+bcoxsa+bdx2这里a=5、b=-4, a 2>b2, 于是 =⎰5-4coxs5+(-4)=2arctan(3tanx)+C. 32例4 求⎰sin4xdx.解: 这是含三角函数的积分. 在积分表中查得公式⎰sinnxdx=-1sinn-1xcosx+n-1⎰sinn-2xdx, ⎰sin2xdx=x-1sin2x+C. nn24这里n=4, 于是⎰sin4xdx=-1sin3xcosx+3⎰sin2xdx=-1sin3xcosx+3x-1sin2x)+C. 444424高等数学课程建设组25。
学习资料收集于网络,仅供参考1 1)1、求下列不定积分 1) dx 3) (x _2)2dx 5) 7)第四章不定积分xx23-52 ,dx3x (2ex 3)dx x2、求下列不定积分(第一换元法) 1)(3 _2x)3dx 3 5 7)xcos(x 2)dx9)sin x cos xdx11)2x2-113) sin 2xcos3xdx15)—X102arccosx17)—x3、求下列不定积分(第二换元法)dxx d x 2(A)2)4)6)8)dx2「 X2dx1 xcos2xJ 2 i2dx cos xsin x2)dx32 -3x4)dxx In xln(In x)6)8)dx x . x e e10) . ------------ 2dx 丁9 —4x 2 12)cos 3 xdx14) tan 3 xsecxdx16)3cos 2x 4sin218)册喻'dx *x(1+x)■2) sin - xdx-dx x学习资料收集于网络,仅供参考2x4)------------- dx, (a 0)、a - x4、求下列不定积分(分部积分法) 1) xSnxdx 2) arcs in xdx3)x 2 In xdx 4)_2x .x , e sin dx25) x 2 arcta nxdx 6) x 2cosxdx7)In 2xdx8)2 2xx cos dx25、求下列不定积分(有理函数积分)3,dx3)x(x 2 1)(B)1、一曲线通过点(e 2,3),且在任一点处的切线斜率等于该点的横坐标的倒数,线的方程。
132、 已知一个函数F (x)的导函数为 ----------- ,且当X = 1时函数值为,试求此函数。
U1—X 223、证明:若f (x)dx 二 F (x) • c ,贝U1f (ax b)dx F (ax b) c,(a = 0)。
asin x4、 设f (x)的一个原函数为 ,求xf (x)dx 。