教案4-不定积分new
- 格式:doc
- 大小:1.09 MB
- 文档页数:19
微积分不定积分教案第一章:不定积分的概念与性质教学目标:1. 理解不定积分的概念;2. 掌握不定积分的性质;3. 学会计算基本的不定积分。
教学内容:1. 不定积分的定义;2. 不定积分的符号表示;3. 不定积分的性质;4. 基本不等式的积分;5. 基本三角函数的积分。
教学活动:1. 引入不定积分的概念,引导学生理解不定积分表示的是一个函数的积累效果;2. 讲解不定积分的符号表示,让学生熟悉积分符号;3. 通过示例演示不定积分的性质,如线性函数的积分是线性函数的常数倍,指数函数的积分是指数函数的倒数等;4. 引导学生掌握基本不等式的积分公式,如\( \int x^n dx = \frac{x^{n+1}}{n+1} + C \);(n ≠-1);5. 教授基本三角函数的积分公式,如\( \int \sin x dx = -\cos x + C \),\( \int \cos x dx = \sin x + C \) 等;6. 进行课堂练习,巩固所学内容。
作业布置:1. 练习计算基本不等式的积分;2. 练习计算基本三角函数的积分;3. 完成课后习题。
第二章:换元积分法教学目标:1. 理解换元积分法的概念;2. 掌握换元积分法的步骤;3. 学会运用换元积分法计算不定积分。
教学内容:1. 换元积分法的定义;2. 换元积分法的步骤;3. 常用换元积分法;4. 换元积分法的应用。
教学活动:1. 引入换元积分法,让学生理解通过变量替换简化积分过程;2. 讲解换元积分法的步骤,如选择合适的换元变量,构造新的函数等;3. 介绍常用的换元积分法,如代数换元法、三角换元法等;4. 通过示例演示换元积分法的应用,如计算\( \int \sqrt{1+x^2} dx \) 等;5. 进行课堂练习,巩固所学内容。
作业布置:1. 练习运用换元积分法计算不定积分;2. 完成课后习题。
第三章:分部积分法教学目标:1. 理解分部积分法的概念;2. 掌握分部积分法的步骤;3. 学会运用分部积分法计算不定积分。
不定积分教案范文一、教学目标:1.熟练掌握不定积分的概念和性质。
2.能够运用基本积分公式求不定积分。
3.能够运用换元法、分部积分法、有理函数积分法等方法求解不定积分。
4.能够运用不定积分的性质解决实际问题。
二、教学内容:1.不定积分的基本概念和性质。
2.基本积分公式及其运用。
3.换元法求不定积分。
4.分部积分法求不定积分。
5.有理函数积分法求不定积分。
6.不定积分的应用。
三、教学过程:1.不定积分的基本概念和性质:不定积分是微积分中的重要内容,是函数的一个全体定义域上的原函数集合。
具体来说,设函数 f(x) 在区间 [a, b] 上连续,则函数 F(x)在区间 [a, b] 上的不定积分是 f(x) 的一个原函数,记作∫f(x)dx=F(x)+C,其中 F(x) 称为 f(x) 的一个原函数,C 为任意常数。
不定积分具有以下性质:(1)积分的线性性质:∫[af(x)+bg(x)]dx=a∫f(x)dx+b∫g(x)dx;(2)积分和求导的逆关系:如果F(x)是f(x)的一个原函数,则F'(x)=f(x);(3)换元积分法:设 F(x) 是 f(x) 的一个原函数,g(x) 是可导函数,则∫f[g(x)]g'(x)dx=F[g(x)]+C;(4)分部积分法:设 F(x) 和 G(x) 分别是 f(x) 和 g(x) 的原函数,则∫f(x)g'(x)dx=F(x)g(x)-∫F'(x)g(x)dx。
2.基本积分公式及其运用:(1)常数函数积分:∫kdx=kx+C,其中 k 为常数。
(2)幂函数积分:∫x^n dx=(n+1)x^(n+1)/(n+1)+C,其中 n 为任意实数,n ≠ -1(3)指数函数积分:∫e^xdx=e^x+C。
(4)三角函数积分:a. ∫sinxdx=-cosx+C;b. ∫cosxdx=sinx+C。
(5)倒数函数积分:∫1/xdx=ln,x,+C。
第四章 不定积分§4-1 不定积分的概念与性质一、不定积分的概念1.原函数定义定义1:如果在区间I 上,可导函数()F x 的导数为()f x ,即对任一xI ,都有()()F x f x 或()()dF x f x dx ,则称()F x 为()f x 在区间I 上的一个原函数。
例:(sin )cos x x ,则sin x 是cos x 的一个原函数;1(sin 1)(sin )(sin 3)cos 2x xx x ,则都是cos x 的原函数。
2.原函数性质定理1:如果()f x 在区间I 上连续,则在该区间原函数一定存在。
定理2:如果()F x 是()f x 的一个原函数,则()F x C 是()f x 的全体原函数,且任一原函数与()F x 只差一个常数。
例:验证2211cos 2,sin 2,cos 233x x x 都是sin 2x 的原函数 证:2211(cos 2)sin 233(sin 2)sin 2(cos 2)sin 2x x x x xx,则三个函数都是sin 2x 的原函数3.不定积分定义定义2:()f x 的全体原函数称为()f x 的不定积分,记作()f x dx ,其中称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量。
说明:如果()F x 是()f x 在区间I 上的一个原函数,则()F x C 就是()f x 的不定积分,即()()f x dxF x C例1:求23x dx解:因为32()3x x ,所以3x 是23x 的一个原函数则233x dx x C例2:求1dx x解:当0x时,1(ln )x x当0x 时,11ln()x xx 所以1 ln ||(0)dx x C xx4.不定积分几何意义在相同横坐标的点处切线是平行的,切线斜率都为()f x ,可由()yF x 沿y 轴平移得到。
例:一条积分曲线过点(1,3),且平移后与231y x x 重合,求该曲线方程解:设2()31f x x x C由于曲线过(1,3) 则3131C ,2C2()31f x xx二、不定积分性质性质1:[()()]()()f x g x dx f x dx g x dx性质2:()(0)()0(0)kf x dx k kf x dxdxC k性质3:(())(),()()f x dx f x f x dx f x C三、基本积分表(1)kdx kx C (k 是常数) (2)111ααx dxx C α(3)1ln ||dx x C x (4)x xe dx e C (5)ln x xa a dxC a(6)sin cos xdxxC(7)cos sin xdx x C (8)221sec tan cos dx xdx x C x(9)221csc cot sin dx xdx x C x (10)sec tan sec x xdx xC(11)csc cot csc x dx xC (12)21arctan 1dxx C x(13)21arcsin 1dx x C x例1:求51dx x解:55154111514dx x dxx CC x x例2:求x xdx解:313522223512x x xdx x dxCx C例3:求3(sin )xx dx解:433(sin )sin cos 4x x x dx xdxx dxxC例4:求2(1)x dx x解:22(1)211(2)x x x dx dx x dx xx x2122ln ||2x xdx dxdx xx C x注:根式或多项式函数需化成αx 形式,再利用公式。
46第四章 不定积分一、学习目的与要求1、加深理解原函数与不定积分概念,熟悉不定积分的有关性质。
2、熟记不定积分的基本公式。
3、熟练掌握不定积分的三种基本解法(分解法、换元法和分部积分法)。
4、掌握有理函数、三角函数有理式的积分。
5、会求简单无理函数的不定积分。
二、学习重点不定积分的换元法与分部积分法三、内容提要1、原函数与不定积分的概念 若),()(x f x F ='则称)()(x f x F 是的一个原函数,若 )()(x f x F 是的一个原函数,则)(x f 的原函数的一般表达式为C x F +)((C 为任意常数)。
)(x f 的原函数的一般表达式称为)(x f 的不定积分,记作⎰dx x f )(,即⎰+=C x F dx x f )()(2、基本性质(下设β,a 为常数)(1)⎰⎰⎰+=+dx x g dx x f a dx x g x af )()()()((ββ (2);)())(()())((dx x f dx x f d x f dx x f =='⎰⎰或⎰⎰+=+='.)()()()(C x f x df C x f dx x f 或3、基本积分公式(下设0>a )(1)),1(11-≠++=+⎰a C a x dx x a a(2)⎰+=,||ln 1C x dx x(3),C e dx e x x +=⎰ (4),ln /C a a dx a x x +=⎰(5)⎰+-=,cos sin C x xdx (6)⎰+=,sin cos C x xdx (7),tan sec cos 122C x xdx dx x +==⎰⎰(8)⎰⎰+-==C x xdx dx xcot csc sin 122(9)⎰+-=,|cos |ln tan C x xdx (10)⎰+=,|sin |ln cot C x xdx (11)⎰++=,|tan sec |ln sec C x x xdx (12)⎰+-=,|cot csc |ln csc C x x xdx (13)⎰+=,sec tan sec C x xdx x (14)⎰+-=,csc cot csc C x xdx x47(15)⎰+=+,arctan 1122C a xa dx xa (16)⎰+=-,arcsin122C axdx x a (17)⎰+-+=-,ln 21122C x a x a a dx x a (18)⎰+±+=±,||ln 12222C a x x dx a x(19)⎰+=,C chx shxdx (20)⎰+=.C shx chxdx 4、基本积分法(I )分项积分法 ⎰⎰⎰+=+),()()()]()([为常数βββa dx x g dx x f a dx x g x af (II )凑微分法(第一换元法) 若⎰+=)(,)()(x C x F dx x f ϕ且连续,则⎰⎰+=='.))(()())(()())((C x F x d x f dx x x f ϕϕϕϕϕ(III )换元法(第二换元法) 若)(x f 连续,)(t x ϕ=有连续导数,⎰⎰+='=≠',)()())(()(,0)(C t G dt t t f dx x f x ϕϕϕ且则C x G dx x f +=⎰-))(()(1ϕ(IV )分部积分法 若⎰)()(,)(),(x du x v x v x u 可导存在,则⎰⎰-=).()()()()()(x du x v x v x u x dv x u5、几类初等函数的积分(I )有理函数⎰dx x R x R )()(的积分一般方法:假分式化为整式与真分式之和,真分式化为最简式:),4(,)(,)(22N n q p q px x B Ax a x A nn ∈<+++-之和. (II )三角函数⎰dx x x R x x R )cos ,(sin )cos ,(sin 的积分通常通过适当代换化为有理函数的积分,常用的变换:令2tanxt =(万能代换), x t x t x t tan ,sin ,cos ===等。
第四章 不定积分教学目的: 1、 理解原函数概念、不定积分的概念。
2、 掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、 会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、 不定积分的概念;2、 不定积分的性质及基本公式;3、 换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§4. 1 不定积分的概念与性质一、原函数与不定积分的概念定义1 如果在区间I 上, 可导函数F (x )的导函数为f (x ), 即对任一x ∈I , 都有F '(x )=f (x )或dF (x )=f (x )dx ,那么函数F (x )就称为f (x )(或f (x )dx )在区间I 上的原函数.例如 因为(sin x )'=cos x , 所以sin x 是cos x 的原函数.又如当x ∈(1, +∞)时,因为xx 21)(=', 所以x 是x 21的原函数. 提问:cos x 和x21还有其它原函数吗? 原函数存在定理 如果函数f (x )在区间I 上连续, 那么在区间I 上存在可导函数F (x ), 使对任一x ∈I 都有F '(x )=f (x ).简单地说就是: 连续函数一定有原函数.两点说明:第一, 如果函数f (x )在区间I 上有原函数F (x ), 那么f (x )就有无限多个原函数, F (x )+C 都是f (x )的原函数, 其中C 是任意常数.第二, f (x )的任意两个原函数之间只差一个常数, 即如果Φ(x )和F (x )都是f (x )的原函数, 则 Φ(x )-F (x )=C (C 为某个常数).定义2 在区间I 上, 函数f (x )的带有任意常数项的原函数称为f (x )(或f (x )dx )在区间I 上的不定积分, 记作⎰dx x f )(.其中记号⎰称为积分号, f (x )称为被积函数, f (x )dx 称为被积表达式, x 称为积分变量.根据定义, 如果F (x )是f (x )在区间I 上的一个原函数, 那么F (x )+C 就是f (x )的不定积分, 即⎰+=C x F dx x f )()(.因而不定积分dx x f )(⎰可以表示f (x )的任意一个原函数.例1. 因为sin x 是cos x 的原函数, 所以C x xdx +=⎰sin cos .因为x 是x21的原函数, 所以C x dx x+=⎰21.例2. 求函数xx f 1)(=的不定积分. 解:当x >0时, (ln x )'x1=, C x dx x+=⎰ln 1(x >0); 当x <0时, [ln(-x )]'xx 1)1(1=-⋅-=, C x dx x+-=⎰)ln( 1(x <0). 合并上面两式, 得到C x dx x+=⎰||ln 1(x ≠0). 例3 设曲线通过点(1, 2), 且其上任一点处的切线斜率等于这点横坐标的两倍, 求此曲线的方程.解 设所求的曲线方程为y =f (x ), 按题设, 曲线上任一点(x , y )处的切线斜率为y '=f '(x )=2x ,,即f (x )是2x 的一个原函数.因为 ⎰+=C x xdx 22,故必有某个常数C 使f (x )=x 2+C , 即曲线方程为y =x 2+C .因所求曲线通过点(1, 2), 故2=1+C , C =1.于是所求曲线方程为y =x 2+1.积分曲线: 函数f (x )的原函数的图形称为f (x )的积分曲线.从不定积分的定义, 即可知下述关系: ⎰=)(])([x f dx x f dxd , 或 ⎰=dx x f dx x f d )(])([;又由于F (x )是F '(x )的原函数, 所以⎰+='C x F dx x F )()(,或记作 ⎰+=C x F x dF )()(.由此可见, 微分运算(以记号d 表示)与求不定积分的运算(简称积分运算, 以记号⎰表示)是互逆的. 当记号⎰与d 连在一起时, 或者抵消, 或者抵消后差一个常数.二、基本积分表(1)C kx kdx +=⎰(k 是常数), (2)C x dx x ++=+⎰111μμμ, (3)C x dx x+=⎰||ln 1, (4)C e dx e x x +=⎰, (5)C aa dx a x x +=⎰ln , (6)C x xdx +=⎰sin cos ,(7)C x xdx +-=⎰cos sin , (8)C x xdx dx x +==⎰⎰tan sec cos 122, (9)C x xdx dx x+-==⎰⎰cot csc sin 122,(10)C x dx x+=+⎰arctan 112, (11)C x dx x +=-⎰arcsin 112, (12)C x xdx x +=⎰sec tan sec ,(13)C x dx x +-=⎰csc cot csc ,(14)C x dx x +=⎰ch sh ,(15)C x dx x +=⎰sh ch .例4⎰⎰-=dx x dx x 331C x C x +-=++-=+-21321131. 例5 ⎰⎰=dxx dx x x 252C x ++=+1251251C x +=2772C x x +=372. 例6 ⎰⎰-=dx x x x dx 343C x ++-=+-134134C x +-=-313C x+-=33. 三、不定积分的性质性质1 函数的和的不定积分等各个函数的不定积分的和, 即⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([.这是因为, ])([])([])()(['+'='+⎰⎰⎰⎰dx x g dx x f dx x g dx x f =f (x )+g (x ).性质2 求不定积分时, 被积函数中不为零的常数因子可以提到积分号外面来, 即 ⎰⎰=dx x f k dx x kf )()((k 是常数, k ≠0).例7. ⎰⎰-=-dx x x dx x x )5()5(21252 ⎰⎰-=dx x dx x 21255⎰⎰-=dx x dx x 21255 C x x +⋅-=232732572. 例8 dx x x x dx xx x x dx x x )133(133)1(222323-+-=-+-=-⎰⎰⎰ C x x x x dx xdx x dx dx x +++-=-+-=⎰⎰⎰⎰1||ln 3321113322.例9 ⎰⎰⎰-=-xdx dx e dx x e x x cos 3)cos 3(C x e x +-=sin 3.例10 C e C e e dx e dx e x x x x x x ++=+==⎰⎰2ln 12)2ln()2()2(2. 例11 dx xx dx x x x x dx x x x x )111()1()1()1(122222++=+++=+++⎰⎰⎰ C x x dx x dx x++=++=⎰⎰||ln arctan 1112. 例12 dx x x x dx x x dx x x ⎰⎰⎰++-+=++-=+222242411)1)(1(1111 ⎰⎰⎰⎰++-=++-=dx xdx dx x dx x x 222211)111( C x x x ++-=arctan 313. 例13 ⎰⎰⎰⎰-=-=dx xdx dx x dx x 222sec )1(sec tan= tan x - x + C .例14 ⎰⎰⎰-=-=dx x dx x dx x )cos 1(212cos 1 2sin 2 C x x +-=)sin (21. 例15 C x dx x dx xx +-==⎰⎰cot 4sin 142cos 2sin 1222.§4. 2 换元积分法一、第一类换元法设f (u )有原函数F (u ), u =ϕ(x ), 且ϕ(x )可微, 那么, 根据复合函数微分法, 有d F [ϕ(x ) ]=d F (u )=F '(u )d u = F ' [ϕ(x ) ] d ϕ(x )= F '[ϕ(x ) ]ϕ'(x )d x ,所以 F '[ϕ(x )]ϕ'(x )dx = F '[ϕ(x )] d ϕ(x )= F '(u )d u = d F (u )=d F [ϕ(x ) ],因此 ⎰⎰'='')()]([)()]([x d x F dx x x F ϕϕϕϕ⎰⎰='=)()(u dF du u F C x F x dF +==⎰)]([)]([ϕϕ.即 )(])([)()]([)()]([x u du u f x d x f dx x x f ϕϕϕϕϕ=⎰⎰⎰=='=[F (u ) +C ] u = ϕ(x ) = F [ϕ(x )]+C .定理1 设f (u )具有原函数, u =ϕ(x )可导, 则有换元公式⎰⎰⎰+=+==='C x F C u F du u f x d x f dx x x f )]([)()()()]([)()]([ϕϕϕϕϕ .被积表达式中的dx 可当作变量x 的微分来对待, 从而微分等式ϕ'(x )dx =du 可以应用到被积表达式中.在求积分⎰dx x g )(时, 如果函数g (x )可以化为g (x )= f [ϕ(x )]ϕ'(x )的形式, 那么⎰dx x g )()(])([)()]([x u du u f dx x x f ϕϕϕ=⎰⎰='=.例1. ⎰⎰'⋅=dx x x xdx )2(2cos 2cos 2⎰=)2(2cos x xdC u udu +==⎰sin cos =sin 2x +C .例2. dx x x dx x ⎰⎰'++=+)23(23121231⎰++=)23(23121x d x C u dx u +==⎰||ln 21121C x ++=|23|ln 21. 例3. ⎰⎰⎰⎰=='=du e x d e dx x e dx xe u x x x )()(222222C e C e x u +=+=2.例4. 22222121)(1211dx x dx x x dx x x ⎰⎰⎰-='-=- C u du u x d x +-=-=---=⎰⎰2321223121)1(121 C x +--=232)1(31.C u du u+-=-=⎰||ln 1 =-ln|cos x |+C .即 C x xdx +-=⎰|cos |ln tan .类似地可得C x xdx +=⎰|sin |ln cot .熟练之后, 变量代换就不必再写出了.例6. dx ax a dx x a ⎰⎰+=+2222)(1111C ax a a x d ax a +=+=⎰arctan 1)(1112. 即 dx x a ⎰+221C a xa +=arctan 1. 例7. C ax a a x d a x a dx a x +==⎰⎰sh ch ch . 例8. 当a >0时,⎰⎰-=-dx a x a dx x a 222)(1111C a x a x d a x +=-=⎰arcsin )(112. 即 dx x a ⎰-221C a x +=arcsin . 例9. ⎰⎰+--=-dx a x a x a dx a x )11(21122]11[21⎰⎰+--=dx a x dx a x a ])(1)(1[21⎰⎰++---=a x d ax a x d a x a C a x a x a ++--=|]|ln ||[ln 21C ax a x a ++-=||ln 21. 即 dx a x ⎰-221C a x ax a ++-=||ln 21. 例10. ⎰⎰⎰++=+=+xx d x x d x x dx ln 21)ln 21(21ln 21ln )ln 21( C x ++=|ln 21|ln 21.xC e x +=332. 含三角函数的积分:例12. ⎰⎰⋅=xdx x xdx sin sin sin 23⎰--=x d x cos )cos 1(2⎰⎰+-=x xd x d cos cos cos 2C x x ++-=3cos 31cos . 例13. ⎰⎰=x xd x xdx x sin cos sin cos sin 4252⎰-=x d x x sin )sin 1(sin 222⎰+-=x d x x x sin )sin sin 2(sin 642C x x x ++-=753sin 71sin 52sin 31. 例14. dx x xdx ⎰⎰+=22cos 1cos 2)2cos (21⎰⎰+=xdx dx ⎰⎰+=x xd dx 22cos 4121C x x ++=2sin 4121. 例15. dx x xdx 224)(cos cos ⎰⎰=⎰+=dx x 2)]2cos 1(21[ ⎰++=dx x x )2cos 2cos 21(412 ⎰++=dx x x )4cos 212cos 223(41 C x x x +++=)4sin 812sin 23(41 C x x x +++=4sin 3212sin 4183. 例16. ⎰⎰+=dx x x xdx x )5cos (cos 212cos 3cos C x x ++=5sin 101sin 21. 例17. ⎰⎰=dx x xdx sin 1csc ⎰=dx x x 2cos 2sin 21C x xxd x x x d +===⎰⎰|2tan |ln 2tan 2tan 2cos 2tan 22=ln |csc x -cot x |+C . 即 ⎰xdx csc =ln |csc x -cot x |+C .例18. ⎰⎰+=dx x xdx )2csc(sec πC x x ++-+=|)2cot()2 csc(|ln ππ =ln |sec x + tan x | + C .即 ⎰xdx sec =ln |sec x + tan x | + C .二、第二类换元法定理2 设x =ϕ(t )是单调的、可导的函数, 并且ϕ'(t )≠0. 又设f [ϕ(t )]ϕ'(t )具有原函数F (t ), 则有换元公式C x F t F dt t t f dx x f +=='=-⎰⎰)]([)()()]([)(1ϕϕϕ.其中t =ϕ-1(x )是x =ϕ(t )的反函数.这是因为)()]([1)()]([)(})]([{1x f t f dtdx t t f dx dt t F x F =='='='-ϕϕϕϕ. 例19. 求dx x a ⎰-22(a >0).解: 设x =a sin t , 22 ππ<<-t , 那么22x a -t a t a a cos sin 222=-=, dx =a cos t d t , 于是⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222. 因为ax t arcsin =, a x a a x t t t 222cos sin 22sin -⋅==, 所以 dx x a ⎰-22C t t a ++=)2sin 4121(2C x a x a x a +-+=22221arcsin 2.解: 设x =a sin t , 22 ππ<<-t , 那么⎰⎰⋅=-tdt a t a dx x a cos cos 22C t t a tdt a ++==⎰)2sin 4121(cos 222C x a x a x a +-+=22221arcsin 2. 提示:22x a -t a t a a cos sin 222=-=, dx =a cos tdt .提示: a x t arcsin =, ax a a x t t t 222cos sin 22sin -⋅==.例20. 求⎰+22a x dx (a >0). 解法一: 设x =a tan t , 22 ππ<<-t , 那么 22a x +t a a 222tan +=t a 2tan 1+==a sec t , dx =a sec 2t d t , 于是⎰+22a x dx ⎰⎰==tdt dt t a t a sec sec sec 2= ln |sec t + tan t |+C . 因为aa x t 22sec +=, a x t =tan , 所以 ⎰+22a x dx = ln |sec t + tan t |+C C a a x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .解法一: 设x =a tan t , 22 ππ<<-t , 那么 ⎰⎰⎰==+tdt dt t a t a a x dx sec sec sec 222=ln|sec t +tan t |+C C aa x a x +++=)ln(22122)ln(C a x x +++=, 其中C 1=C -ln a .提示:22a x +t a a 222tan +==a sec t , dx =a sec 2t dt ,提示:aa x t 22sec +=, a x t =tan .解法二: 设x =a sh t , 那么⎰+22a x dx C a x C t dt dt t a t a +=+===⎰⎰arsh ch ch C a x a x +⎪⎭⎫ ⎝⎛++=1)(ln 2122)ln(C a x x +++=, 其中C 1=C -ln a .提示: 22a x +222a t sh a +==a ch t , dx =a ch t d t .例23. 求⎰-22a x dx (a >0). 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么 22a x -222sec a t a -=1sec 2-=t a =a tan t ,于是⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec = ln |sec t + tan t |+C . 因为aa x t 22tan -=, a x t =sec , 所以 ⎰-22a x dx = ln |sec t + tan t |+C C a a x a x +-+=||ln 22122)ln(C a x x +-+=, 其中C 1=C -ln a .当x <a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a x x +-+--=)ln(22122)ln(C a x x +---=,122222)ln(ln C a x x C aa x x +---=+---=, 其中C 1=C -2ln a .综合起来有⎰-22a x dx C a x x +-+=||ln 22. 解: 当x >a 时, 设x =a sec t (20π<<t ), 那么⎰-22a x dx ⎰⎰==tdt dt t a t t a sec tan tan sec C aa x a x C t t +-+=++=)ln(|tan sec |ln 22 C a x x +-+=)ln(22,其中C 1=C -ln a .当x <-a 时, 令x =-u , 则u >a , 于是⎰-22a x dx C a u u a u du +-+-=--=⎰)ln(2222 C a a x x C a x x +---=+-+--=22222ln )ln( 122)ln(C a x x +---=,其中C 1=C -2ln a .提示:22a x -222sec a t a -=1sec 2-=t a =a tan t .提示:aa x t 22tan -=, a x t =sec . 综合起来有C a x x a x dx +-+=-⎰||ln 2222. 补充公式: (16)C x xdx +-=⎰|cos |ln tan ,(17)C x xdx +=⎰|sin |ln cot ,(18)C x x xdx ++=⎰|tan sec |ln sec ,(19)C x x xdx +-=⎰|cot csc |ln csc , (20)C a x a dx x a +=+⎰arctan 1122, (21)C a x a x a dx a x ++-=-⎰||ln 21122, (22)C a x dx x a +=-⎰arcsin 122, (23)C a x x a x dx +++=+⎰)ln(2222,(24)C a x x a x dx +-+=-⎰||ln 2222.§4. 3 分部积分法设函数u =u (x )及v =v (x )具有连续导数. 那么, 两个函数乘积的导数公式为(uv )'=u 'v +uv ',移项得 uv '=(uv )'-u 'v .对这个等式两边求不定积分, 得⎰⎰'-='vdx u uv dx v u , 或⎰⎰-=vdu uv udv ,这个公式称为分部积分公式.分部积分过程:⋅⋅⋅='-=-=='⎰⎰⎰⎰ vdx u uv vdu uv udv dx v u .例1 ⎰⎰⎰-==xdx x x x xd xdx x sin sin sin cos =x sin x -cos x +C .例2 C e xe dx e xe xde dx xe x x x x x x +-=-==⎰⎰⎰.例3 ⎰⎰⎰-==2222dx e e x de x dx e x x x x x⎰⎰-=-=x x x x xde e x dx xe e x 2222⎰+-=dx e xe e x x x x 222=x 2e x -2xe x +2e x +C =e x (x 2-2x +2 )+C .例4 ⎰⎰⎰⋅-==dx xx x x xdx xdx x 121ln 21ln 21ln 222 C x x x xdx x x +-=-=⎰22241ln 2121ln 21. 例5 ⎰⎰-=x xd x x xdx arccos arccos arccosdx x x x x ⎰-+=211arccos )1()1(21arccos 2212x d x x x ---=⎰-C x x x +--=21arccos . 例6 ⎰⎰=2arctan 21arctan xdx xdx x ⎰+⋅-=dx x x x x 2221121arctan 21 ⎰+--=dx x x x )111(21arctan 2122C x x x x ++-=arctan 2121arctan 212. 例7 求xdx e x sin ⎰.解 因为⎰⎰⎰-==x d e x e xde xdx e x x x x sin sin sin sin⎰⎰-=-=x x x x xde x e xdx e x e cos sin cos sin⎰+-=x d e x e x e x x x cos cos sin⎰+-=x d e x e x e x x x cos cos sin⎰--=xdx e x e x e x x x sin cos sin ,所以 C x x e xdx e x x +-=⎰)cos (sin 21sin .例8 求⎰xdx 3sec .解 因为⎰⎰⎰=⋅=x xd xdx x xdx tan sec sec sec sec 23⎰-=xdx x x x 2tan sec tan sec⎰--=dx x x x x )1(sec sec tan sec 2⎰⎰+-=xdx xdx x x sec sec tan sec 3⎰-++=xdx x x x x 3sec |tan sec |ln tan sec ,所以 ⎰xdx 3sec C x x x x +++=|)tan sec |ln tan (sec 21. 例9 求⎰+=nn a x dx I )(22, 其中n 为正整数. 解 C a x aa x dx I +=+=⎰arctan 1221; 当n >1时,用分部积分法, 有dx a x x n a x x a x dx n n n ⎰⎰+-++=+--)()1(2)()(222122122dx a x a a x n a x x n n n ⎰+-+-++=--])()(1[)1(2)(222122122, 即 ))(1(2)(211221n n n n I a I n a x x I --++=---, 于是 ])32()([)1(2111222---++-=n n n I n a x x n a I . 以此作为递推公式, 并由C ax a I +=arctan 11即可得n I . 例10 求dx e x ⎰. 解 令x =t 2 , 则 , dx =2tdt . 于dx e x ⎰C x e C t e dt te x t t +-=+-==⎰)1(2)1(22.x d e x x d e dx e x x x ⎰⎰⎰==2)(2x d e e x de x x x x ⎰⎰-==222C x e C e e x x x x +-=+-=)1(222.第一换元法与分部积分法的比较:共同点是第一步都是凑微分⎰⎰=')()]([)()]([x d x f dx x x f ϕϕϕϕu x =)(ϕ令⎰du u f )(,⎰⎰=')()()()(x dv x u dx x v x u ⎰-=)()()()( x du x v x v x u .哪些积分可以用分部积分法?⎰xdx x cos , ⎰dx xe x , dx e x x ⎰2;⎰xdx x ln , ⎰xdx arccos , ⎰xdx x arctan ;xdx e x sin ⎰, ⎰xdx 3sec .2222⋅⋅⋅===⎰⎰⎰du e dx e dx xe u x x ,2222⋅⋅⋅=-==⎰⎰⎰dx e e x de x dx e x x x x x .§4. 4 几种特殊类型函数的积分一、有理函数的积分有理函数的形式:有理函数是指由两个多项式的商所表示的函数, 即具有如下形式的函数:mm m m n n n n b x b x b x b a x a x a x a x Q x P ++⋅⋅⋅++++⋅⋅⋅++=----11101110)()(, 其中m 和n 都是非负整数; a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n 及b 0, b 1, b 2, ⋅ ⋅ ⋅ , b m 都是实数, 并且a 0≠0, b 0≠0. 当n <m 时, 称这有理函数是真分式; 而当n ≥m 时, 称这有理函数是假分式.假分式总可以化成一个多项式与一个真分式之和的形式. 例如1111)1(1122223++=+++=+++x x x x x x x x . 真分式的不定积分:求真分式的不定积分时, 如果分母可因式分解, 则先因式分解, 然后化成部分分式再积分. 例1 求⎰+-+dx x x x 6532. 解 ⎰+-+dx x x x 6532⎰--+=dx x x x )3)(2(3⎰---=dx x x )2536( ⎰⎰---=dx x dx x 2536=6ln|x -3|-5ln|x -2|+C . 提示: )3)(2()32()(23)3)(2(3----++=-+-=--+x x B A x B A x B x A x x x , A +B =1, -3A -2B =3, A =6, B =-5.分母是二次质因式的真分式的不定积分:例2 求⎰++-dx x x x 3222. 解 ⎰++-dx x x x 3222dx x x x x x )3213322221(22++-+++=⎰ dx x x dx x x x ⎰⎰++-+++=321332222122 ⎰⎰+++-++++=2222)2()1()1(332)32(21x x d x x x x d C x x x ++-++=21arctan 23)32ln(212. 提示: 321332221323)22(213222222++⋅-++-⋅=++-+=++-x x x x x x x x x x x . 例3 求⎰-dx x x 2)1(1.解 ⎰⎰-+--=-dx x x x dx x x ])1(1111[)1(122 ⎰⎰⎰-+--=dx x dx x dx x 2)1(1111C x x x +----=11|1|ln ||ln .提示: 222)1(1)1(1)1(1)1(1-+--=-+-=-x x x x x x x x x 22)1(1111)1(1)1(1-+--=-+-+--=x x x x x x x x . 二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数, 其特点是分子分母都包含三角函数的和差和乘积运算. 由于各种三角函数都可以用sin x 及cos x 的有理式表示, 故三角函数有理式也就是sin x 、cos x 的有理式.用于三角函数有理式积分的变换:把sin x 、cos x 表成2tan x 的函数, 然后作变换2tan x u =: 222122tan 12tan 22sec 2tan 22cos 2sin 2sin u u x xx x x x x +=+===, 222222112sec 2tan 12sin 2cos cos u u x xx x x +-=-=-=. 变换后原积分变成了有理函数的积分.例4 求⎰++dx x x x )cos 1(sin sin 1. 解 令2tan x u =, 则212sin u u x +=, 2211cos u u x +-=, x =2arctan u , du u dx 212+=. 于是 ⎰++dx x x x )cos 1(sin sin 1⎰+-++++=)111(12)121(2222u u u u u udu u 212+⎰++=du u u )12(21 C u u u +++=|)|ln 22(212C x x x +++=|2tan |ln 212tan 2tan 412. 解 令2tan x u =, 则du uu u u u u udx x x x 2222212)111(12)121()cos 1(sin sin 1+⋅+-++++=++⎰⎰ ⎰++=+++=du uu C u u u )12(21|)|ln 22(212 C x x x +++=|2tan |ln 212tan 2tan 412. 说明: 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分. 例如,⎰⎰++=++=+C x x d x dx x x )sin 1ln()sin 1(sin 11sin 1cos .三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去.例5 求⎰-dx xx 1. 解 设u x =-1, 即12+=u x , 则du u u udu u u dx xx ⎰⎰⎰+=⋅+=-12211222 C u u du u+-=+-=⎰)arctan (2)111(22 C x x +---=)1arctan 1(2.例6 求⎰++321x dx . 解 设u x =+32. 即23-=u x , 则du uu du u u x dx ⎰⎰⎰++-=⋅+=++111331121223 C u u u du u u +++-=++-=⎰|)1|ln 2(3)111(32 C x x x +++++-+=|21|ln 23)2(233332. 例7 求⎰+x x dx )1(3. 解 设x =t 6, 于是dx =6t 5d t , 从而dt t t dt t t t x x dx ⎰⎰⎰+=+=+22325316)1(6)1(C t t dt t +-=+-=⎰)arctan (6)111(62 C x x +-=)arctan (666.例8 求⎰+dx xx x 11. 解 设t xx =+1, 即112-=t x , 于是 dt t t t t dx x x x ⎰⎰--⋅-=+222)1(2)1(11 dt t dt t t )111(212222-+-=--=⎰⎰ C t t t ++---=|11|ln 2 C xx x x x x +++-+-+-=11ln 12.练习1. 求⎰+xdx cos 2. 解: 作变换2tan x t =, 则有dt t dx 212+=, 2211cos t t x +-=, ⎰+x dx cos 2⎰+-++=22211212t t t dt⎰+=dt t 2312⎰+=3)3(11322t d t C t+=3arctan 32C x +=)2tan 31arctan(32. 2. 求⎰dx xx 45cos sin . 解: ⎰dx x x 45cos sin ⎰-=x d x x cos cos sin 44⎰--=x d xx cos cos )cos 1(422 ⎰+--=x d xx cos )cos 1cos 21(42 C x x x ++--=3cos 31cos 2cos . 3. 求⎰+-+dx x x x 23132.解: ⎰+-+dx x x x 23132⎰--+=dx x x x )1)(2(13⎰---=dx x x )1427(⎰-=dx x 217⎰--dx x 114 =7ln|x -2|-4ln|x -1|+C .§4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂. 为了实用的方便, 往往把常用的积分公式汇集成表, 这种表叫做积分表. 求积分时, 可根据被积函数的类型直接地或经过简单变形后, 在表内查得所需的结果.积分表一、含有ax +b 的积分 1.⎰++=+C b ax ab ax dx ||ln 1 2.)1()()1(1)(1-≠+++=++⎰μμμμC b ax a dx b ax 3.C b ax b b ax a dx b ax x ++-+=+⎰|)|ln (124.[]C b ax b b ax b b ax a dx b ax x ++++-+=+⎰||ln )(2)(2112232 5.C x b ax b b ax x dx ++-=+⎰ln 1)( 6.C x b ax b a bx b ax x dx +++-=+⎰ln 1)(22 7.()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22 8.()C b ax b b ax b b ax a dx b ax x ++-+-+=+⎰2322||ln 21)( 9.C xb ax b b ax b b ax x dx ++-+=+⎰ln 1)(1)(22 例1求⎰+dx x x 2)43(. 解: 这是含有3x +4的积分, 在积分表中查得公式()C b ax b b ax a dx b ax x ++++=+⎰||ln 1)(22.现在a =3、b =4, 于是 ()C x x dx x x ++++=+⎰434|43|ln 91)43(2. 二、含有b ax +的积分1.C b ax adx b ax ++=+⎰3)(32 2.C b ax b ax a dx b ax x ++-=+⎰32)()23(152 3.C b ax b abx x a a dx b ax x +++-=+⎰322232)()81215(1052 4.C b ax b ax a dx b ax x ++-=+⎰)2(322 5.C b ax b abx x a a dx bax x +++-=+⎰)843(15222232 6.⎰⎪⎩⎪⎨⎧<+-+->+++-+=+)0( arctan 2)0( ln 1b C b b ax bb C b b ax b b ax b b ax x dx 7.⎰⎰+-+-=+b ax x dx b a bx b ax bax x dx 22 8.⎰⎰+++=+bax x dx b b ax dx x b ax 2 9.⎰⎰+++-=+bax x dx a x b ax dx x b ax22 三、含x 2±a 2的积分1.⎰+=+C a x a a x dx arctan 122 2.⎰⎰--+--++-=+1222122222)()1(232)()1(2)(n n n a x dx a n n a x a n x a x dx 3.C ax a x a a x dx ++-=-⎰ln 2122 四、含有ax 2+b (a >0)的积分1.⎪⎩⎪⎨⎧<+-+--->+=+⎰)0( ln 21)0( arctan 12b C bx a b x a ab b C x b a ab b ax dx 2.C b ax adx b ax x ++=+⎰||ln 21223.⎰⎰+-=+b ax dx a b a x dx b ax x 222 4.C b ax x b b ax x dx ++=+⎰||ln 21)(222 5.⎰⎰+--=+dx b ax b a bx b ax x dx 22211)( 6.C bx x b ax b a b ax x dx +-+=+⎰22222321||ln 2)( 7.⎰⎰+++=+dx bax b b ax b x b ax dx 2222121)(2)( 五、含有ax 2+bx +c (a >0)的积分 六、含有22a x + (a >0)的积分1.C a x x C a x a x dx +++=+=+⎰)ln(arsh 22122 2.C a x a x a x dx +++⎰222322)( 3.C a x dx a x x ++=+⎰2222 4.C a x dx a x x ++-=+⎰223221)( 5.C a x x a a x x dx a x x +++-+=+⎰)ln(2222222222 6.C a x x a x x dx a x x +++++-=+⎰)ln()(22223222 7.C x a a x a a x x dx +-+=+⎰||ln 12222 8.C x a a x a x x dx ++-=+⎰222222 9.C a x x a a x x dx a x +++++=+⎰)ln(222222222 例3求⎰+942x x dx . 解: 因为⎰⎰+=+222)23(2194x x dx x x dx , 所以这是含有22a x +的积分, 这里23=a . 在积分表中查得公式C x a a x a a x x dx +-+=+⎰||ln 12222. 于是 C x x C x x x x dx +-+=+-+⋅=+⎰||2394ln 31||23)23(ln 3221942222. 七、含有22a x -(a >0)的积分1.⎰+-+=+=-C a x x C a x x x a x dx ||ln ||arch ||22122 2.⎰+--=-C a x a x a x dx 222322)( 3.C a x dx a x x +-=-⎰2222 4.⎰+--=-C a x dx a x x 223221)( 5.C a x x a a x x dx a x x +-++-=-⎰||ln 2222222222 6.⎰+-++--=-C a x x a x x dx a x x ||ln )(22223222 7.⎰+=-C x a a a x x dx ||arccos 122 8.⎰+-=-C x a a x ax x dx 222222 9.C a x x a a x x dx a x +-+--=-⎰||ln 222222222 八、含有22x a -(a >0)的积分1.⎰+=-C a x x a dx arcsin 22 2.⎰+--=-C x a a x x a dx 222322)( 3.C x a dx x a x +--=-⎰2222 4.⎰+-=-C x a dx x a x 223221)( 5.C a x a x a x dx x a x ++--=-⎰arcsin 22222222 6.⎰+--=-C a x x a x dx x a x arcsin )(2232227.⎰+--=-C x x a a a x a x dx ||ln 12222 8.⎰+--=-C x a x a x a x dx 222222 9.C ax a x a x dx x a +--=-⎰arcsin 2222222 九、含有)0(2>++±a c bx ax 的积分 十、含有bx a x --±或))((b x a x --的积分 十一、含有三角函数的积分1.C x x xdx ++=⎰|tan sec |ln sec2.C x x xdx +-=⎰|cot csc |ln csc3.C x xdx x +=⎰sec tan sec4.C x xdx x +-=⎰csc cot csc5.C x x xdx +-=⎰2sin 412sin 2 6.C x x xdx ++=⎰2sin 412cos 2 7.⎰⎰---+-=xdx nn x x n xdx n n n 21sin 1cos sin 1sin 8.⎰⎰---+=xdx nn x x n xdx n n n 21cos 1sin cos 1cos 9.C x b a b a x b a b a bxdx ax +---++-=⎰)cos()(21)cos()(21cos sin 10.C x b a b a x b a b a bxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin 11.C x b a b a x b a b a bxdx ax +--+++=⎰)sin()(21)sin()(21cos cos 12.)( 2tan arctan 2sin 222222b a C b a b x a b a x b a dx >+-+-=+⎰13.)( 2tan 2tan ln 2sin 22222222b a C a b b x a a b b x a a b x b a dx <+-++--+-=+⎰ 14.())( 2tan arctan 2cos 22b a C x b a b a b a b a b a x b a dx >++--++=+⎰ 14.)( 2tan 2tan ln 2cos 22b a C a b ba x ab ba x ab b a b a x b a dx <+-+--++-++=+⎰ 例2求⎰-xdx cos 45. 解: 这是含三角函数的积分. 在积分表中查得公式())( 2tan arctan 2cos 22b a C x b a b a b a b a ba xb a dx >++--++=+⎰. 这里a =5、b =-4, a 2>b 2, 于是 () 2tan )4(5)4(5arctan )4(5)4(5)4(52cos 45C x x dx +-+-----+-+=-⎰ ()C x +=2tan 3arctan 32. 例4 求⎰xdx 4sin .解: 这是含三角函数的积分. 在积分表中查得公式⎰⎰---+-=xdx n n x x n xdx n n n 21sin 1cos sin 1sin , C x x xdx +-=⎰2sin 412sin 2. 这里n =4, 于是C x x x x xdx x x xdx +-+-=+-=⎰⎰)2sin 412(43cos sin 41sin 43cos sin 41sin 3234.。
不定积分概念教学设计不定积分是数学中重要的概念之一,也是微积分学中必修的内容之一。
教师在教授不定积分相关知识时,必须有合适的教学设计,通过恰当的学习方式,为学生提供更好的学习环境,进而提高学习效率。
本文将分析不定积分的教学设计,并针对相关课程提出改进建议。
一、不定积分的定义不定积分是在广义微积分中引进的一类特殊函数,用于表示某类函数与变量之间的关系。
它可以帮助学生理解某类函数的发展趋势,以及预测函数的变化行为。
二、不定积分的概念教学1.在对不定积分的概念进行教学时,教师首先应该从函数的概念出发,提出什么是函数,以及它与变量之间的关系,然后讲述不定积分的定义,引出不定积分的意义和用途,让学生尽快熟悉不定积分的概念。
2.接下来,教师可以以实例的形式展示不定积分的用法,利用函数曲线图进行说明,让学生更直观地理解其用法。
同时也可以利用计算机,使学生在计算机平台上进行实践,帮助学生掌握不定积分的计算方法。
3.教师还可以利用一些练习给予学生一定的指导,以演练的形式帮助学生更好地理解不定积分的定义,以及它的实际运用。
三、不定积分的概念教学的改进建议1.教师可以多利用视频、图片等虚拟现实媒介资源,丰富学生的学习环境,提高学习的体验。
2.教师还可以采取小组合作的方式,鼓励学生自主探究,让学生用自己的思考来领悟不定积分的概念,深入分析其特点。
3.教师还可以及时与学生进行交流,为学生提出解决问题的建议,帮助学生及时复习,更好地记忆不定积分的概念。
结论不定积分是微积分学中的重要知识点,教师在设计教学时,应该从函数的概念出发,让学生理解不定积分的定义,做到实践结合,让学生更好地掌握不定积分的概念。
此外,教师还可以利用虚拟现实媒介资源,以小组合作的形式来提高学生的学习兴趣,帮助学生更好地掌握不定积分的知识。
高等数学教案第四章不定积分第四章不定积分教学目的:1、理解原函数概念、不定积分的概念。
2、掌握不定积分的基本公式,掌握不定积分的性质,掌握换元积分法(第一,第二)与分部积分法。
3、会求有理函数、三角函数有理式和简单无理函数的积分。
教学重点:1、不定积分的概念;2、不定积分的性质及基本公式;3、换元积分法与分部积分法。
教学难点:1、换元积分法;2、分部积分法;3、三角函数有理式的积分。
§41不定积分的概念与性质一、原函数与不定积分的概念定义 1如果在区间 I 上可导函数 F(x)的导函数为 f(x)即对任一 x I 都有F (x) f(x) 或 dF(x)f(x)dx那么函数 F(x)就称为 f(x)( 或 f(x)dx)在区间 I 上的原函数例如因为 (sin x)cos x所以 sin x 是 cos x 的原函数又如当 x(1)时1 的原函数因为 (x)1所以x 是2 x2x提问 :cos x 和1还有其它原函数吗?2x原函数存在定理如果函数 f( x)在区间 I 上连续那么在区间 I 上存在可导函数F(x) 使对任一 x I都有F (x) f(x)简单地说就是连续函数一定有原函数两点说明第一如果函数 f(x)在区间 I 上有原函数 F(x) 那么 f(x)就有无限多个原函数 F(x) C 都是 f(x)的原函数其中C 是任意常数第二f(x)的任意两个原函数之间只差一个常数即如果(x)和 F(x)都是 f(x)的原函数则(x) F(x) C (C 为某个常数 )高等数学教案第四章 不定积分定义 2在区间 I 上 函数 f(x) 的带有任意常数项的原函数称为f( x)(或 f(x)dx )在区间 I 上的不定积分记作f ( x)dx其中记号 称为积分号 f(x)称为被积函数 f(x) dx 称为被积表达式 x 称为积分变量根据定义 如果 F(x)是 f(x)在区间 I 上的一个原函数那么 F(x) C 就是 f(x)的不定积分 即f (x)dx F (x) C因而不定积分f (x)dx 可以表示 f(x)的任意一个原函数例 1 因为 sin x 是 cos x 的原函数所以cos xdx sin x C因为x 是 1 的原函数所以2 x1 x dx x C2例 2. 求函数 f (x)1的不定积分x解:当 x>0 时 (ln x)1x1dx ln x C (x>0)x当 x<0 时 [ln(x)]1 ( 1) 1xx1dx ln( x) C (x<0)x合并上面两式得到1dx ln | x| C (x 0)x例 3设曲线通过点 (1 2) 且其上任一点处的切线斜率等于这点横坐标的两倍 求此曲线的方程解 设所求的曲线方程为 y f(x) 按题设 曲线上任一点 (x y)处的切线斜率为 y f (x) 2x, ,即 f(x)是 2x 的一个原函数因为2xdx x 2 C高等数学教案第四章不定积分故必有某个常数 C 使 f(x) x 2C 即曲线方程为 y x 2C因所求曲线通过点 (1 2) 故2 1 CC 1于是所求曲线方程为y x 2 1积分曲线 函数 f(x)的原函数的图形称为 f(x)的积分曲线从不定积分的定义即可知下述关系 d [ f (x)dx]f (x)dx或d[ f ( x)dx]f (x)dx又由于 F(x)是 F (x)的原函数所以F (x)dx F (x) C或记作dF (x) F (x) C由此可见 微分运算(以记号 d 表示)与求不定积分的运算(简称积分运算以记号表示)是互逆的当记号 与 d 连在一起时 或者抵消或者抵消后差一个常数二、基本积分表(1) kdx kx C (k 是常数 )(2) x dx1 x 1C1(3)1dx ln |x| Cx(4) e x dx e x C(5) a x dxa x Cln a(6) cos xdx sin x C(7) sin xdx cos x C(8)1dx2tan x C2sec xdxcos x(9) 1dx2cot x C2 csc xdxsin x(10)1 dx arctan x C 1 x2 (11) 1 2dxarcsin x C1x(12) secx tan xdx secx C(13) cscxcot dx cscx C(14) sh x dx ch x C (15) ch x dx sh x C例 41x 3dx 1x 3 1 C1C3 dx2x3 12x2515 172x 3x C例 5xxdx x 2dxC5x 22x 2 C177244 11例 6dx x 3dxx 3C 3x 3C3Cx 3 x4 1 3 x3三、不定积分的性质性质 1函数的和的不定积分等各个函数的不定积分的和即[ f ( x) g( x)]dxf (x)dxg(x)dx这是因为 , [ f ( x)dx g (x)dx] [ f (x)dx] [ g(x)dx]f( x) g(x).性质 2求不定积分时被积函数中不为零的常数因子可以提到积分号外面来即kf ( x)dx k f (x)dx ( k 是常数 k 0)例 7.x( x 2515)dx (x 2 5x 2 )dx51 51x 2 dx 5x 2 dxx 2 dx 5 x 2 dx732x252x2C73(x 1) 332例 8dxx 3x3x 1dx ( x 3 3 12 )dx22xxx xxdx3 dx 31dx 11 x 23x 3ln |x|1 Cx x dx2x例 9xxx(ex dx e dx3 cos xdxe3sinx C3cos )例 10例 11例 122x e x dx(2e)x dx (2e) x C 2x e x Cln( 2e)1 ln2 1 x x 2 2dxx (1 x 22)dx ( 121)dxx(1 x )x(1 x )1 xx1 12 dx1dx arctanx ln | x| Cxxx 42 dxx 4 1 1 ( x 2 1)( x 2 1) 11 x 1 x2 dx1 x 2dx(x211 2 )dxx 2dx dx1 12 dx1 xx1 x 3 x arctan x C 3例 13tan 2 xdx (sec 2 x 1)dx sec 2 xdx dxtan xx C例 14 sin2x dx1 cos x dx1(1 cos x)dx2221(x sin x) C21 2 x dx1 例 15sin 2 x4 sin 2 x dx4 cot x C2 cos 2§42换元积分法一、第一类换元法设 f(u)有原函数 F(u)u (x) 且 (x)可微 那么 根据复合函数微分法 有d F[ (x) ] d F(u) F (u)d u F [ (x) ] d ( x) F [ (x) ] (x)d x所以F [ ( x)] (x)dx F [ (x)] d (x) F (u)d u d F(u) d F[ (x) ] 因此F [ ( x)] (x)dxF [ (x)]d (x)F (u)dudF (u)dF [ ( x F [ x )] C)] (即f [ ( x)] (x)dxf [ ( x)]d (x) [ f (u)du]u (x)[F(u) C] u( x)F[ ( x)] C定理 1设 f(u)具有原函数 u(x)可导 则有换元公式f [ (x)] (x)dx f [ ( x)] d (x)f (u)du F (u) C F[ (x)]C被积表达式中的dx 可当作变量 x 的微分来对待从而微分等式(x)dx du 可以应用到被积表达式中在求积分 g(x)dx 时 如果函数 g(x)可以化为 g(x)f[ (x)] (x)的形式 那么g( x)dxf [ (x)] (x)dx [ f (u)du]u (x)例 1. 2cos 2xdx cos2x (2x) dxcos2xd(2x)cosudu sin u C sin 2x C例 2.111x dx11(3 2 )3 2 3 2 3 2x2x2x1 1dx 1ln |u | C1ln |3 2x| C2 u 22例 3.x 2x 22x 22xe dxe (x) dxe d (x)2uC e x 2Ce例 4. x 1 x 2 dx11 x2 (x 2) dx1221 1 x2 d (1 x 2)213(1 x 2) 2 C3e u du1 x2 dx 21 31 u 2du1u 2C23例 5.tan xdxsin x dx 1 d cos xcos xcos x1du ln |u | Culn|cos x| C即tan xdxln |cos x| C类似地可得cot xdx ln |sin x| C熟练之后 变量代换就不必再写出了例 6.1x 2dx11 dx a 2a 2x( )21 a1 1 d x 1 arctan xCa1 ( x )2a aaa即1 x2 dx 1arctanxCa 2aa例 7. ch xdx a ch x d xa sh xCa a a a 例 8. 当 a 0 时 ,1dx 11 x dx 1 x d x arcsin xCa 2 x 2 a1 ( ) 21 ( ) 2a aaa即 1x 2 dxarcsinxCa 2a例 9.111111 1dxx 2 a 2dx2a ( x a x a )dx2a[x adxx a]1 [1d (x a)1d( x a)]2a x ax a1[ln | x a| ln |x a |] C1ln |xa | C2a2a x a即1 dx 1ln |xa | Cx 2 a 22ax a例 10.dx d ln x 1 d(1 2ln x)x(12 ln x) 1 2 ln x2 1 2ln x1l n |1 2 ln x| C2例 11.e 3 x dx 2 e 3 x d x 2 e 3 x d3 xx 32 e3 x C3含三角函数的积分例 12. sin 3 xdx sin 2 x sin xdx (1 cos 2x)d cos xd cosxcos 2xd cosxcosx1cos 3 x C3例 13. sin 2 xcos 5xdx sin 2 xcos 4 xd sin xsin 2 x(1 sin 2 x)2 d sin x(sin 2 x 2 sin 4 x sin 6 x)d sin x1sin 3x2sin 5x1sin 7 x C357例 14. cos 2xdx1 cos2 x dx 1 ( dx cos 2xdx)2 2 1 dx 1cos2xd 2x1 x 1sin 2x C2 424例 15.4xdx2x 2dx1 x2 d x21 (1 2cos 2x cos 22x)dx 41 (32cos 2x 1cos4x)dx4221 ( 3 x sin 2x 1sin 4x) C 4 2 8 3 x 1sin 2x1sin 4x C8432例 16.xxdx 1 (cos x cos5x)dxcos3 cos2 21sin x1sin 5x C210例 17. cscxdx1 dx 1dxsin x2sin x cos x22d xd tan xln |tan x| C ln |csc x cot x | Cx2x2tan 2tan x22 cos 22即cscxdx ln |csc x cot x | C例 18. sec xdxx)dxln |csc(x) cot(x)| C222ln |sec x tan x | C即secxdx ln |sec xtan x | C二、第二类换元法定理 2 设 x (t)是单调的、可导的函数 并且 (t) 0 又设 f [ (t)] (t)具有原函数 F(t) 则有换元公式f (x)dxf [ (t)] (t)dt F (t) F [1(x)] C其中 t(x)是 x(t) 的反函数这是因为{ F[1(x)] } F (t)dtf [ (t)] (t) 1f [ (t )] f (x)dx dxdt例 19. 求 a 2 x 2dx (a>0)解 : 设 x a sin tt 那么 a 2 x 2a 2 a 2 sin 2 t acost22dx a cos t d t 于是a 2 x 2 dx acost acostdta 2 cos 2tdt a 2( 1 t 1 sin 2t ) C2 4 因为 t arcsin x, sin 2t 2sin t cost 2xa 2 x 2 所以aa aa2x 2dx a 2(1 t 1sin 2t) C a 2arcsin x 1x a 2 x 2 C2 42 a 2解 : 设 x a sin tt 那么22a 2 x 2 dx acost acostdta 2cos 2 tdt a 2( 1 t 1sin 2t ) Ca 2 arcsin x 1 x a 2 x 2 C2 42a 2提示 : a 2 x 2a 2 a 2 sin 2 t a cost dx acos tdt提示 : t arcsin x, sin 2t2sin t cost 2 xa 2 x 2aa a例 20. 求 dx(a>0) x 2 a 2解法一设 x a tan tt 那么22x 2 a 2a 2 a 2 tan 2 ta 1 tan 2t a sec t dx a sec 2t d t 于是dxa 2 a sec 2 t dt sectdt ln |sec t tan t | Cx 2 a sect因为其中sectx 2 a 2 atantdxx 2a2C 1 C ln ax 所以aln |sec t tan t | C ln(x x 2 a 2 2 a 2) C 1a) C ln(xxa解法一 设 xa tan tt那么22dx asec 2 t dt sectdt ln|sect tant| Cx 2 a 2a sectln(xx 2 a 2 ) C ln( xx 2a 2 ) Caa1其中C 1Cln a提示 : x 2 a 2 a 2 a 2 tan 2 t asect dx a sec 2t dt提示 : sectx 2 a 2 tantx aa解法二 : 设 x a sh t那么dx ach t dt dt t C arsh x Cx2 a 2ach t aln x( x)21C ln( x x2 a2 ) C1 a a其中 C 1 C ln a提示 : x2 a2 a 2sh2t a2 a ch t dx a ch t d tdx例23.求x2a2 (a>0)解 : 当 x>a 时设 x a sec t ( 0 t) 那么2x2 a2 a 2 sec2 t a 2 a sec2 t 1 a tan t于是dx a sect tant dt tdt ln |sec t tan t | Cx2a2 a tant sec因为tant x2 a 2x所以a sect adx ln |sec t tan t |C ln |xx2a2|C ln( x x2 a2 ) C x2 a 2a a1其中 C1C ln a当 x<a时令 x u则 u>a于是dxa 2du ln(u u2a2 )Cx2u2a2ln( x x2a2 )C ln( x x2 a2 ) C1ln x x2a2C ln( x x2a2 )C1a2其中 C1C2ln a综合起来有dxa2ln| x x2a2 |Cx2解 : 当 x>a 时设x a sec t ( 0t)那么2dxa sect tantdt sectdtx 2a 2a tantln |secttant | C ln(xx 2 a 2 ) Caaln( xx 2 a 2 ) C其中 C 1 C ln a当 x< a 时 令 x u 则 u>a 于是dxdu ln(u 2 2Cx 2 a 2u 2 a 2 u a )ln( xx 2 a 2 ) C ln xx 2 a 2 Ca 2ln( xx 2 a 2 ) C 1其中 C 1 C 2ln a提示 : x 2 a 2a 2 sec 2 t a 2a sec 2t 1 atant提示 : tantx 2 a 2sect xaa综合起来有dx a 2ln | xx 2 a 2 | Cx 2 补充公式(16) tan xdxln |cos x| Ccot xdx ln |sin x| C(18) secxdx ln |secx tan x| C(19) cscxdx ln |cscx cot x| C(20)1 x2 dx1arctanxCa 2aa(21)1a 2 dx1ln |xa | Cx 22ax a(22)1 x2 dxarcsinxCa 2a(23)dxa 2 ln( xx 2 a 2 ) Cx 2(24)dx ln |x x22x 2a | Ca 2§43分部积分法设函数 u u(x)及 v v( x)具有连续导数 那么 两个函数乘积的导数公式为 (uv) u v uv移项得uv (uv) u v对这个等式两边求不定积分得uv dx uv u vdx 或 udv uvvdu这个公式称为分部积分公式分部积分过程 :uv dx u dv uvvdu uv u vdx例 1 xcos xdx xd sin x xsin x sin xdx x sin x cos x C例 2 xe x dxxde x xe x e x dx xe x e x C例 3 x 2e x dx x 2de x x 2e x e x dx 2x 2e x 2 xe x dx x 2e x 2 xde x x 2e x 2xe x 2 e x dxx 2e x 2xe x 2e x C e x (x 2 2x 2 )C例 4xln xdx 1 ln xdx 21x 2ln x 1 x 21dx2 2 2x1x 2ln x 1 xdx 1x 2 ln x1 x2 C22 2 4例 5 arccosxdx xarccosxxd arccosxxarccosxx1x 2dx111xarccosx(1 x 2 ) 2d (1 x 2) xarccosx 1 x 2C2例 6x arctanxdx1arctanxdx 21x 2 arctan x1x 21 dx2221 x 212112 x arctanx 2 (1 1x 2)dx1x 2arctanx 1 x1arctan x C222例 7 求 e x sin xdx解 因为 e x sin xdx sin xde xe x sin x e x d sin xe x sin xe x cos xdx e x sin x cos xde xe x sin x e x cos x e x d cos x e x sin x e x cos xe x d cosxe x sin x e x cos x e x sin xdx所以e x sin xdx 1e x (sin x cosx) C2例 8求 sec 3 xdx解 因为sec 3 xdx secx sec 2 xdxsecxd tan xsecxtan xsecx tan 2 xdxsecx tanx secx(sec 2 x 1)dxsecx tanxsec 3 xdxsecxdxx tan x ln |sec x x |3xdxsec tan sec所以sec 3xdx1(secxtan x ln |secx tan x|) C2 例 9 求 I ndx其中 n 为正整数(x 2 a 2)n解 I 1x 2 dx 1arctan xCa 2 a a当 n 1 时,用分部积分法 有dxx2(n 1)x 2n dx22 n 122 n 1(x 22 ( x a )( x a )a )高等数学教案第四章不定积分x2(n1) [1a2n ]dx(x 22n 1(x22)n 1(x22)a )a a即I n 1(x 2x2( n 1)(I n 1 a 2 I n ) a 2 ) n1于是I n1[x(2n3) I n 1] 2a2 (n(x2a2) n 11)以此作为递推公式并由 I11xC 即可得 I n arctanaa例 10 求 e x dx解令 x t 2则dx 2tdt于e x dx 2 te t dt2e t (t1)C2e x(x1)C e x dx e x d(x) 2 2xe x d x2xde x2xe x 2 e x d x2xe x2xC2x (x1)Ce e第一换元法与分部积分法的比较:共同点是第一步都是凑微分f [ ( x)] (x)dx f [(x)] d( x)令 (x)u f (u)duu(x)v (x)dx u( x)dv(x)u(x)v(x)v(x)du( x)哪些积分可以用分部积分法?x cosxdx xe x dx x2 e x dxx ln xdx arccosxdx x arctanxdxe x sin xdx sec3 xdx2x2x22uxe dx e dx e dux2e x dx x2de x x2e x e x dx2高等数学教案第四章不定积分§4 4几种特殊类型函数的积分一、有理函数的积分有理函数的形式有理函数是指由两个多项式的商所表示的函数即具有如下形式的函数:P(x)a0 x n a1x n 1a n1x a nQ(x)b0x m b1x m 1b m 1x b m其中 m 和 n 都是非负整数a0a1 a2a n及 b0 b1b2b m都是实数并且 a0 0 b0 0当n m 时称这有理函数是真分式而当 n m 时称这有理函数是假分式假分式总可以化成一个多项式与一个真分式之和的形式例如x3x 1x(x21) 1x 1x21x21x2 1真分式的不定积分求真分式的不定积分时如果分母可因式分解则先因式分解然后化成部分分式再积分例1 求x3dx x25x6解x2x 3dx( xx 3dx(635)dx5x62)( x3)x x 263dxx5dx6ln|x 3|5ln| x 2|Cx2提示x3A B(A B) x ( 2 A3B)3)x3x2(x2)( x 3)( x 2)(xA B 13A2B3A6B5分母是二次质因式的真分式的不定积分例2 求x2dx x22x3解x2dx(12x 231)dxx22x 2 x22x323x2x 312x2dx3x21dx2x2 2 x32x31d( x22x3)3d (x1)2x22x3(x1)2( 2)21ln( x22x3)3arctanx1C222x 21(2x2)31x21提示2222322x 3 x2x 3 2 xx2x 3x 2x 3例3 求12dx x(x1)解1 1)2 dx [111 (x 12 ]dxx(xx x 1)1dx1dx1dx ln |x| ln |x 1|1 Cxx 1 ( x 1) 2x 1提示11 xx1 1x(x 1) 2x(x 1) 2x x 1) ( x 1) 2(1 x x1 111x(x 1)( x 1) 2 x x 1 (x 1)2二、三角函数有理式的积分三角函数有理式是指由三角函数和常数经过有限次四则运算所构成的函数其特点是分子分母都包含三角函数的和差和乘积运算由于各种三角函数都可以用sin x 及 cos x 的有理式表示故三角函数有理式也就是sin x 、 cos x 的有理式用于三角函数有理式积分的变换 :把 sin x 、 cos x 表成 tan x的函数然后作变换 u tanx22xx 2 tanx2 tanx2usin x2sin cos222 22 x1 tan2 x1 u 2sec 2 2cos x cos 2xsin 2x1 tan 2x1 u 222 22 x 1 u 2sec2变换后原积分变成了有理函数的积分例 4 求1 sin x dxsin x(1 cosx)x2u1 u 2x 2arctan u2解 令 u tan 2 则 sin x 1 u2cos x 1 u2dx 1 u 2du(1 2u )于是1 sin x1 u2 211sin x(1 cos x)dx2u(1 1 u 2 ) 1 u 2du2 (u 2 u )du1 u21 u 21 ( u 22 ln | |) C 1 tan 2 x tan x 1ln |tan x | C2 2 u u4 2 2 2 2解 令 u tan x则21 sin x(1 2u )21 u2sin x(1 cos x) dx2u(11 u 21 u2 du21 u2 )1 u1 ( u 22u ln |u |) C 1 (u 2 1)du2 22u1 tan2 xtanx1ln | tan x| C4 2 2 2 2说明 : 并非所有的三角函数有理式的积分都要通过变换化为有理函数的积分例如cos x dx 1 d (1 sin x) ln(1 sin x) C1 sin x 1 sin x三、简单无理函数的积分无理函数的积分一般要采用第二换元法把根号消去例 5 求x 1dxx解 设 x 1 u即 x u 2 1 则x 1dxu 2udu2 u 2 duxu 2 1u 2 12 (112 )du 2(u arctanu) C1 u2( x 1 arctan x 1) C例 6 求dx3x 21解 设 3 x 2 u即 x u 3 2 则dx13u 2 du 3u 21 113 x21 u1 duu3 (u 11)du 3(u2u ln |1 u |) C1 u23 3(x 2)2 33 x 2 ln |1 3 x 2 | C2例 7 求dx3x) x(1 解 设 x t 6于是 dx 6t 5d t从而高等数学教案第四章不定积分dx6t 5 dt6 t 2dt 6 (11 )dt 6(t arctant) C(1 3 x) x(1 t 2)t 31 t 21 t 26(6 x arctan 6 x) C例 8 求11xdxxx解 设1 x t 即 x11于是xt 21 1 xdx (t 2 1)t(t 2 2t dtx x 1) 22t 22 (11 )dtt2dtt 211 2t ln |t1 | Ct 1 2 1 x ln 1 xx Cx 1 xx练习1求dx2 cos x解作变换 ttan x则有 dx2dtcos x1 t2 21 t 21 t 22dtdx1 t 221dt21dt2cos x21 t 23t 2 31 (t2 31 t 2)32arctant C2 arctan( 1 x C3 33 tan )3 22求sin 5 xdxcos 4x解sin 5 x dxsin 4 xd cos x(1 cos 2 x) 2cos 4cos 4xcos4xd cos xx(121)d cos xcos 2 xcos 4 xcos x21 Ccos x 3 cos 3x3求3x 1 dxx23 x 2高等数学教案第四章 不定积分解2 3x 1dx3 x 1 dx ( 74)dx x 3x 2(x 2)( x 1) x 2 x 17 1 4 1 dxdx xx 2 17ln|x 2| 4ln|x 1| C§ 4.5积分表的使用积分的计算要比导数的计算来得灵活、复杂为了实用的方便 往往把常用的积分公式汇集成表 这种表叫做积分表 求积分时 可根据被积函数的类型直接地或经过简单变形后在表内查得所需的结果 积分表一、含有 ax b 的积分1.dx1ln |ax b | Cax b a2. (ax b) dx1(ax b)a( 1)3.x dx 1 (ax b b ln |axax b a 21C(1)b |) C4.x 2 dx 1 1(ax b)2 2b(ax b) b 2 ln |ax b | Cax ba 3 25.dx 1ln ax b Cx( ax b)b x6.2 dx1 a2 ln ax bCx (ax b)bx bx7.xb) 2 dx12 ln |ax b| b C(ax aax b 8.x 2 dx 1 ax b 2b ln |ax b|b 2(ax b) 2 3 Caax b 9.dx1 b) 1 ln ax bCx( ax b)2 b(ax b 2x例 1 求x4) 2dx(3x解 这是含有 3x 4 的积分 在积分表中查得公式(ax xdx 1 ln |ax b|b bCb)2a 2ax现在 a 3、 b 4 于是x4)2dx1 ln |3x 4| 4 C(3x 9 3x 4二、含有 ax b 的积分1.ax b dx 2 (ax b)3C3a2. x ax bdx2 (3ax 2b) (ax b)3C15a 23. x 2 ax b dx23(15a 2x 2 12abx 8b 2) (ax b)3 C105a4.x dx2 (ax 2b) ax b Cax b 3a 2x 2 b dx 25.ax15a 3(3a2x 24abx 8b 2) axb Cdx1lnax b b C (b 0)6.b ax b b x ax b2 arctan ax b C (b 0)b b 7.8.dx ax b adxx 2 ax b bx2b x ax b axb dx 2 ax b bdx xx ax b9.ax bdx ax b a x dx bx 2x 2 ax 三、含 x 2 a 2 的积分 1.x 2dx 1arctan xCa 2 aa2.dxx2n 3 dx(x 2 a 2)n 2(n 1)a 2(x 2 a 2)n 1 2(n 1)a 2 ( x 2a 2) n 13.x 2 dx1ln x a Ca 2 2a x a四、含有 ax 2 b(a 0)的积分dx 1 arctan a x C (b 0) 1.ab bax2b1a xblnC (b 0)2 a x bab2.x dx1ln |ax 2 b| Cax 2 b2a内蒙古财经大学统计与数学学院公共数学教研室3.x 2 dx x b dxax 2 ba a ax 2b4.dx 1 ln x 2Cx( ax2b)|ax22b b |5.dx1 a 1 dxx 2(ax 2b)bx bax 2b6.dxa ln|ax 2 b| 1Cx 3 (ax 2 b) 2b 2x 22bx 27.dxx11 dx(ax2b)22b(ax 2b)2b ax 2b五、含有 ax 2 bx c (a 0)的积分 六、含有 x 2 a 2 (a 0)的积分1.dxa 2arshxC 1 ln( xx 2x 2 a 2.dxxC( x 2a 2 )3a 2x 2a23.xdxx 2 a 2 Cx 2 a 24.xdx1C2a 2 )3x 2a 2( x5.x2dx x x2a2a 2ln(xx 2 a 2 226.x2dxxln( x( x 2 a 2 )3x 2a27. dx1lnx 2 a 2 a C x x 2 a 2a| x| 8.dxx 2 a 2 Ca 2a 2 xx 2 x 29.x2a 2dx x x 2 a 2 a 2ln( x 22例 3 求dx4 x29x解 因为dx1dx2x x 2 ( 3) 2x 4x 2 92a 2 ) Cx 2a 2 ) Cx 2 a 2 ) Cx 2 a 2 ) C所以这是含有x 2 a 2 的积分 这里 a3 在积分表中查得公式2内蒙古财经大学统计与数学学院公共数学教研室xdxa 21ln x 2 a 2a Cx 2 a|x|dx 1 2x 2( 3)23 1 4x 29 3于是ln22 C ln Cx 4x 292 3|x|3 2|x|七、含有 x 2 a 2 (a 0)的积分1.dxa 2x arch |x| C 1 ln |x x 2 a 2 | Cx 2 |x|a2.dxxC( x 2a 2 )3a2x 2a23.x a 2 dx x 2a 2 Cx 24.xdx1C( x 2a 2 )3x 2 a25.x 2dx x x 2 a 2 a 2x 2 a 2| Cx 2 a 22ln |x26.x 2 dx x ln|x x 2 22 a 2 )3 2 a 2 a | C( x x7.dx1arccos aCx x 2 a 2 a |x|8.dx x 2 a 2Cx 2x 2a2a 2x9.x 2 2 dxxx 22a 2 22 | C a 2 a2 ln | xx a八、含有a 2 x 2 (a 0)的积分1.dx arcsinxCa 2 x 2a2.dxxC(a2x 2 )3a 2a2x23.x dxa 2 x 2 Ca 2 x 24.x dx 1 C(a2x 2 )3a2x25.x 2 dxx a 2 x 2a 2 x Ca 22arcsinax 226.x2dx a 2 xx 2arcsinxC(a 2 x 2 )3a内蒙古财经大学统计与数学学院公共数学教研室7.dx1 ln a a2 x 2 Cx a 2 x 2a| x| 8.dxa 2 x 2 Cx2a2x2a 2x9.a 22dx xa 22a 2arcsin xCx 2x2 a九、含有 ax 2 bx c(a 0) 的积分十、含有x a 或 (x a)( x b) 的积分x b十一、含有三角函数的积分1. secxdx ln |secx tan x| C2. cscxdx ln |cscx cot x| C3. secx tan xdx secx C4. cscx cot xdx cscx C 5. sin 2 xdx6. cos 2 xdx 7. sin n xdxx1 sin 2x C2 4 x1sin 2x C 2 4 1 sin n 1 xcos x n 1 sin n 2 xdx n nn 1 cos n 2xdx n1 cos(a b)x2(a b)1sin(a b) x2(a b)1sin(a b)x2(a b)cos(a b) x C 2(a b)1 sin(a b) x C2(a b)1sin(a b)x C2(a b)12.dxa bsin x2a tanxb2 arctan2 2 C (a 2b 2 )a 2b a 2b9. sin axcosbxdx10. sin axsin bxdx11. cos axcosbxdx8. cos n xdx 1cos n 1 x sin x n内蒙古财经大学统计与数学学院公共数学教研室高等数学教案第四章 不定积分dx 2a tanxbb 2 a 222213.a bsin xb 2a 2ln a tanxbb 2 a 2 C (ab )214.dx a 2 a barctana b tan xC (a 2 b 2)a b cos x b a b a b 2dx2 a b ln tanxa b14.a 2b a C (a 2 b 2)a b cos x b b atan xa b2b a例 2 求dx5 4cos x解 这是含三角函数的积分在积分表中查得公式dx 2 b a barctana b tan xC (a 2 b 2 )a b cos x a aba b 2这里 a 5、 b 4 a 2b 2 于是5 dx5 2 4) 5 ( 4)arctan 5 ( 4) tan xC4cos x( 5 ( 4) 5( 4)22arctan 3tanxC32例 求 sin 4 xdx解 这是含三角函数的积分在积分表中查得公式sin nxdx1sinn1x cos x n1sinn2xdx sin 2xdxx 1sin 2x Cnn 2 4这里 n 4于是sin 4xdx1sin 3xcos x3sin 2xdx1sin 3xcos x 3 ( x1sin 2 x) C4444 2 4内蒙古财经大学统计与数学学院公共数学教研室。
第四章 不定积分§4.1 不定积分概念微分学的基本问题是:已知一个函数,求它的导数。
但是,在科学技术领域中往往还会遇到与此相反的问题:已知一个函数的导数,求原来的函数,由此产生了积分学。
“积分”是“微分”的逆运算。
一、 原函数1、 原函数定义我们在讨论导数的概念时,解决了这样一个问题:已知某物体作直线运动时,路程随时间t 变化的规律为()s s t =,那么,在任意时刻t 物体运动的速度为()()v t s t '=。
现在提出相反的问题: 例1已知某物体运动的速度随时间t 变化的规律为()v v t =,要求该物体运动的路程随时间 变化的规律()s s t =。
显然,这个问题就是在关系式()()v t s t '=中,当()v t 为已知时, 要求()s t 的问题。
例2已知曲线()y f x =上任意点(,)x y 处的切线的斜率为2x ,要求此曲线方程,这个问题 就是要根据关系式2y x '=,求出曲线()y f x =。
从数学的角度来说,这类问题是在关系式()()F x f x '=中,当函数()f x 已知时,求出函数()F x 。
由此引出原函数的概念。
定义4.1 : 设)(x f 是定义在某区间I 内的已知函数,如果存在一个函数)(x F ,对于每一点x I ∈,都有:()()F x f x '= 或 dx x f x dF ⋅=)()(则称函数)(x F 为已知函数)(x f 在区间I 内的一个原函数。
例如,由于(sin )cos x x '=,所以在(,)-∞+∞内,sin x 是cos x 的一个原函数;又因为(sin 2)cos x x '+=,所以在(,)-∞+∞内,sin 2x +是cos x 的一个原函数;更进一步,对任意常数C ,有(sin )cos x C x '+=,所以在(,)-∞+∞内,sin x C +都是cos x 的原函数。
2、 原函数性质(1)如果函数)(x f 在区间I 内连续,则)(x f 在区间I 内一定有原函数; (2)若)()(x f x F =',则对于任意常数C ,C x F +)(都是)(x f 的原函数。
即如果()f x 在I 上有原函数,则它有无穷多个原函数;(3)若)(x F 和)(x G 都是)(x f 的原函数,则C x G x F =-)()(,(C 为任意常数)。
即任意两个原函数只相差一个常数。
二、 不定积分1、 不定积分定义定义4.2 : 若)(x F 是)(x f 在区间I 内的一个原函数,则称()F x C +(C 为任意常数)为)(x f 在区间I 内的不定积分,记为()d f x x ⎰,即()d ()f x x F x C =+⎰。
其中:⎰——为积分号,)(x f ——被积函数, ()d f x x ——被积表达式, x ——积分变量,C ——积分常数。
由不定积分的定义可知,计算一个函数的不定积分时,就归结为“求出被积函数的一个原函数再加上任意的常数”即可。
例1 计算下列不定积分。
(1)2d x x ⎰;(2)sin d x x ⎰;(3)e d xx ⎰。
解 (1)因为x x '=2()2,所以x 2是x 2的一个原函数,由不定积分的定义知: x xx C =+⎰22d 。
(2)因为(cos )sin x x '-=,所以cos x -是sin x 的一个原函数,由不定积分的定义知sin cos x x x C =-+⎰d 。
(3)因为(e )e xx'=,所以e x 是e x的一个原函数,由不定积分的定义知x x x C =+⎰e d e 。
例2 求dx x ⎰1。
解:① 当0>x 时, ∵()x x 1ln =',即x ln 是x1的一个原函数 ∴ C x dx x+=⎰ln 1②当0<x 时, ∵[]xx x 11)ln(=--=-,∴ C x dx x+-=⎰)ln(1两式合并,当0≠x 时,有: C x dx x+=⎰ln 1。
由上述例题可以看出,求不定积分就是求被积函数的全体原函数,这个“全体”就体现在任意常数C 上,因此,求不定积分时,积分常数C 不能丢。
由于“积分”和“微分”互为逆运算,故检验一个积分结果是否正确,只须对积分结果求导,看他是否等于被积函数。
2、 不定积分性质由不定积分的定义,有:性质⑴ :先积分后微分,两种互逆运算相抵消。
[])()(x f dx x f ='⎰ ()()d f x dx f x dx ⎡⎤=⎣⎦⎰或;性质⑵ : 先微分后积分,两种互逆运算抵消后,相差常数C 。
()()F x dx F x C '=+⎰ 或 ()()dF x F x C =+⎰。
由此可见,微分运算与求不定积分的运算是互逆的。
例3 利用性质求下列不定积分。
(1)[]'⎰xdx sin ;(2)()⎰'dx x sin 。
解 (1)利用“先积后微,结果等于被积函数”得:[]x xdx sin sin ='⎰(2)利用“先微后积,结果等于被积函数+C ”得:()c x dx x +='⎰sin sin3、 不定积分几何意义不定积分的图形是由C x F +)(所表示的 无穷多条积分曲线所组成的“积分曲线簇”。
(如图5-1所示)每一条积分曲线对应于同一横坐标0x x =处的切线互相平行。
不定积分几何意义:不定积分C x F +)(表示)(x f 的一簇积分曲线,而)(x f 正是积分曲线的切线的斜率。
例4 求过点()3,1,且其切线的斜率为x 2的曲线方程。
解:由xdx x C =+⎰22得: c x y +=2的曲线簇将3,1==y x 代入得: 2=c∴ 22+=x y 为过点()3,1且其切线的斜率为x 2的曲线方程。
由图5-2可以看出: c x y +=2表示无穷多条抛物线,这些抛物线就构成一条关于x 2的积分曲线簇。
簇中每一条曲线对应于同一横坐标1=x 处有相同的斜率22)1(1=='=x xf 。
故对应1=x 处,这簇曲线的切线互相平行,任两条曲线的纵坐标之间相差一个常数C 。
故确定一条曲线22+=x y ,其它各曲线便可由22+=x y 沿y 轴方向上、下移动而得到。
§4.2基本积分公式一、 基本积分公式(背!)由不定积分的定义,从导数公式可得到相应的积分公式。
为了计算方便,下面列出基本积分公式:这些基本积分公式是求不定积分时常用的公式,同学们必须熟练地掌握!二、 不定积分运算法则法则⑴ : 函数代数和的积分等于函数积分的代数和。
[()()]f x g x x ±=⎰d ()()f x x g x x ±⎰⎰d d ;推广:[]⎰⎰⎰⎰±±=±±dx x v dx x g dx x f dx x v x g x f )()()()()()(法则⑵ : 被积函数中的常数因子可以移到积分号的外面。
()kf x x =⎰d ()k f x x ⎰d (0≠k )。
现在利用不定积分的性质和基本积分公式,可以求一些函数的不定积分。
例1 计算下列不定积分:(1)xx ⎰;(2)22(1)d x x x-⎰; (3)x ;(4)3e d x x x ⎰。
解 (1)57222d 7xx x x x C ==+⎰⎰;(2)22222(1)1212d d +1d x x x x x x x x xx --+⎛⎫==- ⎪⎝⎭⎰⎰⎰21d 2d d x x x x x -=-+⎰⎰⎰ 2112ln ||1(2)x x x C -+=-+++-12ln ||x x C x=--++;(3)337144414d 3714x x xx C x C +==+=++⎰。
(4)(3e)3e 3e (3e)ln(3e)1ln 3x x xxxxdx dx C C ==+=++⎰⎰。
注意: 检验积分结果是否正确,只要对结果求导,看它的导数是否等于被积函数,相等时结果是正确的,否则结果是错误的。
三、 直接积分法所谓直接积分法,就是利用不定积分的基本积分公式和法则,来求一些简单函数的不定积分。
例2 计算下列不定积分。
(1)()xdx x ⎰-2;(2)xdx ⎰2tan ;(3)dx x x ⎰⋅22cos sin 1;(4)221d (1)x x x +⎰。
解:(1)()dx x xdx dx xxdx xdx x ⎰⎰⎰⎰⎰-=-=-2323222C x x C x x +-=++-⋅=+25223123252122;(2)C x x dx xdx dx x xdx +-=-=-=⎰⎰⎰⎰tan sec )1(sec tan 222;(3)dx x dx x dx x x x x dx xx ⎰⎰⎰⎰+=+=⋅22222222sin 1cos 1cos sin cos sin cos sin 1 C x x +-=cot tan ;(4)221d (1)x x x +⎰22221111d d d 11x x x x x x x ⎛⎫=-=- ⎪++⎝⎭⎰⎰⎰1arctan x C x =--+。
注意: 当被积函数不能直接用公式时,需先进行一些恒等变形或拆分,将其化为积分基本公式的形式,再求积分即可。
例3 计算下列不定积分: (1)dx x x ⎰2sin 2cos ; (2)2cos d 2x x ⎰; (3)dx x 2sin 2⎰;解 (1)2222cos 212sin d d (csc 2)d sin sin x xx x x x x x-==-⎰⎰⎰cot 2x x C =--+; (利用三角恒等变形:x x x x x 2222sin 211cos 2sin cos 2cos -=-=-=)(2)21cos 11cosd d d cos d 2222x x x x x x x +==+⎰⎰⎰⎰sin 22x xC =++。
(利用三角函数降幂公式:()x x cos 1212cos 2+=) (3)C x x xdx dx dx x dx x +-=-=-=⎰⎰⎰⎰sin 2121cos 21212cos 12sin 2(利用三角函数降幂公式:()x x cos 1212sin 2-=) §4.3 换元积分法一、 第一类换元法(凑微分法)前面已经学习了直接积分法,但是仅利用基本积分公式和不定积分的性质所能计算的积分是非常有限的。
例如计算不定积分:e d xx -⎰,这个积分看上去很简单,与基本积分公式e d x x ⎰相似,但不能用直接积分法。