高考数学玩转压轴题专题33数列与函数不等式相结合问题
- 格式:doc
- 大小:671.50 KB
- 文档页数:18
【方法综述】概率与统计的问题在高考中的地位相对稳定,而由于概率与统计具有较强的现实应用背景,在近几年的高考中,概率与统计问题在高考中所占的地位有向压轴题变化的趋势。
概率与统计的热点问题主要表现在一是:以数学文化和时代发展为背景设置概率统计问题 ,二是概率统计与函数、方程、不等式及数列等相结合的问题。
此类问题的解决,需要考生由较强的阅读理解能力,体现考生的数学建模、数据分析、数学运算及逻辑推理等核心素养。
先就此类问题进行分析、归类,以帮助考生提升应试能力。
【解答策略】类型一 以数学文化和时代发展为背景的概率问题【例1】5.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则,A C 区域涂色不相同的概率为( )A .17B .27C .37D .47【来源】湖南省衡阳市第一中学2019-2020学年高三上学期7月第一次月考理科数学试题【例2】(2020全国模拟)冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征(MERS )和严重急性呼吸综合征(SARS )等较严重疾病.而今年出现在湖北武汉的新型冠状病毒(nCoV )是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n (n *∈N )份血液样本,有以下两种检验方式: 方式一:逐份检验,则需要检验n 次.方式二:混合检验,将其中k (k *∈N 且2k ≥)份血液样本分别取样混合在一起检验.若检验结果为阴性,这k 份的血液全为阴性,因而这k 份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k 份血液究竟哪几份为阳性,就要对这k 份再逐份检验,此时这k 份血液的检验次数总共为专题7 概率中的应用问题1k +.假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p (01p <<).现取其中k (k *∈N 且2k ≥)份血液样本,记采用逐份检验方式,样本需要检验的总次数为1ξ,采用混合检验方式,样本需要检验的总次数为2ξ.(1)若()()12E E ξξ=,试求p 关于k 的函数关系式()p f k =;(2)若p 与干扰素计量n x 相关,其中12,,,n x x x (2n ≥)是不同的正实数, 满足11x =且n N *∀∈(2n ≥)都有1222113221121n n n i i i x x x e x x x x --=+-⋅=-∑成立. (i )求证:数列{}n x 等比数列;(ii )当3411p x =-时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k 的最大值【举一反三】1.(2020·宁夏高考模拟(理))根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16 B .14 C .13 D .122.(2020·河北高三期末(理))我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.3.(2020•湖北模拟)据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公, 共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多 分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是类型二 概率与函数、方程、不等式及数列等相结合的问题【例3】(2020•浙江模拟)甲乙两人进行乒乓球比赛,现采用三局两胜的比赛制度,规定每一局比赛都没 有平局(必须分出胜负),且每一局甲赢的概率都是p ,随机变量X 表示最终的比赛局数,若0<p <,则 ( )A .E (X )=B .E (X )>C .D (X )> D .D (X )<【例4】(2020 •开福区模拟)设一个正三棱柱ABC ﹣DEF ,每条棱长都相等,一只蚂蚁从上底面ABC 的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P 10,则P 10为( )A .B .C .D .【举一反三】1.(2020 •越城区模拟)随机变量ξ有四个不同的取值,且其分布列如下:ξ2sin αsin β 3cos αsin β 3sin αcos β cos αcos β P t 则E (ξ)的最大值为( )A .﹣1B .﹣C .D .12.(2020 •天心区模拟)已知函数f (x )=,若,则方程[f (x )]2﹣af (x )+b =0有五个不同根的概率为( )A .B .C .D .【强化训练】1.(2020·安徽高考模拟(理))2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( )A .2764B .916C .81256D .7162.设函数()()11x f x ax x x =+>-,若a 是从0,1,2三个数中任取一个,b 是从1,2,3,4,5五个数中任取一个,那么()f x b >恒成立的概率是( )A. 35B. 715C. 25D. 123.(2020·湖北高考模拟(理))生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )A .760B .16C .1360D .144.(2020•富阳区模拟)已知数列{a n }满足a 1=0,且对任意n ∈N *,a n +1等概率地取a n +1或a n ﹣1,设a n 的值为随机变量ξn ,则( )A .P (ξ3=2)=B .E (ξ3)=1C .P (ξ5=0)<P (ξ5=2)D .P (ξ5=0)<P (ξ3=0)5.(2019·四川成都七中高考模拟(理))如果{}n a 不是等差数列,但若k N *∃∈,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,记事件A :集合{}{}1234,,,1,2,3,4,5x x x x ⊆,事件B :{}n x 为“局部等差”数列,则条件概率()|P B A =( )A .415B .730C .15D .166.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同,当横向速度不为零时,反射光相对探测光会发生频移2sin p f νϕλ=,其中v 为测速仪测得被测物体的横向速度,λ为激光波长,ϕ为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁1m 处,发出的激光波长为1500nm (91nm 10m -=),某次检验中可测频移范围为99.50010⨯(1/h )至910.00010⨯(1/h ),该高铁以运行速度(337.5km /h 至375km /h )经过时,可测量的概率为( )A.12B.13C.23D.56【来源】江苏省南京市2020-2021学年高三上学期1月供题数学试题7.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是()A.310B.13C.1130D.25【来源】浙江省2020届高三下学期6月新高考进阶数学试题8.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为()A.15B.815C.35D.3209.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是A.514B.1528C.914D.6710.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止OCR),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.11.我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.【来源】2020届河北省张家口市高三上学期期末教学质量监测数学(理)试题12.欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌滴沥之,自钱孔入,而钱不湿.已知铜钱是直径为4 cm 的圆面,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2 cm 的球)正好落入孔中的概率是_____.(不作近似计算)【来源】云南省峨山彝族自治县第一中学2021届高三三模数学(文)试题13.甲乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上6,这样就可得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a 时,甲获胜,否则乙获胜,若甲胜的概率为34,则1a 的取值范围是____.14.某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的3款经典动漫角色玩偶中的一个.小明购买了4个盲盒,则他能集齐3个不同动漫角色的概率是______________.【来源】安徽省马鞍山市2021届高三下学期第三次教学质量监测理科数学试题15.某公司根据上年度业绩筛选出业绩出色的A ,B ,C ,D 四人,欲从此4人中选择1人晋升该公司某部门经理一职,现进入最后一个环节:A ,B ,C ,D 四人每人有1票,必须投给除自己以外的一个人,并且每个人投给其他任何一人的概率相同,则最终仅A 一人获得最高得票的概率为___________.【来源】江苏省南通市如皋市2021届高三下学期4月第二次适应性考试数学试题16.2020年新冠肺炎肆虐,全国各地千千万万的医护者成为“最美逆行者”,医药科研工作者积极研制有效抗疫药物,中医药通过临床筛选出的有效方剂“三药三方”(“三药”是指金花清感颗粒、连花清瘟颗粒(胶囊)和血必净注射液;“三方”是指清肺排毒汤、化湿败毒方和宜肺败毒方)发挥了重要的作用.甲因个人原因不能选用血必净注射液,甲、乙两名患者各自独立自主的选择一药一方进行治疗,则两人选取药方完全不同的概率是___________.【来源】黑龙江省大庆铁人中学2021届高三下学期第一次模拟考试 数学(理)试试题17.某校甲、乙、丙三名教师每天使用1号录播教室上课的概率分别是0.6,0.6,0.8,这三名教师是否使用1号录播教室相互独立,则某天这三名教师中至少有一人使用1号录播教室上课的概率是______.【来源】2021年全国高中名校名师原创预测卷 理科数学 (第二模拟)18.(2020雁塔区校级模拟)为了解某次测验成绩,在全年级随机地抽查了100名学生的成绩,得到频率分布直方图(如图),由于某种原因使部分数据丢失,但知道后5组的学生人数成等比数列,设90分以下人数为38,最大频率为b ,则b 的值为 .19.(2020•宁波校级模拟)某保险公司新开设了一项保险业务,规定该份保单在一年内如果事件E 发生,则该公司要赔偿a 元,假若在一年内E 发生的概率为p ,为使公司受益的期望值不低于a 的,公司应要求该份保单的顾客缴纳的保险金最少为 元.20.(2020·江苏高三(理))乒乓球比赛,三局二胜制.任一局甲胜的概率是(01)p p <<,甲赢得比赛的概率是q ,则q p -的最大值为_____.。
数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2009年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.【考试要求】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
4.理解不等式的性质及其证明.5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.6.掌握分析法、综合法、比较法证明简单的不等式.7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│.【考点透视】1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大.3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立⇔f(x)min≥M;f(x)≤M恒成立⇔f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>1a1+1a2+…+1a n恒成立的正整数n的取值范围.【分析】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围.【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1.由等比数列的性质知:数列{1a n }是以1a 1为首项,以1q为公比的等比数列,要使不等式成立,则须a 1(q n-1)q -1>1a 1[1-(1q )n ]1-1q ,把a 21=q -18代入上式并整理,得q -18(q n-1)>q(1-1qn ),q n>q 19,∵q>1,∴n>19,故所求正整数n 的取值范围是n≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.【例2】 (08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n,n∈N*.(Ⅰ)设b n =S n -3n,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【分析】 第(Ⅰ)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n 转化为关于n 与a 的关系,再利用a≤f(n)恒成立等价于a≤f(n)min 求解.【解】 (Ⅰ)依题意,S n+1-S n =a n+1=S n +3n ,即S n+1=2S n +3n,由此得S n+1-3 n+1=2(S n -3n).因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n∈N*, ①(Ⅱ)由①知S n =3n +(a -3)2 n -1,n∈N*,于是,当n≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2, a n+1-a n =4×3n -1+(a -3)2n -2=2n -2·[12·(32)n -2+a -3],当n≥2时,a n+1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32)n -2+a -3≥0,∴a≥-9,综上,所求的a 的取值范围是[-9,+∞].【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【分析】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(Ⅰ)小题;第(Ⅱ)小题利用差值比较法就可顺利解决.【解】 (Ⅰ)设等差数列{a n }的公差是d ,依题意得,⎩⎨⎧ a 1+2d =74a 1+6d =24,解得⎩⎨⎧ a 1=3d =2,∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (Ⅱ)证明:∵a n =2n +1,∴S n =n(a 1+a n )2=n 2+2n .2S p+q -(S 2p +S 2q )=2[(p +q)2+2(p +q)]-(4p 2+4p)-(4q 2+4q)=-2(p -q)2,∵p ≠q ,∴2S p+q -(S 2p +S 2q )<0,∴S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c ,n ∈N*.【分析】 第(1)小题可考虑用数学归纳法证明;第(2)小题可利用综合法结合不等关系的迭代;第(3)小题利用不等式的传递性转化等比数列,然后利用前n 项和求和,再进行适当放缩.【解】(Ⅰ)必要性:∵a 1=0,a 2=1-c ,又∵a 2∈[0,1],∴0≤1-c≤1,即c∈[0,1].充分性:设c∈[0,1],对n∈N*用数学归纳法证明a n ∈[0,1]. (1)当n =1时,a 1∈[0,1].(2)假设当n =k 时,a k ∈[0,1](k≥1)成立,则a k +1=ca k 3+1-c≤c+1-c =1,且a k +1=ca k 3+1-c≥1-c≥0, ∴a k +1∈[0,1],这就是说n =k +1时,a n ∈[0,1]. 由(1)、(2)知,当c∈[0,1]时,知a n ∈[0,1]对所胡n∈N*成立. 综上所述,a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1].(Ⅱ)设0<c <13,当n =1时,a 1=0,结论成立.当n≥2时,由a n =ca n -13+1-c ,∴1-a n =c(1-a n -1)(1+a n -1+a n -12)∵0<c <13,由(Ⅰ)知a n -1∈[0,1],所以1+a n -1+a n -12≤3,且1-a n -1≥0,∴1-a n ≤3c(1-a n -1),∴1-a n ≤3c(1-a n -1)≤(3c)2(1-a n -2)≤…≤(3c) n -1(1-a 1)=(3c) n -1,∴a n ≥1-(3c)n -1,n∈N*.(Ⅲ)设0<c <13,当n =1时,a 12=0>2-21-3c,结论成立.当n≥2时,由(Ⅱ)知a n ≥1-(3c)n -1>0,∴a n 2≥[(1-(3c)n -1)] 2=1-2(3c)n -1+(3c)(n -1)>1-2(3c)n -1, a 12+a 22+…+a n 2=a 22+…+a n 2>n -1-2[3c +(3c)2+…+(3c)n -1]=n -1-2[1+3c +(3c)2+…+(3c)n -1-1]=n +1-2[1-(3c)n]1-3c >n +1-21-3c.【点评】 本题是数列与不等式、数学归纳法的知识交汇题,属于难题,此类试题在高考中点占有一席之地,复习时应引起注意.本题的第(Ⅰ)小题实质也是不等式的证明,题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川高考)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【分析】 根据条件将前4项与前5项和的不等关系转化为关于首项a 1与公差d 的不等式,然后利用此不等关系确定公差d 的范围,由此可确定a 4的最大值.【解】 ∵等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,∴⎩⎪⎨⎪⎧ S 4=4a 1+4×32d≥10S 5=5a 1+5×42d≤15,即⎩⎨⎧ a 1+3d≥5a 1+2d≤3,∴⎩⎨⎧ a 4=a 1+3d≥5-3d 2+3d =5+3d 2a 4=a 1+3d =(a 1+2d)+d≤3+d , ∴5+3d 2≤a 4≤3+d ,则5+3d≤6+2d ,即d≤1.∴a 4≤3+d≤3+1=4,故a 4的最大值为4. 【点评】 本题最值的确定主要是根据条件的不等式关系来求最值的,其中确定数列的公差d 是解答的关键,同时解答中要注意不等式传递性的应用.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n 取何值时,f(n)有最大值.【分析】 第(Ⅰ)小题首先利用等比数列的通项公式求数列{a n }的通项,再求得f(n)的表达式;第(Ⅱ)小题通过商值比较法确定数列的单调性,再通过比较求得最值.【解】 (Ⅰ)a n =2002·(-12)n -1,f(n)=2002n·(-12)n(n -1)2(Ⅱ)由(Ⅰ),得|f(n +1)||f(n)|=20022n ,则当n≤10时,|f(n +1)||f(n)|=20022n >1,∴|f(11)|>|f(10)|>…>|f(1)|,当n≥11时,|f(n +1)||f(n)|=20022n <1,∴|f(11)|>|f(12)|>|f(13)|>…,∵f(11)<0,f(10)<0,f(9)>0,f(12)>0,∴f(n)的最大值为f(9)或f(12)中的最大者.∵f(12)f(9)=200212·(12)6620029·(12)36=20023·(12)30=(2002210)3>1, ∴当n =12时,f(n)有最大值为f(12)=200212·(12)66.【点评】 本题解答有两个关键:(1)利用商值比较法确定数列的单调性;(2)注意比较f(12)与f(9)的大小.整个解答过程还须注意f(n)中各项的符号变化情况.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立.【分析】 第(Ⅰ)小题通过代数变换确定数列a n +1与a n 的关系,结合定义判断数列{a n }为等比数列;而第(Ⅱ)小题先假设条件中的不等式成立,再由此进行推理,确定此不等式成立的合理性.【解】 (Ⅰ)由题意,S n +a n =4,S n +1+a n +1=4,由两式相减,得(S n +1+a n +1)-(S n +a n )=0,即2a n +1-a n =0,a n +1=12a n ,又2a 1=S 1+a 1=4,∴a 1=2,∴数列{a n }是以首项a 1=2,公比为q =12的等比数列.(Ⅱ)由(Ⅰ),得S n =2[1―(12)n]1―12=4-22-n.又由S k+1-2S k -2>2,得4-21-k-24-22-k-2>2,整理,得23<21-k <1,即1<2 k -1<32, ∵k ∈N *,∴2k -1∈N *,这与2k -1∈(1,32)相矛盾,故不存在这样的k ,使不等式成立.【点评】 本题解答的整个过程属于常规解法,但在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北高考)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.【分析】 第(Ⅰ)小题利用反证法证明;第(Ⅱ)小题利用等比数列的定义证明;第(Ⅲ)小题属于存在型问题,解答时就假设a <S n <b 成立,由此看是否能推导出存在存在实数λ.【解】 (Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即 (23λ-3)2=λ(49λ-4)⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列.(Ⅱ)解:因为b n+1=(-1)n+1[a n+1-3(n +1)+21]=(-1)n+1(23a n -2n +14)=-23(a n -3n -21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b n =0(n∈N*),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,∴b n+1b n =-23(n∈N*).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.(Ⅲ)由(Ⅱ)知,当λ=-18,b n =0(n∈N*),S n =0,不满足题目要求;.∴λ≠-18,故知b n =-(λ+18)×(-23)n -1,于是S n =-35(λ+18)·[1-(-23)n]要使a <S n <b 对任意正整数n 成立,即a <--35(λ+18)·[1-(-23)n]<b ,(n∈N*).得a 1-(-23)n <-35(λ+18)<b 1-(-23)n,(n∈N*) ①令f(n)=1-(-23)n ,则当n 为正奇数时,1<f(n)≤53,当n 为正偶数时59≤f(n)<1;∴f(n)的最大值为f(1)=53,f(n)的最小值为f(2)=59,于是,由①式得59a <-35(λ+18)<35b ,∴-b -18<λ<-3a -18,(必须-b <-3a ,即b >3a).当a <b <3a 时,由-b -18≥-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b,且λ的取值范围是(-b -18,-3a -18). 【点评】 存在性问题指的是命题的结论不确定的一类探索性问题,解答此类题型一般是从存在的方面入手,寻求结论成立的条件,若能找到这个条件,则问题的回答是肯定的;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的.其过程可以概括为假设——推证——定论.本题解答注意对参数λ及项数n 的双重讨论.【专题训练】 一、选择题1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 64.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k = ( )A .9B .8C .7D .65.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( ) A .y 有最大值1,无最小值 B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值18.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1] B.(-∞,-1)∪(1,+∞) C.[3,+∞) D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( ) A .1 B .2 C .3 D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n∈N*都有a n+1>a n ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分比要条件 D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n = ( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n∈N*),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]二、填空题13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd 的最小值是________. A.0 B.1 C.2 D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A.若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k∈N*(k<n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________. 三、解答题17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,….(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数.20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,…21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n∈N*都成立的最小正整数m ;22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.【专题训练】参考答案 一、选择题1.B 【解析】a 4a 8=(a 1+3d)(a 1+7d)=a 12+10a 1d +21d 2,a 62=(a 1+5d)2=a 12+10a 1d +25d 2,故a 4a 6≤a 6a 8. 2.D 【解析】设其公比为q,则b n -c n =a n (q -1)(1-q 2)=-a n (q -1)2(q +1),当q =1时,b n =c n ,当q >0,且q≠1时,b n <c n ,故b n ≤c n .3.B 【解析】因为q≠1,b 1>0,b 11>0,所以b 1≠b 11,则a 6=a 1+a 112=b 1+b 112>b 1b 11=b 6.4.B 【解析】因数列为等差数列,a n =S n -S n -1=2n -10,由5<2k -10<8,得到k =8. 5.A 【解析】S 4a 5-S 5a 4 =(a 1+a 2+a 3+a 4)a 4q -(a 1+a 2+a 3+a 4+a 5)a 4=-a 1a 4=-a 12q 3<0,∴S 4a 5<S 5a 4. 6.D 【解析】由S n =n(n +1)2,得f(n)=n (n +32)(n +2)=nn 2+34n +64=1n +64n+34≤1264+34=150,当n =64n ,即n =8时取等号,即f(n)max =f(8)=150.7.B 【解析】由已知y =-13(sinx -12)2+1,且sinx >12,y <1,所以当sinx =1时,y有最小值1112,无最大值.8.D 【解】∵等比数列{a n }中a 2=1,∴S 3=a 1+a 2+a 3=a 2(1q +1+q)=1+q +1q .∴当公比q >0时,S 3=1+q +1q ≥1+2q·1q =3,当公比q <0时,S 3=1-(-q -1q)≤1-2(-q)·(-1q )=-1,∴S 3∈(-∞,-1]∪[3,+∞).9.B 【解析】3b 是1-a 和1+a 的等比中项,则3b 2=1-a 2⇔a 2+3b 2=1,令a =cos θ,3b =sin θ,θ∈(0,2π),所以a +3b =cos θ+3in θ=2sin(θ+π6)≤2.10.A 【解析】当a 1<0,且0<q <1时,数列为递增数列,但当数列为递增数列时,还存在另一情况a 1>0,且q >1,故选A. 11.C 【解析】由a 11a 10<-1,得a 10+a 11a 10<0⇔a 1+a 20a 10<0⇔12×20(a 1+a 20)12×19(a 1+a 19)<0⇔S 20S 19<0,则要使S n 取得最小正值必须满足S 19>0,且S 20<0,此时n =19.12.C 【解析】f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)=f(x +y),a 1=12,a n =f(n)(n∈N*),a n+1=f(n +1)=f(1)f(n)=12a n ,∴S n =12[1-(12)n ]1-12=1-(12)n .则数列{a n }的前n 项和的取值范围是[12,1).二、填空题13.2 【解析】由a 4-a 2=8,可得公差d =4,再由a 3+a 5=26,可得a 1=1,故S n =n +2n (n -1)=2n 2-n ,∴T n =2n -1n =2-1n,要使得T n ≤M ,只需M ≥2即可,故M 的最小值为2,答案:214.(-1,0]∪(0,13] 【解析】a 1q 1-q ≤a 12⇒q≤13,但|q|<1,且q≠0,故q∈(-1,0]∪(0,13]. 15.4 【解析】∵(a +b)2cd =(x +y)2xy ≥(2xy)2xy=4.16.D 【解析】对于①:∵S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴S 5=S 6,又d <0,S 5=S 6为最大,故A 正确;对于②:根据等差中项知正确;对于③:∵d>0,点(n ,S n )分布在开口向上的抛物线,故{S n }中一定有最小的项,故③正确;而a k -a k+1=-d ,a k -a k -1=d ,且d≠0,故④为假命题. 三、解答题17.【解】(Ⅰ)设{a n }的公差为d ,由已知条件,⎩⎨⎧ a 1+d =1a 1+4d =-5,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5.(Ⅱ)S n =na 1+n(n -1)2d =-n 2+4n =-(n -2)2+4,所以n =2时,S n 取到最大值4.18.【解】(Ⅰ)由已知得a n +1=a n +1,即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列,故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n.b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.因为b n ·b n +2-b 21+n =(2n-1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n =-2n<0,所以b n ·b n +2<b 21+n .19.【解】(Ⅰ)由a n =3-a n -12,n =2,3,4,….整理得1-a n =-12(1-a n -1).又1-a 1≠0,所以{1-a n }是首项为1-a 1,公比为-12的等比数列,得a n =1-(1-a 1)(-12)n -1, (Ⅱ)由(Ⅰ)可知0<a n <32,故b n >0.那么,b n+12-b n 2=a n+12(3-2a n+1)-a n 2(3-2a n )=(3-a n 2)2(3-2×3-a n 2)-a n 2(3-2a n )=9a n 4(a n -1)2.又由(Ⅰ)知a n >0,且a n ≠1,故b n+12-b n 2>0,因此b n <b n+1,为正整数.20.【解】(Ⅰ)由题设:a n+1=(2-1)(a n +2)=(2-1)(a n -2)+(2-1)(2+2),=(2-1)(a n -2)+2,∴a n+1-2=(2-1)(a n -2). 所以,数列{a n -2}a 是首项为2-2,公比为2-1)的等比数列,a n -2=2(2-1)n,即a n 的通项公式为a n =2[(2-1)n +1],n =1,2,3,….(Ⅱ)用数学归纳法证明.(ⅰ)当n =1时,因2<2,b 1=a 1=2,所以2<b 1≤a 1,结论成立.(ⅱ)假设当n =k 时,结论成立,即2<b k ≤a 4k -3,,也即0<b n -2≤a 4k -3-2,当n =k +1时,b k+1-2=3b k +42b k +3-2=(3-22)b k +(4-32)2b k +3=(3-22)(b k -2)2b k +3>0,又12b k +3<122+3=3-22, 所以b k+1-2=(3-22)(b k -2)2b k +3<(3-22)2(b k -2)≤(2-1)4(a 4k -3-2)=a 4k+1- 2也就是说,当n =k +1时,结论成立.根据(ⅰ)和(ⅱ)知2<b n ≤a 4n -3,n =1,2,3,….21.【解】(Ⅰ)设这二次函数f(x)=ax 2+bx (a≠0) ,则 f`(x)=2ax +b ,由于f`(x)=6x -2,得a =3 ,b =-2,所以f(x)=3x 2-2x.,又因为点(n ,S n )(n∈N*)均在函数y =f(x)的图像上,所以S n =3n 2-2n ,当n≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5,当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5(n∈N*).(Ⅱ)由(Ⅰ)得知b n =3a n a n +1=3(6n -5)[6(n -1)-5]=12(16n -5-16n +1), 故T n =∑n i=1b i =12[(1-17)+(17–113)+…+(16n -5-16n +1)]=12(1–16n +1), 因此,要使12(1-16n +1)<m 20(n∈N*)成立的m ,必须且仅须满足12≤m 20,即m≥10,所以满足要求的最小正整数m 为10.22.【解】(Ⅰ)由于21()(12)n n a n n a n λ+=+-=,,,且11a =. 所以当21a =-时,得12λ-=-,故3λ=.从而23(223)(1)3a =+-⨯-=-.(Ⅱ)数列{}n a 不可能为等差数列,证明如下:由11a =,21()n n a n n a λ+=+-得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列.(Ⅲ)记2(12)n b n n n λ=+-=,,,根据题意可知,10b <且0n b ≠,即2λ> 且2*()n n n λ≠+∈N ,这时总存在*0n ∈N ,满足:当0n n ≥时,0n b >;当01n n -≤时,0n b <.所以由1n n n a b a +=及110a =>可知,若0n 为偶数,则00n a <,从而当0n n >时,0n a <;若0n 为奇数,则00n a >,从而当0n n >时0n a >.因此“存在*m ∈N ,当n m >时总有0n a <”的充分必要条件是:0n 为偶数,记02(12)n k k ==,,,则λ满足22221(2)20(21)210k k b k k b k k λλ-⎧=+->⎪⎨=-+--<⎪⎩.故λ的取值范围是22*4242()k k k k k λ-<<+∈N。
压轴解答题第五关 以数列与不等式相结合的综合问题【名师综述】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.预计在高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.类型一 求数列中的最值问题典例1 已知等比数列{}n a 的公比为()1λλ>,且11a =,数列{}n b 满足11n n n b b a λ++-=-,111b λ=-. (1)求数列{}n b 的通项公式.(2)规定:[]x 表示不超过x 的最大整数,如[]1.22-=-,[]2.12=.若2λ=,122n n c b n =+-,记()1232n n T c c c c n =+++⋅⋅⋅+≥ 求2221n n n T T T ⎡⎤-+⎢⎥-⎣⎦的值,并指出相应n 的取值范围.【来源】2021年浙江省新高考测评卷数学(第三模拟)【答案】(1)11n n b n λλλλ=-+--,*n N ∈;(2)当2n =时,22231nn n T T T ⎡⎤-+=⎢⎥-⎣⎦;当3n ≥时,22221n n n T T T ⎡⎤-+=⎢⎥-⎣⎦.【解析】(1)由题意得()11n na λλ-=>,则()11n n nb b λλλ+-=->,当2n ≥时,()()()112211n n n n n b b b b b b b b ---=-+-+⋅⋅⋅+-+,()()()12111n n λλλλλλλ--=-+-+⋅⋅⋅+-+-()()121111n n n λλλλλ--=++⋅⋅⋅+--+-11nn λλλλ=-+--, 又由111b λ=-,符合上式, 因此11nn b n λλλλ=-+--,*n ∈N .(2)由(1)知,当2λ=时,1102221n n n c b n ==>+--.易知2n =时,21243T c c =+=,此时22210313n n n T T T ⎡⎤-+⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦;3n =时,31233121T c c c =++=,此时2221012212110n n n T T T ⎡⎤-+⎡⎤=++=⎢⎥⎢⎥-⎣⎦⎣⎦; 当3n ≥时,3n T T ≥,因为2n ≥时,113212n n n c +=<-, 所以1341111182111317131311122242412n n n n T -+-⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦<+++⋅⋅⋅+=+⨯=+-<⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-,因此374n T T ≤<, 令1n x T =-,则103,214x ⎡⎫∈⎪⎢⎣⎭,22211111n n n n n T T T x T T x -+=-+=+--, 利用对勾函数的单调性,得125,12x A x ⎛⎤+∈ ⎥⎝⎦(其中10122110A =++), 从而22221n n n T T T ⎡⎤-+=⎢⎥-⎣⎦.综上,当2n =时,22231n n n T T T ⎡⎤-+=⎢⎥-⎣⎦;当3n ≥时,22221n n n T T T ⎡⎤-+=⎢⎥-⎣⎦.【名师指导】数列与函数、不等式综合问题的求解策略:1、已知数列的条件,解决函数问题,解决此类问题一把要利用数列的通项公式,前n 项和公式,求和方法等对于式子化简变形,注意数列与函数的不同,数列只能看作是自变量为正整数的一类函数,在解决问题时要注意这一特殊性;2、解决数列与不等式的综合问题时,若是证明题中,则要灵活选择不等式的证明方法,如比较法、综合法、解析法、放缩法等,若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决. 【举一反三】在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg n n a T =,1n ≥. (1)求数列{}n a 的通项公式;(2)设1221212(1)n nn n n a b a a --+=-,设数列{}n b 的前n 项和为n S ,1n nnT S S =-,求n T 的最大项和最小项. 【答案】(1)2n a n =+;(2)最大项为1161120T =-,最小项为242584T =-. 【解析】(1)设这2n +个数构成递增的等比数列{}n t 各项分别为12312,,,n n t t t t t ++,则这2n +个数的乘积12312nn n T t t t t t ++=⋅⋅⋅①, 21321n n n nT t t t t t t ++=⋅⋅⋅⋅⋅②,由等比数列的性质可得 122133100n n n k n k t t t t t t t t +++-⋅=⋅=⋅⋅=⋅=①②两式相乘可得()222210010n n nT ++==,所以210n n T +=,()1n ≥,得2lg lg102n n n a T n +===+,(*)n N ∈.(2)1122121212121212(1)(1)n n n n n nn n n n a a a b a a a a ---+-+-++⋅=-⋅=-1121211111(1)(1)2123n n n n a a n n --+-⎛⎫⎛⎫⋅=⋅ ⎪ ⎪+⎝⎭⎝++⎭=--+,当2n k =时,1111111123557212332369n n S n n n n ⎛⎫⎛⎫⎛⎫=+-++⋯++=-= ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, 当21n k =-时,11111111263557212332369n n S n n n n +⎛⎫⎛⎫⎛⎫=+-++⋯++=+= ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, 2,2,6926,21,69n nn k k Z n S n n k k Z n ⎧=∈⎪⎪+∴=⎨+⎪=-∈⎪+⎩,则当2n k =时,11323nS n =-+单调递增,所以1ny S =单调递减, 1n n nT S S =-单调递增,所以2n =时,n T 最小为222142142521484T S S =-=-=- 当n →+∞时,116911981933232323232321n n n T n S S n n n n n n=-+--=-=--=---+++ 所以83n T <-当21n k =-时,11323n S n =++单调递减,所以1n y S =单调递增, 1n n nT S S =-单调递减,所以1n =时,n T 最大为1111815161158120T S S =-=-=-, 当n →+∞时,116911981933232632326326132n n n n n n S n T n S n n ++-=+-+=-+++++++-=+= 所以83n T >- 所以最大值为1161120T =-,最小值为222142584T S S =-=-. 类型二 求有数列参与的不等式恒成立条件下参数问题典例2 函数()[)e cos ,0,xf x a x x ∞=∈+,记n x 为()f x 的从小到大的第*(N )n n ∈个极值点.(1)证明:数列{()}n f x 是等比数列;(2)若对一切*N ,()n n n x f x ∈≤恒成立,求a 的取值范围.【答案】(1)证明见解析; (2)22[,)ππ-+∞.【解析】(1)由题()2e cos 4xf x a x π⎛⎫=+ ⎪⎝⎭',令()0f x '=,求出函数的极值点,根据等比数列定义即可得到结果;(2)342e 34n n ππππ-≤-恒成立问题,设()e (0)tg t t t =>,然后运用导数知识得到()min n g x ⎡⎤⎣⎦,由()min 2n g x ⎡⎤≤⎣⎦,得到a 的取值范围. (1)()e cos e sin 2e cos 4x x xf x a x a x a x π⎛⎫=-=+ ⎪⎝⎭',令()0f x '=,由0x ≥,得42x m πππ+=-,即*3,N 4x m m ππ=-∈, 而对于cos 4x π⎛⎫+ ⎪⎝⎭,当Z k ∈时,若22242k x k πππππ-<+<+,即32244k x k ππππ-<<+,则cos 04x π⎛⎫+> ⎪⎝⎭;若322242k x k πππππ+<+<+,即52244k x k ππππ+<<+,则cos 04x π⎛⎫+< ⎪⎝⎭;因此,在区间()31,4m m πππ⎛⎫-- ⎪⎝⎭与()3,,44m m f x ππππ⎛⎫-+ ⎪⎭'⎝上的等号总相反, 于是当*3,N 4x m m ππ=-∈时,()f x 取得极值, ∴*3,N 4n x n n ππ=-∈, 此时,()3314432ecos (1)e 42n n n nf x a n a ππππππ--+⎛⎫=-=- ⎪⎝⎭, 易知()0n f x ≠,而()()()312413142(1)e2e 2(1)en n n n n n f x f x a πππππ+-++-+-==--是常数, 故数列(){}n f x 是首项为()412e f x π=,公比为e π-的等比数列﹒(2)对一切()*N ,n n n x f x ∈≤恒成立,即3432e 4n n ππππ--≤342e 34n n ππππ-≤-恒成立, 设()e (0)tg t t t =>,则()()2e 1t t g t t-=',今()0g t '=得1t =, 当01t <<时,()0g t '<,∴()g t 在区间()0,1上单调递减; 当1t >时,()0g t '>,∴()g t 在区间()1,+∞上单调递增;∵()0,1n x ∈,且当2n ≥时,()11,,n n n x x x ∞+∈+<, ∴()()()212min54min ,min ,e 444n g x g x g x g g g πππππ⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤==== ⎪ ⎪ ⎪⎢⎥⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦, 因此,()*N ,n n n x f x ∈≤恒成立,当且仅当224e a ππ≤,解得22e 4a ππ-≥, 故实数a 的取值范围是22e ,4ππ∞-⎡⎫+⎪⎢⎪⎣⎭﹒ 【点睛】解决数列与函数的综合问题时,如果是证明题要根据等比数列的定义明确证明的方向,如果是不等式恒成立问题,要使用不等式恒成立的各种不同解法,如变量分离法、最值法、因式分解法等,总之解决这类问题把数列看做特殊函数,并把它和不等式的知识巧妙结合起来综合处理就行了.【举一反三】已知数列{}n a 为等差数列,12a =,其前n 项和为n S ,数列{}n b 为等比数列,且()2112233124n n n a b a b a b a b n +++++=-⋅+对任意的*n N ∈恒成立.(1)求数列{}n a 、{}n b 的通项公式;(2)是否存在p ,*q N ∈,使得()2222020p q a b +-=成立,若存在,求出所有满足条件的p ,q ;若不存在,说明理由;(3)是否存在非零整数λ,使不等式122111111cos 21n nn a a a a a πλ+⎛⎫⎛⎫⎛⎫---<⎪⎪⎪+⎝⎭⎝⎭⎝⎭*N n ∈都成立?若存在,求出λ的值;若不存在,说明理由.【答案】(1)2,2nn n a n b ==;(2)不存在,理由见解析; (3)存在,1λ=±. 【解析】(1)法1,由题设可得114a b =,112220a b a b +=,11223368a b a b a b ++=,利用等差、等比数列的通项公式列方程求基本量,进而可得{}n a 、{}n b 的通项公式;法2:作差法可得()1·22n n n a b n n +=,令n a kn b =+,结合等差、等比数列的性质求参数,即可得通项公式.(2)假设存在p ,*q N ∈满足条件,则22485012q p p -+-=,根据左侧的奇偶性确定q ,进而求p ,即可确定存在性.(3)由()11cos12n n a π++=-,设1211111111n n n c a a a a =⎛⎛⎫⎛⎫--⋯-+ ⎪⎪⎝⎭⎝⎭⎝()11n n c λ+-<,作商法判断{}n c 单调性,讨论n 的奇偶性结合恒成立求λ的范围,进而可判断存在性. (1)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q .∵()21122331?24n n n a b a b a b a b n ++++⋯+=-+, 令1n =,2,3得:114a b =,112220a b a b +=,11223368a b a b a b ++=,又12a =,∴112233221648a b a b a b =⎧⎪=⎪⎨=⎪⎪=⎩,即()()()()2221622248d q d q ⎧+=⎪⎨+=⎪⎩,解得:236d q ⎧=-⎪⎨⎪=⎩或22d q =⎧⎨=⎩. 经检验2d =,2q =符合题意,2,63d q =-=不合题意,舍去.∴2,2n n n a n b ==.法2:由()21122331?24n n n a b a b a b a b n ++++⋯+=-+①, 则()()1112233112?242n n n a b a b a b a b n n +--+++⋯+=-+②, ①-②得,()1·22n n n a b n n +=,又114a b =,也符合上式, ∴()1*·2n n n a b n n N +=∈, 由于{}n a 为等差数列,令n a kn b =+,则1·2n n n b kn b+=+,∵{}n b 为等比数列,则()()()1211n n n k n b b q b n kn b -⎡⎤-+⎣⎦==-+(为常数),即()()22220qk k n bq kq b k n qb -+--+-=恒成立,∴2q =,0b =,又12a =,则2k =,故2,2nn n a n b ==;(2)假设存在p ,*q N ∈满足条件,则()24422020q p +-=,化简得22485012q p p -+-=, 由*p N ∈得,248501p p +-为奇数,故22q -为奇数,故2q =. ∴2485011p p +-=,即2242510p p +-=,可得2506p -±=,这与*p N ∈矛盾,∴不存在满足题设的正整数p ,q ;(3)由2n a n =,得()()11coscos 112n n a n ππ++=+=-, 设1211111111n n n c a a a a =⎛⎛⎫⎛⎫--⋯-+ ⎪⎪⎝⎭⎝⎭⎝()11.n n c λ+-< ()()212111214841121234831231122n n n n n a c n n n c n n n n n a n a +++++++====>++++-+-+ +⎝⎝,由0n c >,则1n n c c +>,数列{}n c 单调递增. 假设存在这样的实数λ,使得不等式()11n n c λ+-<对一切*N n ∈都成立,则①当n 为奇数时,得()123n min c c λ<==②当n 为偶数时,得()285n min c c λ-<==85λ>综上,8523λ⎛∈ ⎝⎭,由λ是非零整数,则存在1λ=±满足条件. 类型三 数列参与的不等式的证明问题典例3 对于给定的正整数m 和实数α,若数列{}n a 满足如下两个性质:①12m a a a α++⋅⋅⋅+=;②对*n N ∀∈,+=n m n a a ,则称数列{}n a 具有性质()m P α.(1)若数列{}n a 具有性质2(1)P ,求数列{}n a 的前10项和;(2)对于给定的正奇数t ,若数列{}n a 同时具有性质4(4)P 和()t P t ,求数列{}n a 的通项公式; (3)若数列{}n a 具有性质()m P α,求证:存在自然数N ,对任意的正整数k ,不等式12N N N k a a a k mα+++++⋅⋅⋅+≥均成立.【来源】北京市东城区2022届高三上学期期末统一检测数学试题 【答案】(1)5(2)1n a = (3)证明见解析 【解析】(1)根据题意得到当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,从而()110255S a a +==;(2)根据题干条件得到21n n n a a a ++==,故{}n a 为常数列,结合12344a a a a +++=求出1n a =;(3)对要证明的不等式变形,构造n n b ma α=-,研究其性质,证明出结论.(1)由题意得:121a a +=,2n n a a +=,则当n 为奇数时,1n a a =,当n 为偶数时,2n a a =,所以数列{}n a 的前10项和()110255S a a +==;(2)由题意得:12344a a a a +++=,4n n a a +=,对于给定的正奇数t ,12t a a a t ++⋅⋅⋅+=,对*n N ∀∈,n t n a a +=,则令21t k =-,k *∈N ,得:2221214n n k k n k n a a a a +++-+-+===,11212n n k n k n a a a a +++-+===,综上:{}n a 为常数列,由12344a a a a +++=可得:1n a = (3)要证12N N N k a a a k mα+++++⋅⋅⋅+≥,只需证12N N N k a a a k m α+++++⋅⋅⋅+≥⋅,即证120N N N k a a a m m m ααα+++⎛⎫⎛⎫⎛⎫-+-+⋅⋅⋅+-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令数列n n b ma α=-,由于{}n a 具有性质()m P α,即12m a a a α++⋅⋅⋅+=,对*n N ∀∈,+=n m n a a ,则12120m mb b b a a a mmmααα++⋅⋅⋅+=-+-+⋅⋅⋅+-=,对*n N ∀∈,n m n m n n b mmb a a αα++=--==,所以{}n b 具有性质(0)m P ,令()123i i S b b b b i N *=+++∈,设12,,m S S S 的最小值为()1N S N m ≤≤,对*k N ∀∈,令N k pm r +=+,,,0p r N r m ∈<≤,由于{}n b 具有性质(0)m P ,则有0pm S =,所以123123N k pm r pm pm pm pm pm r r r N S S S b b b b b b b b S S ++++++==+++++=++++=≥,所以0N k N S S +-≥,所以12N N N k a a a k mα+++++⋅⋅⋅+≥成立【举一反三】数列{}n a 满足()*121224N 2n n n a a na n -+++=-∈, (1)求3a 的值;(2)求数列{}n a 前n 项和n T ; (3)令11b a =,()11111223n n n T b a n n n -⎛⎫=++++⋅⋅⋅+≥ ⎪⎝⎭,证明:数列{}n b 的前n 项和n S 满足22ln n S n <+. 【答案】(1)14;(2)1122n -⎛⎫- ⎪⎝⎭;(3)证明见解析.【解析】(1)根据已知条件,分别取n =1,2,3即可依次算出123,,a a a ; (2)用作差法求出{}n a 的通项公式,再求其前n 项和;(3)求123,,S S S ,猜想n S ,用数学归纳法证明n S ;用导数证明()ln 1(0)1xx x x<+>+,令1x n =,得11ln 11n n ⎛⎫+> ⎪+⎝⎭,用这个不等式对n S 放缩即可得证. (1)依题()()312312312132223323244224a a a a a a --++⎛⎫=++-+=---= ⎪⎝⎭, 314a ∴=; (2)依题当2n ≥时,()()121211212122144222n n n n n n n n nna a a na a a n a ----++⎛⎫⎡⎤=++-++-=---= ⎪⎣⎦⎝⎭, 112n n a -⎛⎫∴= ⎪⎝⎭,又1012412a +=-=也适合此式, 112n n a -⎛⎫∴= ⎪⎝⎭,∴数列{}n a 是首项为1,公比为12的等比数列,故1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-; (3)111b a ==,1111S b T ∴==⨯, 1221122T b a ⎛⎫=++ ⎪⎝⎭, ()1212121221111112222T S S b T a T a T ⎛⎫⎛⎫⎛⎫∴=+=+++=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2323232331111111111123232323T S S b T a T a T ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++++=+++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,猜想:1112n n S T n ⎛⎫=+++ ⎪⎝⎭① 下面用数学归纳法证明: (i)当n =1,2时,已证明①成立;(ii)假设当n k =时,①成立,即1112k k S T k ⎛⎫=+++ ⎪⎝⎭.从而1111111112121k k k k k k T S S b T a k k k +++⎛⎫⎛⎫=+=++++++++ ⎪ ⎪++⎝⎭⎝⎭ ()111121kk T a k +⎛⎫=++++ ⎪+⎝⎭111121k T k +⎛⎫=+++⎪+⎝⎭. 故①成立. 先证不等式()ln 1(0)1xx x x<+>+ ②令()()ln 11xg x x x=+-+, 则()22110(0)1(1)(1)x g x x x x x '=-=>>+++. ()()00(0)g x g x ∴>=>,即②成立.在②中令1x n =,得到111ln 1111n n n n ⎛⎫+>=⎪+⎝⎭+ ③ 当1n =时,12S <; 当2n 时,由①及③得:1112n n S T n ⎛⎫=+++ ⎪⎝⎭ 111ln2ln 1ln 121n T n ⎡⎤⎛⎫⎛⎫<++++++ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦ ()()111ln2ln3ln2(ln ln 122n n n -⎛⎫⎡⎤=++-++--- ⎪⎣⎦⎝⎭()21ln n <+. 证明完毕.【精选名校模拟】1.已知数列{}n a 满足113a =,11113n n na a +++=. (1)证明:数列1134n na +⎧⎫-⎨⎬⎩⎭为等比数列,并求数列{}n a 的通项公式;(2)求证:1235n a a a ++⋅⋅⋅+<. 【来源】2021年浙江省新高考测评卷数学(第六模拟)【答案】(1)证明见解析;()14331nn n a -=⎡⎤+-⎣⎦;(2)证明见解析. 【解析】(1)因为11113n n n a a +++=,所以2211111313131334444n n n n n n n n n a a a a ++++++⎛⎫-=--=-+=-- ⎪⎝⎭, 又119933444a -=-=,所以数列1134n n a +⎧⎫-⎨⎬⎩⎭是以34为首项,1-为公比的等比数列, 所以()11133144n n n a +--=⋅-,即()113314n n n a -⎡⎤=+-⎣⎦,故()14331n n n a -=⎡⎤+-⎣⎦. (2)由113a =,216a =,得121325a a +=<,当4n ≥且n 为偶数时,11111141143341133131333231333n n n n n n n n n n na a ------+⎛⎫⎛⎫+=+=⋅<+ ⎪⎪+-⋅+⋅-⎝⎭⎝⎭, 所以1234111411113633333n n n a a a -⎛⎫++⋅⋅⋅+<++⨯++⋅⋅⋅++ ⎪⎝⎭114123132712322754513+⨯=+=<<-; 当3n ≥且n 为奇数时,1n +为偶数,则12135n n a a a a +++⋅⋅⋅++<,由于0n a >,则1235n a a a ++⋅⋅⋅+<.综上,1235n a a a ++⋅⋅⋅+<.2.已知数列{}n a 是正项等比数列,且12a =,32111a a -=,若数列{}n b 满足114b =,11n n n b b a +=+. (1)求数列{}n a 和{}n b 的通项公式; (2)已知111n n n nc a b b ++=⋅⋅,记12n n S c c c =++⋅⋅⋅+.若28n S nλ>-恒成立,求实数λ的取值范围.【来源】2021年浙江省新高考测评卷数学(第七模拟) 【答案】(1)212n n a -=,()1214n n b =-;(2)24,5⎛⎫+∞⎪⎝⎭. 【解析】(1)设数列{}n a 的公比为q ,则0q >, 因为12a =,32111a a -=,所以211122q q -=,即21120q q --=,解得1q =-(舍去)或12q =,故数列{}n a 的通项公式为1211222n n n a --=⨯=. 因为11n n nb b a +=+,所以212n n n b b -+-=, 又114b =,所以当2n ≥时,()()()312132111242n n n n b b b b b b b b --=+-+-+⋅⋅⋅+-=++⋅⋅⋅+()()1121421124n n -==--.经检验,114b =也满足上式,所以()1214n n b =-.(2)由(1)得,()()()()11111128212121212116n nn nn n n n n n c a b b -++++⋅===⋅⋅-⋅--⋅- ()()()()1118212111821212121n nn n nn +++⎡⎤⋅---⎛⎫⎣⎦==- ⎪---⋅-⎝⎭,所以12122311111118212121212121n n n n S c c c +⎛⎫=++⋅⋅⋅=-+-+⋅⋅⋅+- ⎪------⎝⎭111111*********n n ++⎛⎫⎛⎫=-=- ⎪ ⎪---⎝⎭⎝⎭. 又28n S n λ>-恒成立,所以21821n n λ+>-恒成立.设()2121n n f n +=-,*N n ∈,则()()()()()()()22122121212211*********n n n n n n n n n n f n f n +++++-++⋅-+++-=-=----. 易知当2n ≤时,()()10f n f n +->;当3n ≥时,()()10f n f n +-<. 于是()()()()()12345f f f f f <<>>>⋅⋅⋅,所以()()max 335f n f ==,所以实数λ的取值范围是24,5⎛⎫+∞ ⎪⎝⎭. 3.已知数列{n a }的前n 项和为n S 且满足2n S =3n a -n . (1)求{n a }的通项公式; (2)证明:1211132n a a a +++<. 【来源】重庆市育才中学2022届高三上学期一诊模拟(三)数学试题 【答案】(1)312n n a -=(2)证明见解析 【解析】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩得到递推公式,再构造等比数列求出通项公式;(2)等比放缩,证明不等式.(1)因为2n S =3n a -n . 所以12n S +=13n a +-n -1,所以所以1111313222n n n a a a +⎛⎫+=++=+ ⎪⎝⎭, 所以12n a ⎧⎫+⎨⎬⎩⎭是首项为11322a +=,公比为3的等比数列.所以1322nn a +=,所以312n n a -=;(2)证明: ,122321211·11313313331133n n n n n n n n -==⋅⋅=----,.4.已知实数列{n a },{}n b |满足11,1a p b ==.数列{n n a b }是公差为p 的等差数列,数列n n a b ⎧⎫⎨⎬⎩⎭是公比为p 的等比数列.(1)若2p =,求数列{n a }的通项公式;(2)记数列2{}n a ,2{}n b 的前n 项和分别为n S ,n T .若2p ≥,证明:()*2211,N 1n n nS T n ap ->-∈-.【来源】浙江省“数海漫游”2021-2022学年高三上学期第二次联考数学试题 【答案】(1)122n n a n +,*N n ∈;(2)证明见解析.【解析】(1)由题设可得2n n a b n =,2n nna b =,两式相乘并结合12a =即可确定{n a }的通项公式; (2)由(1)易知21n n a n p +=⋅,21n n nb p -=,应用错位相减法求n S ,n T ,进而可得222211)11(1[(1)]1(1)n n nnnS T p p p p p p a n +-=+-⋅---,根据单调性和已知条件,对右式放缩处理即可证结论. (1)由题设,{n n a b }是首项、公差均为2的等差数列,n n a b ⎧⎫⎨⎬⎩⎭是首项、公比均为2的等比数列,∴2n n a b n =,2n nna b =,则212n n a n +=⋅,故122n n a n +=,而12a =,∴122n n a n +=,*N n ∈.(2)由题设易知:21n n a n p +=⋅,21n n nb p -=, 23112...n n S p p n p +=⨯+⨯++⋅,则341212...(1)n n n p p n p pS n p ++=⨯+⨯++-⋅+⋅,所以223122((.))111..n n n n n p p p p pn pn p S p p +++-=+++-⋅=---,故222(1)(1)1n n n p p p S np p+-=---,则22(1)1(1)n n n n p p p p S np a p -=--- 01112...n n n T p p p -=+++,则121121...n n n T n np p p p p--=++++, 所以011111111(1)...11nn n n n n n p T p p p p p p p---=+++-=--,故22(1)(1)(1)n n n n p p np T p p p p -=---,则2222(1)1(1)(1)n n n n n T p p np p p p a -=--- 222211)11|(1[(1)]|1(1)n nnn nS T p p a p p n pp +-=+-⋅---,2p ≥,*N n ∈, 而21221)11(1[(1)]1(1)n n p p p p n p p ++-⋅-=--212(1)11[]01(1)(1)1n n p n p p n p np p p +--++>---恒成立, 当p 趋向于无穷大时,211n p +、21n p趋向于0,故222211)11(1[(1)]1(1)n n nnn S T p p p p p p a n +-=+-⋅---211(1)p p p p n >-⋅--, 又211(1)p p p p n -⋅--在*N n ∈上递增,所以222111(1)(1)n n n S T p p a p p p ->-=----,得证. 5.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.【来源】安徽省淮南市2022届高三上学期一模理科数学试题 【答案】(1)证明见解析;()*12n n a n N n +=∈+;(2)证明见解析【解析】(1)对题干条件变形整理为1111(2)11n n n a a --=≥--,根据定义即可证明,并求出通项公式;(2)放缩法和裂项相消法进行证明. (1)当1n =时,1122a a =-,123a = 当2n ≥时,1222n n a a a a =-;121122n n a a a a --=-相除得11(2)1nn n a a n a --=≥- 整理为:1111(2)111n n n na n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求.(2)由(1)得:()*12n n a n N n +=∈+. 1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭, 22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.6.[]x 表示不超过x 的最大整数,正项数列{}n a 满足11a =,2212211n n n na aa a --=-.(1)求数列{}n a 的通项公式n a ; (2)求证:[]2222321log (2)2n a a a n n +++>>; (3)已知数列{}n a 的前n 项和为n S ,求证:当2n >时,有2312212log 2123n n n S S a n ⎫+<++⎪⎭.【答案】(1)n a n=证明见解析.(3)证明见解析. 【解析】 (1)由已知得221111n n a a --=,由等差数列的定义得21n a ⎧⎫⎨⎬⎩⎭是以1为首项1为公差的等差数列,由此可得数列的通项; (2)由已知得1122=,221111134222+>+=,⋯,4441111111910162222++⋯+>++⋯+=,设1122m n k -=++⋯++,其中k ,m N ∈且102m k +<,有()11111232m n ++⋯+>+,由21log 2m n m +<+,可得证;(3)由已知得2211n n n S S n n -=,当2n >时,2211n n n S S n n --=- ,22112111n n n S S n n ----=--, ⋯ ,22221122S S -=-,累加得:232111122323n n S n n ⎛⎫-=-++⋯+ ⎪⎝⎭,由(2)的结论可得证. (1)解:2212211n n n n a a a a --=-,221111n n a a -∴-=, 2111a = ,21n a ⎧⎫∴⎨⎬⎩⎭是以1为首项1为公差的等差数列,21n n a ∴=, n a n∴=; (2)证明:2222311123n a a a n++⋯+=++⋯+, 1122=,221111134222+>+=,⋯,4441111111910162222++⋯+>++⋯+=,设1122m n k -=++⋯++,其中k ,m N ∈且102m k +<, 则()11111232m n ++⋯+>+, 又112222m m m n k +++=+<,从而21log 2m n m +<+,[]2log 1n m ∴=+,所以[]21111log 232n n ++⋯+>,[]2222321log (2)2n a a a n n ∴++⋯>>; (3)证明:1n a n =,1n n S S n-∴=,2211n n n S S nn -∴= ∴当2n >时,2211n n n S S nn --=, 22112111n n n S S n n ----=---, ⋯ , 22221122S S -=-, 累加得:232111122323n n S n n ⎛⎫-=-++⋯+ ⎪⎝⎭,由(2)结论有[]2322112log 223n n S n n -<-[]()231221121log 22123n n S n n ∴+<-+312212log 2123n n n <-31222log 123n n a n =+ ,故得证. 7.已知数列{}n a 的前n 项和为n S ,点(n ,()*)n S n N ∈在函数2y x =的图象上,数列{}n b 满足()1*1622,n n n b b n n N +-=+∈,且113b a =+(1)求数列{}n a 的通项公式;(2)证明列数12n nb ⎧⎫+⎨⎬⎩⎭是等比数列,并求数列{}n b 的通项公式; (3)设数列{}n c 满足对任意的*312123122,2222n n nn c c c c n N a b b b b +∈=+++⋯+++++均有成立,求1232010c c c c +++⋯+的值.【答案】(1)()*21n a n n N =-∈(2)证明见解析,()*62n n n b n N =-∈(3)()20112695+ 【解析】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解数列{}n a 的通项公式;(2)根据题干条件变形得到1113122n n n n b b --⎛⎫+=+ ⎪⎝⎭()2n ≥,从而得到结果;(3)求出()()181262n nn c n ⎧=⎪=⎨⨯⎪⎩,利用分组求和和等比数列求和公式进行求解. (1)点(),n n S 在函数2y x =的图象上,()2*n S n n N ∴=∈当1n =时,21111a S ===当2n 时,()221121n n n a S S n n n -=-=--=- 11a =也适合,{}n a ∴的通项公式为()*21n a n n N =-∈(2)∵()11622n n n b b n +-=+∴()1111116211333122222n n n n n n n n n b b b b n +-----+⎛⎫+=+=+=+ ⎪⎝⎭ ∵111134132bb a =+=∴+= ∴12n nb ⎧⎫+⎨⎬⎩⎭其首项为3,公比为3的等比数列 ∴113332n n nn b -+=⨯= ∴()*62n n n b n N =-∈(3)由(2)得26n nn b +=由题意得:n *∈N 均有,3111231232222n n nn c c c c a b b b b +=++++++++ ∴()3111231123122222n n n n c c c c a n b b b b ---=++++++++ ∴()1222nn n nn c a a n b +-==+ ∴()2226n nn n c b =+=⨯()2n又∵12132c a b ==+ ∴()11323618c b =+=⨯= ∴()()181262n nn c n ⎧=⎪=⎨⨯⎪⎩∴()234201012320101826666c c c c +++⋯+=++++⋯+ =()1232010626666++++⋯+=()20102011661261862615-⋅++⋅=-=()20112695+ 8.在等比数列{}n a 中,已知12a =,且2a ,13a a ,4a 依次是等差数列{}n b 的第2项,第5项,第8项. (1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}2n n a a -的前n 项和为n S .(i )求n S ; (ii )求证:126ni i i ia b S =+<∑. 【来源】天津市南开区2021-2022学年高三上学期期末数学试题 【答案】(1)2n n a =,2n b n =;(2)(i )()()1221213nn +--,(ii )证明见解析. 【解析】(1)设出等比数列{}n a 的公比,根据已知条件列出方程求出此公比及等差数列{}n b 的公差,再列式即可作答. (2)(i)由(1)的结论结合分组求和方法即可计算n S ;(ii)利用(1)和(i)的结论,借助裂项相消法求出12ni i i ia b S =+∑即可作答. (1)设等比数列{}n a 的公比为q ,而等差数列{}n b 的第2项,第5项,第8项成等差数列,则()13242a a a a +=+, 即()2311112a a qa q a q +=+,解得2q,又12a =,于是得112n n n a a q -==,显然有224b a ==,8416b a ==,则等差数列{}n b 公差28282a d a -==-,2(2)2nb b n d n =+-=, 所以数列{}n a 和{}n b 的通项公式分别是2n n a =,2n b n =. (2)(i)由(1)得,()()2222123123n n n S a a a a a a a a =++++-++++()()232344442222n n =++++-++++()()()()14142122212114123n n nn +--=-=----.(ii)由(i)得,()()()11321212*********nn n n n n n n n a b n n S ++⋅++++⎛⎫==- ⎪----⎝⎭, 所以122334112233445123[()()()()]2121212121212121ni i n n i i a b n n S +=+++=-+-+-++---------∑123(2)621n n ++=-<-. 9.已知正项数列{}n a 的前n 项和为n S ,满足112n n n S a a ⎛⎫=+⎪⎝⎭. (1)求数列{}n a 的前n 项和n S ; (2)记1231111n n T S S S S =++++,证明:112n Tn n +< 【答案】(1)n S n 证明见解析 【解析】(1)根据1n n n a S S -=-,整理后2211n n S S --=,根据等差数列的性质可知{}2n S 是首项为1,公差为1的等差数列 (2)先对1nS 进行放缩,然后利用分母有理化进行裂项后求和. (1)解:由题意得:112n n n S a a ⎛⎫=+ ⎪⎝⎭∴11112nn n n nS S S S S等式两边同乘()12n n S S --,得2221112221n n n n n n n S S S S S S S ----⋅=+-⋅+整理得2211n nS S --=,由111112S a a ⎛⎫=+ ⎪⎝⎭,得211S =,即{}2n S 是首项为1,公差为1的等差数列∴2n S n =,n S n(2)12n S n n ==121n n n n n <<+++-∴12311111223341n n T S S S S n n =+++⋅⋅⋅+>++⋅⋅⋅++++++()22132431211n n n =⋅⋅⋅++=+∴)211n T n >+,12311112121321n n T S S S S n n =+++⋅⋅⋅+<++⋅⋅⋅++++-(21213212n n n =+⋅⋅⋅+-=∴2n T n < 112nT n n +<< 10.已知无穷数列{}n a 满足1a a =,112n n na a a +=-. (1)若2a =; (i )求证:1152112n n n a --⎛⎫+≤+ ⎪⎝⎭≤;(ii )数列{}n b 的前n 项和为n S 且122121n n n b a a +=--+,求证:1112nn S ⎛⎫-<< ⎪⎝⎭;(2)若对任意的*N n ∈,都有0n a >,写出a 的取值范围并说明理由. 【答案】(1)(i )证明见解析,(ii )证明见解析;(2)1a ≥. 【解析】(1)(i )首先根据已知条件推出1n a +与n a 的大小关系,计算出111n n a a ---,然后求出12na +的取值范围,从而可使问题得证;(ii )首先根据条件求出11111n n n b a a +=---,然后求出n S ,从而结合(i )的结论使问题得证; (2)首先分1a >,1a =,1a <三种情况求出n a 的取值范围,当1a <时,求出111n na a +--的取值范围,从而可推出在00n a >时,当()0021log 01n n n n a a >+>-时,0n a <,不符合题意,即可求解a 的取值范围.【详解】(1)(i )由112n n n a a a +=-可得11n n n na a a a +-=-, ①当1n =时,∵12a a ==,∴211110a a a a -=->,∴21a a >, ②假设n k =时,121k k a a a a +>>>>,则2k a ≥,∴1n k =+时,211110k k k k a a a a ++++-=->,21k k a a ++>,由①②可知对一切正整数n 都有1n n a a +>,∴()()21211211n n n n n n na a a a a a a ++----==,∴11211522,12n n n n n a a a a a +-+⎛⎤==+∈ ⎥-⎝⎦, ∴()()1111512112n n n a a a --⎛⎫-⋅<-≤- ⎪⎝⎭,∴1152112n n n a --⎛⎫+<+ ⎪⎝⎭≤,但当1n =时,111212a -+==,∴1152112n n n a --⎛⎫+≤+ ⎪⎝⎭≤.(ii )∵()()12111n n n na a a a ++--=,∴()()1111112113121n n n n n n a a a a a a +⎛⎫==+ ⎪-+--+⎝⎭,∴13111121n n n a a a +=+--+, ∴11211112111n n n n n b a a a a ++=-=--+--, ∴12231111111111111n n n a a a a a S a +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭1111111111n n a a a ++=-=----, 由(i )知152112nn n a +⎛⎫+<+ ⎪⎝⎭≤,可得1211512n n n a +⎛⎫⎛⎫≤< ⎪ ⎪-⎝⎭⎝⎭,即11121111215n nn a +⎛⎫⎛⎫-<-≤-< ⎪ ⎪-⎝⎭⎝⎭, ∴1112nn S ⎛⎫-<< ⎪⎝⎭.(2)∵对任意的*N n ∈,都有0n a >, 且11n n n na a a a +-=-,∴显然0a >,由(1)证明知, ①若11a a =>,则10n n a a +->,∴1n n a a +>,∴0n a >; ②若11a a ==,则{}n a 为常数列,∴0n a >;③若11a a =<,则10n n a a +-<,∴1n a a ≤<, 又11121n n na a a +-=+-, 若00n a >,则0122n a +>,则1121n na a +->-, ∴()00112n nn n a a -->-⋅,∴当()001120n nn n a a -<--⋅<时,有0121n n n a ->-, ∴当0021log 1n n n a >+-时,0n a <,不符合题意. 综上可知,1a ≥.11.已知数列{}n a 的奇数项是首项为1,公差为d 的等差数列,偶数项是首项为2,公比为q 的等比数列.数列{}n a 的前n 项和为n S ,且满足34S a =,3542a a a +=+· (1)求数列{}n a 的通项公式;(2)设实数0M >,若对于任意*k N ∈,都有(]2120,k kS M a -∈,求M 的最小值. 【答案】(1)22,23,n n n n a n -⎧⎪=⎨⎪⨯⎩是奇数是偶数(2)1 . 【解析】(1)由题意可得11a =,22a =,因为34S a =,3542a a a +=+,所以12343542a a a a a a a ++=⎧⎨+=+⎩,即121211222d q d d q +++=⎧⎨+++=+⎩整理得:4232d qd q +=⎧⎨=⎩ 解得:23d q =⎧⎨=⎩,所以22,23,n n n n a n -⎧⎪=⎨⎪⨯⎩是奇数是偶数, ()()2113212422k k k S a a a a a a ---=+++++++()()12135212333k k -=++++-+⨯+++()()121113*********k k k k k --⨯-+-=+⨯=+--,221222323k k k a --=⨯=⨯,所以22121121113232213k k k k kS k a k ----==+⨯⨯+--,令()2112321k k f k -=+⨯-,则()()()22122231211132323k k k k k k k f k f k -+---+++-=-=⨯⨯⨯, 令()2223g k k k =-++,对称轴为12k =, 所以()2223g k k k =-++随k 的增大而减小,()130g =>,()222222310g =-⨯+⨯+=-<,所以()()21f f >,()()()234f f f >>>,所以2k =时,()2112321k k f k -=+⨯-最大值为()2112121223f =+=⨯-, 所以1M ≥,所以M 的最小值为1.12.已知数列{}n a 的前n 项和为{}n S ,12n n a S =-,数列{}n b 为等差数列,其前n 项和为{}n T ,11b =,1055T =(1)求,n n a b ;(2)证明:对*n N ∈,有112222212...2n nn a b a b a b T T T ++++++<. 【来源】浙江省宁波十校2021届高三下学期3月联考数学试题【答案】(1)13nn a ⎛⎫= ⎪⎝⎭;n b n =;(2)证明见解析.【解析】(1)由1-2n n a S =,得1112n n a S --=-,2n ≥上述两式相减得,-1--2n n n a a a =,即113n n a a -=,2n ≥.故{}n a 为等比数列,公比为13.又1111-21-2a S a ==,得113a =,得13nn a ⎛⎫= ⎪⎝⎭.设{}n b 的公差为d ,11b =,1055T =得104555d +=,即1d =,故n b n =.(2)证明:由(1),(1)2n n n T +=,故2222222112(21)3244(1)(1)(1)n n n n n n a b n T n n n n n n ++++=⋅<⋅=+++,又2222222221(1)11(1)(1)(1)n n n n n n n n n ++-==-+++,得222112(1)n n n a b T n n ⎡⎤+<-⎢⎥+⎣⎦,从而,112222222222121111121223(1)n n n a b a b a b T T T n n ⎛⎫++++++<-+-+⋯+- ⎪+⎝⎭21212(1)n ⎛⎫=-< ⎪+⎝⎭. 13.在①已知数列{}n a 满足:120n n a a +-=,38a =②等比数列{}n a 中,公比2q ,前5项和为62,这两个条件中任选一个,并解答下列问题. (1)求数列{}n a 的通项公式; (2)设n nnb a =数列{}n b 的前n 项和为n T ,若22022n T m >-对*n N ∈恒成立,求正整数m 的最大值. 【来源】山东省日照市2021届高三下学期一模数学试题【答案】选择条件①(1)2n n a =;(2)2022;选择条件②(1)2nn a =;(2)2022.【解析】(1)选择条件①,设等数列{}n a 的首项为1a .公比为q ,依题意,120n n a a +-=,得{}n a 为等比数列,所以,2q,38a =,解之得122q a =⎧⎨=⎩;∴2nn a =选择条件②,设等比数列{}n a 的首项为1a , 公比2q.前5项和为62,依题意,2q,()51126212a -=-,解之得122q a =⎧⎨=⎩, ∴2nn a =.(2)因为2n n n n n b a ==, 所以231232222n n n T =+++⋅⋅⋅+① 2341123122222n n n T +=+++⋅⋅⋅+②1-②得2341111111111222222222n n n n n n n T ++=++++⋅⋅⋅+-=--, 所以222n n nT +=-.因为1112121220222n n n n n n n n T T +++++++⎛⎫⎛⎫-=---=> ⎪ ⎪⎝⎭⎝⎭, 所以数列{}n T 单调递增,1T 最小,最小值为12. 所以1220202m ⨯>-. 所以2023m <.故正整数m 的最大值为2022.14.已知等差数列{}n a 满足1235n n a a n ++=+. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S .若*n ∀∈N ,24n S λλ<-+(λ为偶数),求λ的值.【答案】(1)1n a n =+;(2)2λ=.【解析】(1)设等差数列{}n a 的公差为d ,因为1235n n a a n ++=+,所以122328,211,a a a a +=⎧⎨+=⎩即11328,3511,a d a d +=⎧⎨+=⎩解得12,1a d ==,所以2(1)1n a n n =+-=+.经检验,1n a n =+符合题设,所以数列{}n a 的通项公式为1n a n =+. (2)由(1)得,11111(1)(2)12n n a a n n n n +==-++++, 所以1111111123341222⎛⎫⎛⎫⎛⎫=-+-++-=-⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭n S n n n . *n N ∈,∴12n S <,因为*n ∀∈N ,24n S λλ<-+,所以2142λλ-+,即27(2)2λ-. 因为λ为偶数,所以2λ=.15.已知等比数列{}n a 满足:1220a a +=,2380a a +=.。
数列与函数、不等式相结合问题一.方法综述数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析.二.解题策略类型一数列中的恒成立问题【例1】【安徽省毛坦厂中学2019届高三校区4月联考】已知等差数列满足,,数列满足,记数列的前项和为,若对于任意的,,不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】A【解析】由题意得,则,等差数列的公差,.由,得,则不等式恒成立等价于恒成立,而,问题等价于对任意的,恒成立.设,,则,即,解得或.故选:A.【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是由等差数列通项公式可得,进而由递推关系可得,借助裂项相消法得到,又,问题等价于对任意的,恒成立.【举一反三】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2142,n n S S n n n N -++=≥∈,若对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( ) A .()3,5 B .()4,6 C .[)3,5 D .[)4,6 【答案】A类型二 数列中的最值问题【例2】【浙江省湖州三校2019年高考模拟】已知数列满足,,则使的正整数的最小值是( )A.2018 B.2019 C.2020 D.2021【答案】C【解析】令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.【指点迷津】本题利用数列的递推公式,确定数列的单调性,令,利用裂项相消法得,再根据范围求正整数的最小值.在解题时需要一定的逻辑运算与推理的能力,其中确定数列单调性是解题的关键【举一反三】【河南省许昌市、洛阳市2019届高三三模】已知数列,的前项和分别为,,且,,,若恒成立,则的最小值为()A.B.C.49 D.【答案】B【解析】当时,,解得.当时,由,得,两式相减并化简得,由于,所以,故是首项为,公差为的等差数列,所以.则,故,由于是单调递增数列,,.故的最小值为,故选B. 类型三 数列性质的综合问题【例3】【江苏省扬州中学2019届高三下学期3月月考】已知等差数列的前n 项和为,若1≤≤3,3≤≤6,则的取值范围是_______.【答案】【解析】 在等差数列中,,∴,又, ∴.由得.∴,即,∴. 即的取值范围是.故答案为:.【指点迷津】1.本题先根据求出的取值范围,然后根据不等式的性质可得所求结果.2.由数列的递推公式求通项常用的方法有:(1)累加法(相邻两项的差成等差、等比数列);累乘法(相邻两项的积为特殊数列);(3)构造法,形如()10,1n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,即将()10,1n n a qa p p q -=+≠≠利用待定系数法构造成()1n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式. 【举一反三】【广东省汕尾市2019年3月高三检测】已知数列的首项为数列的前项和若恒成立,则的最小值为______.【答案】【解析】数列的首项,则:常数故数列是以为首项,3为公差的等差数列.则:首项符合通项.故:,,,由于数列的前n项和恒成立,故:,则:t的最小值为,故答案为:.类型四数列与函数的综合问题【例4】已知函数的定义域为,当时,,且对任意的实数,,恒成立,若数列满足()且,则下列结论成立的是()A.B.C.D.【答案】C【解析】对任意的实数x,y∈R,f(x)f(y)=f(x+y)恒成立,取x=y=0,则f(0)f(0)=f(0),解得f(0)=0或f(0)=1.当f(0)=0时,,得余题意不符,故舍去.所以f(0)=1.取y=﹣x<0,则f(x)f(﹣x)=1,∴f(x),设x1<x2,则f(x1﹣x2)=f(x1)•f(﹣x2)1,∴f(x1)>f(x2).∴函数f(x)在R上单调递减.∵数列{}满足f(a n+1)f()=1=f(0).∴0,∵a1=f(0)=1,∴,=﹣2,=1,,…….∴=.∴=,==1.=,==﹣2.∴f()1,f()=f(1)<1.∴f()>f().而f()=f(),f()<1<f(),f()=f()<f()=f(﹣2),因此只有:C正确.故选:C.【指点迷津】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f”,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系. 【举一反三】【浙江省杭州第十四中学2019届高三9月月考】已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A.B.C.D.【答案】B【解析】由题,即由累加法可得: 即对于任意的,不等式恒成立即令可得且即可得或故选B类型五 数列与其他知识综合问题 【例5】将向量12,,,n a a a 组成的系列称为向量列{}n a ,并定义向量列{}n a 的前n 项和12n n S a a a =+++.若()*1,n n a a R n N λλ+=∈∈,则下列说法中一定正确的是( )A. ()111nn a S λλ-=- B. 不存在*n N∈,使得0n S =C. 对*m n N ∀∈、,且m n ≠,都有m n S SD. 以上说法都不对【答案】C【解析】 由()*1,n n a a R n N λλ+=∈∈,则1n na a λ+=,所以数列{}n a 构成首项为1a ,公比为λ的等比数列,所以()11,1{ 1,11nn na S a λλλλ==-≠-,又当1λ=-时,20n S =,所以当*m n N ∀∈、,且m n ≠时, m n S S 是成立的,故选C.【例6】斐波那契数列{}n a 满足: ()*12121,1,3,n n n a a a a a n n N --===+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则下列结论错误的是( )A. 2111·n n n n S a a a +++=+ B. 12321n n a a a a a +++++=-C. 1352121n n a a a a a -++++=-D. ()1214?n n n n c c a a π--+-=【答案】C12331131...1121n n a a a a a a a --⇔++++=-⇔⇔=-⇔=- ,所以B 正确;对于C, 1n = 时,121a a ≠- ;C 错误;对于D, ()()()22211112144?44n n n n n n n n n n a a c c a a a a a a ππππ-----+⎛⎫-=-=+-= ⎪⎝⎭,D 正确.故选C.【指点迷津】这类题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.【举一反三】1.如图所示,矩形n n n n A B C D 的一边n n A B 在x 轴上,另外两个顶点,n n C D 在函数()1(0)f x x x x =+>的图象上.若点n B 的坐标为()(),02,n n n N +≥∈,记矩形n n n n A B C D 的周长为n a ,则2310a a a +++=( )A. 220B. 216C. 212D. 208 【答案】B2.将正整数12分解成两个正整数的乘积有112⨯, 26⨯, 34⨯三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解.当p q ⨯(p q ≤且*,N p q ∈)是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如()12431f =-=.数列(){}3nf 的前100项和为__________.【答案】5031-【解析】当n 为偶数时, ()30n f =;当n 为奇数时, ()11122233323n n n nf +--=-=⨯,()5001495010031233 (3)23131S -∴=+++=⨯=--,故答案为5031-.类型六 数列与基本不等式结合的问题【例7】【山东省济宁市2019届高三一模】已知正项等比数列满足:,若存在两项使得,则的最小值为A .B .C .D . 【答案】A 【解析】 因为数列是正项等比数列,,,所以,,,所以,,,,,因为,所以,,,当且仅当时“=”成立,所以的最小值为,故选A.【指点迷津】本题考查了等比数列的相关性质以及基本不等式的相关性质,等比数列的通项公式是,等比中项,基本不等式有,考查公式的使用,考查化归与转化思想.【举一反三】【甘肃省白银市靖远县2019届高三第四次联考】已知函数,若,则的最小值为()A.B.C.D.【答案】A【解析】由题可知:令又于是有因此所以当且仅当时取等号本题正确选项:三.强化训练一、选择题1.【安徽省宣城市2019届高三第二次调研】已知正项等比数列满足,若存在两项,,使得,则的最小值为()A.B.C.3 D.【答案】C【解析】解:设等比数列的公比为q(q>0),∵a9=a8+2a7,∴a7q2=a7q+2a7,∴q2﹣q﹣2=0,∴q=2或q=-1(舍),∵存在两项a m,a n使得,∴,∴故选C.2.【2019年3月2019届高三第一次全国大联考】已知数列的前项和为,,且满足,若,,则的最小值为()A.B.C.D.0【答案】B【解析】由,得,且,所以数列是以为首项、2为公差的等差数列,则,即,令,得,又,,由,则的最小值为.故选:B.3.【四川省成都市外国语学校2019届高三一诊】在正项等比数列中,,.则满足的最大正整数的值为()A.10 B.11 C.12 D.13【答案】C【解析】解:∵正项等比数列中,,,∴.∵,解可得,或(舍),∴,∵,∴.整理可得,,∴,经检验满足题意,故选:C.4.若数列的通项公式分别为,且,对任意恒成立,则实数的取值范围是( )A.B.C.D.【答案】D【解析】,故当n为奇数,-a<2+,又2+单调递减,故2+,故- a2,解a当n为偶数,又2-单调递增,故2-,故,综上a故选:D5.已知各项均为正数的数列的前项和为,且,若对任意的,恒成立,则实数的取值范围为()A.B.C.D.【答案】C【解析】,时,,化为:,.,即,时,,解得.数列为等差数列,首项为1,公差为1...记,..所以为增数列,,即.对任意的,恒成立,,解得实数的取值范围为.故选:C.6.【吉林省吉林市实验中学2019届高三下学期第八次月考】已知等比数列的公比,其前n项的和为,则与的大小关系是A.B.C.D.【答案】A【解析】根据等比数列的前n项和公式和数列的通项公式得到:两式作差故选:A.7.已知,,并且,,成等差数列,则的最小值为A.16 B.9 C.5 D.4【答案】A【解析】解:根据题意,a>0,b>0,且,,成等差数列,则21;则a+9b=(a+9b)()=1010+216;当且仅当,即=时取到等号,∴a+9b的最小值为16;故选:A.8.【贵州省2019年普通高等学校招生适应性】设,点,,,,设对一切都有不等式成立,则正整数的最小值为()A.B.C.D.【答案】A【解析】由题意知sin,∴,∴,随n的增大而增大,∴,∴,即,又f(t)=在t上单增,f(2)= -1<0,f(3)=2>0,∴正整数的最小值为3.二、填空题9.【河北省衡水中学2019届高三下学期一调】20.已知数列的前项和.若是中的最大值,则实数的取值范围是_____.【答案】【解析】因为,所以当时,;当时,也满足上式;当时,,当时,,综上,;因为是中的最大值,所以有且,解得.故答案为10.【2019届高三第二次全国大联考】已知数列的前项和为,,当时,,若恒成立,则正数的取值范围为____________.【答案】【解析】由可知,数列是一个公差的等差数列,首项为,所以,所以.故当时,.显然当时,也满足上式.所以.所以,所以,由题意恒成立,所以,解得.又,所以的取值范围为.11.【云南省2019年高三第二次检测】已知数列的前项和为,若,则使成立的的最大值是_____.【答案】5【解析】因为可得:两式相减可得:化简可得:即所以数列是以为首项,公比为2的等比数列当n=1时,求得所以即所以即解得所以成立的的最大值是5故答案为512.【重庆市南开中学2019届高三第三次检测】在正项递增等比数列中,,记,,则使得成立的最大正整数为__________.【答案】9【解析】由题得,因为数列是正项递增等比数,所以,所以. 因为,所以,所以.所以使得成立的最大正整数为9.故答案为:913.已知数列{}n a 中, 12a =,点列()1,2,n P n =⋯在ABC ∆内部,且n P AB ∆与n P AC ∆的面积比为2:1,若对*N n ∈都存在数列{}n b 满足()113202nn n n n n b P A a P B a P C ++++=,则4a 的值为______. 【答案】80【解析】在BC 上取点D ,使得2BD CD =,则n P 在线段AD 上.()113202n n n n n n b P A a P B a P C ++++=1132322n n n n n n n n n n n a BP b AP a CP b BP BAa BP BC +∴-=++=-++-()()()() , 1133232)22n n n n n n ab a BP b BA a BD +⎛⎫∴----=--+ ⎪⎝⎭(n A P D ,, 三点共线,1133232)22n n n n n a b a b a +∴----=--+(,即132n n a a +=+.21324332832263280a a a a a a ∴=+==+==+=,,.故答案为:80.14.已知函数()12f x x =+,点O 为坐标原点,点()()()*,n A n f n n N ∈,向量()0,1i =,θn 是向量OAn 与i 的夹角,则使得1212cos cos cos sin sin sin nnt θθθθθθ++< 恒成立的实数t 的取值范围为 ___________.【答案】3,4⎡⎫+∞⎪⎢⎣⎭【解析】根据题意得,2n πθ- 是直线OA n 的倾斜角,则:()()sin cos 11112tan sin 2222cos 2n n n n n f n n n n n n πθθπθπθθ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭==-===- ⎪ ⎪++⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,据此可得:结合恒成立的结论可得实数t 的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭.15.【新疆2019届高三一模】已知数列为等差数列,,,数列的前n 项和为,若对一切,恒有,则m 能取到的最大正整数是______.【答案】7 【解析】 解:设数列的公差为,由题意得,,解得,,且,,令, 则,即,则随着的增大而增大,即在处取最小值,,对一切,恒有成立,即可,解得,故能取到的最大正整数是7.16. 【北京师大附中2019届高三4月模拟】设数列的前n项和为,,且,若,则n的最大值为______.【答案】63【解析】由数列的前n项和为,,又,故,则的偶数项成等差数列,则,(n为偶数)又,,为等差数列,首项为3,公差为4,当n为偶数时,设数列的前n项和为,可得,,则+若,无解舍去当n为奇数时,-(=,又所以解<n又则n的最大值为63,故答案为:63.。
专题33 解不等式的方法一.【学习目标】1.会从实际情境中抽象出一元二次不等式模型.2.结合“三个二次”之间的联系,掌握一元二次不等式的解法.3.熟练掌握分式不等式、含绝对值不等式、指数不等式和对数不等式的解法.二.【知识要点】1.一元一次不等式一元一次不等式ax>b(a≠0)的解集为:(1)a>0时,b xa >(2)a<0时,bxa <.2.一元二次不等式一元二次不等式ax2+bx+c>0(a>0)或ax2+bx+c≤0(a>0)的解集的各种情况如下表一元二次不等式ax2+bx+c>0(a>0)求解过程的程序框图如下.三.典例分析(一)分式不等式的解法1.设集合,集合,则()A.B.C.D.【答案】D【解析】A={x|﹣2<x <4},B={x|x>﹣1};∴A∩B={x|﹣1<x<4}.故选:D.练习1.若函数是奇函数,则使成立的的取值范围是( )A. B. C.D.【答案】D练习2.已知a∈R,不等式的解集为p,且-2∉p,则a的取值范围为( )A.(-3,+∞) B.(-3,2)C.(-∞,2)∪(3,+∞) D.(-∞,-3)∪[2,+∞)【答案】D【解析】∵-2∉p,∴<1或-2+a=0,解得a≥2或a<-3.点睛:解分式不等式时,一般是把分式不等式转化为整式不等式求解,如果不等号中含有“等号”,但在转化时特别要注意分母不为零,否则就是错误的结论.本题中-2不是题中不等式的解,则就有使分母为零的一种情形,不能遗漏.练习3.已知函数f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x2-2x-3)f′(x)>0的解集为( )A.(-∞,-2)∪(1,+∞)B.(-∞,-2)∪(1,2)C.(-∞,-1)∪(-1,0)∪(2,+∞)D.(-∞,-1)∪(-1,1)∪(3,+∞)【答案】D【解析】由f(x)的图象可知,在(-∞,-1),(1,+∞)上,f′(x)>0,在(-1,1)上,f′(x)<0.由(x2-2x-3)·f′(x)>0,得或即或,所以不等式的解集为(-∞,-1)∪(-1,1)∪(3,+∞).练习3.已知函数若函数有3个零点,则实数的取值范围是_______ 【答案】【解析】作出函数图像可知:当时有三个交点,故实数的取值范围是(三)抽象不等式 例3.定义在R 上的函数()f x ,对任意的x R ∈都有且当0x ≥时,,则不等式()0xf x <的解集为__________.【答案】【解析】当0x ≥时,由,得2x >;由,得02x <<.∵,∴函数()f x 为奇函数。
专题一 压轴选择题第四关 以数列与函数、不等式以及其他知识相结合为背景的选择题【名师综述】数列与函数的交汇问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的交汇问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.类型一 数列与函数的结合典例1 (多选题)已知()f x 是定义在R 上的不恒为零的函数,且对于任意实数,a b ∈R 满足**(2)(2)()()(),(2)2,(),()2n n n n nf f f a b af b bf a f a n N b n N n ⋅=+==∈=∈考察下列结论,其中正确的结论是 ( )A.(0)(1)f f =;B.()f x 为偶函数;C.数列{}n a 为等比数列;D.数列{}n b 为等差数列. A .①②③B .②③④C .①②④D .①③④典例 2.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,''()()()()f x g x f x g x >,且()()xf x ag x =(0,a >且1a ≠),(1)(1)5(1)(1)2f f g g -+=-,若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8 D .9 【名师指点】由已知条件构造函数()()f x g x ,则'()()0()f x g x >,故函数()()f xg x 递增,即函数xy a =递增,从而确定1a >,结合已知条件可确定a 的值,数列(){}()f ng n 的前n 项和即等比数列{}n a 的前n 项和,通过计算可得关于n 的不等式,进而确定n 的最小值.【举一反三】【湖北省七校考试联盟”2018届高三2月联考】对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根, ()1n n a n x ⎡⎤=+⎣⎦, ()2,3n =L (符号[]x 表示不超过x 的最大整数).则2320182017a a a +++=L ( )A. 1010B. 1012C. 2018D. 2020类型二 数列与不等式的结合典例3 .(多选题)【2019·山东高三期中】下列结论正确的是( ) A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+ C .设{}n a 是等差数列,若210a a >>,则213a a a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥-定理4.【2019山西怀仁模拟】在等差数列中,,公差,为的前项和.若向量,,且,则的最小值为( )A .B .C .D .【名师指点】解决数列的单调性问题可用以下三种方法①用作差比较法,根据+1n n a a -的符号判断数列{}n a 是递增数列、递减数列或是常数列.②用作商比较法,根据+1n na a 与1的大小关系及n a 符号进行判断.③结合相应函数的图像直观判断,注意自变量取值为正整数这一特殊条件求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)参变分离法,将已知不等式变形为()f n M ≥恒成立()min f n M ⇔≥;()f n M ≤恒成立()max f n M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.学#¥科网【举一反三】1.(多选题)(2020·山东高三期末)设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件1201920201,1a a a >>,20192020101a a -<-,下列结论正确的是( )A .S 2019<S 2020B .2019202110a a -<C .T 2020是数列{}n T 中的最大值D .数列{}n T 无最大值2.【广东省2019届高三六校第一次联考】已知数列满足.设,为数列的前项和.若(常数),,则的最小值是( )A .B .C .D .类型三 数列与其他知识的结合典例5 (多选题)(2019·山东高三月考)在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1tan A,1tan B ,1tan C依次成等差数列,则下列结论中不一定成立.....的是( ) A .a ,b ,c 依次成等差数列 B .a ,b ,c 依次成等差数列 C .2a ,2b ,2c 依次成等差数列 D .3a ,3b ,3c 依次成等差数列典例6.已知等差数列{}n a 与等比数列{}n b 满足11221a b a b ==+=,直线l 上三个不同的点A , B ,C 与直线l 外的点P 满足33PA a PB b PC =+u u u v u u u v u u u v ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A.12n n - B. 23n n - C. 21n - D. 12n- 【名师指点】本题考查数列与平面向量的结合,又向量知识得其系数满足的关系120101a a +=,进而利用等差数列求和公式求解,本题要求学生熟悉向量三点共线公式(1)OA OB OC λλ=+-u u u r u u u r u u u r⇔ A B C 、、三点共线,【举一反三】【陕西省汉中市2019届高三上学期教学质量第一次检测】在中,角的对边分别是,若角成等差数列,且直线平分圆的周长,则面积的最大值为( ) A .B .C .2D .【精选名校模拟】1. (多选题)(2019·山东莱州一中高三月考)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( )A .100a =B .712S S =C .10S 最小D .200S =2.(多选题)(2020·山东高三期末)已知等比数列{}n a 的公比23q =-,等差数列{}n b 的首项112b =,若99a b >且1010a b >,则以下结论正确的有( )A .9100a a ⋅<B .910a a >C .100b >D .910b b >3.(多选题)(2017·上海市建平中学高三)数列{}n a 满足:112n n n a a a -++>()*1,n n N >∈,下述命题错误的是:( )A .若数列{}n a 满足:21a a >,则1n n a a ->()*1,n n N >∈;B .存在常数c ,使得()*n a c n N>∈成立;C .若p q m n +>+(其中*,,,p q m n N ∈),则p q m n a a a a +>+;D .存在常数d ,使得()11n a a n d >+-()*n N∈都成立4.(多选题)(2019·湖南高三月考(理))下列结论中,错误的是( ). A.在ABC V 中,若sin 2sin 2A B =,则ABC V 是等腰三角形; B.在ABC V 中,若 sin sin A B >,则A B >C .两个向量a r ,b r 共线的充要条件是存在实数λ,使b a λ=r rD .等差数列的前n 项和公式是常数项为0的二次函数.5. (多选题)(2019·北京人大附中高三月考改编)已知a ,b 是不相等的两个正数,在a ,b 之间插入两组实数:x 1,x 2,…,x n 和y 1,y 2,…,y n ,(n ∈N *,且n ≥2),使得a ,x 1,x 2,…,x n ,b 成等差数列,a ,y 1,y 2,…,y n ,b 成等比数列,给出下列四个式子, 其中一定成立的是( ) A.()122n n a b x x x ++++=L ; B .()2121n x x x n +++>L ;=2a b+<. 6.(2020·江苏高三专题练习)已知数列{}n a 满足1212a a ++…2*1()n a n n n N n+=+∈,设数列{}n b 满足:121n n n n b a a ++=,数列{}n b 的前n 项和为n T ,若*()1n nT n N n λ<∈+恒成立,则λ的取值范围是( ) A .1(,) 4+∞B .1[,) 4+∞C .3[,) 8+∞D .3(,)8+∞7. (2018·山东省胶州市第一中学高三月考(理))已知数列{}n a 的前n 项和为n S ,且满足2111,0,441n n n a a a S n +=>=++,若不等式2483(5)2n n n n m a -+<-⋅对任意的正整数n 恒成立,则整数m 的最大值为( ) A .3B .4C .5D .68. (2020·辽宁实验中学高三期末(理))已知各项都为正数的等比数列{}n a 的前n 项和为n S ,且满足131,7a S ==.若2323()(2)n n n f x S x a x a x a x n =++++≥L ,()f x '为函数()f x 的导函数,则(1)(0)f f ''-=( )A .(1)2n n -⋅B .(2)2n n -⋅C .2 n(n-1)D .2 n(n+1)9.【河南省南阳市2019届高三上学期期中考试】已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则的最小值等于( )A .B .C .D . 10. 【江西省南康中学2019届高三上学期第五次月考】已知不等式对一切正整数恒成立,则实数的取值范围为( )A .B .C .D .11. 【福建省闽侯县第八中学2018届高三上学期期末考试】正项等比数列{}n a 中的1a , 4031a 是函数()3214633f x x x x =-+-的极值点,则20166log a =( )A. 1B. 2C. 1-D.212.【江西省名校学术联盟2019届高三年级教学质量检测】若不等式对任意恒成立,则实数的取值范围为 A .B .C .D .13.【2019九校联考】已知首项为2的正项数列的前项和为,且当时,.若恒成立,则实数的取值范围为A .B .C .D .14. 【湖北省部分重点中学2018届高三上学期第二次联考】已知数列{}n a 的首项13a =,对任意*,m n N ∈,都有m n m n a a a +⋅=,则当1n ≥时, 3133321log log log n a a a -+++=L ( ) A. ()21n n - B. ()21n + C. 2n D. ()21n -15.【四川省成都经济技术开发区实验中学校2019届高三上学期模拟】已知数列满足,,记,且存在正整数,使得对一切,恒成立,则的最大值为A .3B .4C .5D .616.【河北省衡水中学2018届高三上学期八模考试】已知函数()(0,1)xf x a b a a =+>≠的图象经过点()1,3P , ()2,5Q .当*n N ∈时, ()()()11n f n a f n f n -=⋅+,记数列{}n a 的前n 项和为n S ,当1033n S =时, n 的值为( )A. 7B. 6C. 5D. 417.【江西名校学术联盟2019届高三年级教学质量检测】已知等比数列的前项和为,若,,且,则实数的取值范围是A .B .C .D .18.已知函数()()22812f x x a x a a =++++-,且()()2428f a f a -=-,设等差数列{}n a 的前n 项和为n S ,()*n N ∈若()n S f n =,则41n n S aa --的最小值为( ) A .276 B .358 C .143 D .37819.【湖南师大附中2018届高三上学期月考】已知函数()y f x =对任意自变量x 都有()()2f x f x =-,且函数()f x 在[)1,+∞上单调.若数列{}n a 是公差不为0的等差数列,且()62012(}f a f a =,则{}n a 的前2017项之和为( )A. 0B. 2017C. 2016D. 403420.【山西省太原市实验中学2018届高三上学期学业质量监测】已知数列{}n a 满足()2*1232n n a a a a n N =∈L ,且对任意*n N ∈都有12111nt a a a +++<L ,则实数t 的取值范围为( )A. 1+3⎛⎫∞ ⎪⎝⎭,B. 1,3⎡⎫+∞⎪⎢⎣⎭C. 2+3⎛⎫∞ ⎪⎝⎭, D. 2,3⎡⎫+∞⎪⎢⎣⎭专题一 压轴选择题第四关 以数列与函数、不等式以及其他知识相结合为背景的选择题【名师综述】数列与函数的交汇问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的交汇问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.类型一 数列与函数的结合典例1 (多选题)已知()f x 是定义在R 上的不恒为零的函数,且对于任意实数,a b ∈R 满足**(2)(2)()()(),(2)2,(),()2n n n n nf f f a b af b bf a f a n N b n N n ⋅=+==∈=∈考察下列结论,其中正确的结论是 ( )A.(0)(1)f f =;B.()f x 为偶函数;C.数列{}n a 为等比数列;D.数列{}n b 为等差数列. A .①②③ B .②③④C .①②④D .①③④【答案】ACD【解析】∵取a=b=0,可得f (0)=0,取a=b=1,可得f (1)=0, ∴f (0)=f (1),即A 正确, ∵f (ab )=af (b )+bf (a ),b n =n 即CD 正确,对于B ,取a=-1,b=2,可得f (-2)=-f (2)+2f (-1),从而有f (-2)=-f (2),所以()f x 不可能为偶函数; 故选ACD定理 2.已知(),()f x g x 都是定义在R 上的函数,()0g x ≠,''()()()()f x g x f x g x >,且()()xf x ag x =(0,a >且1a ≠),(1)(1)5(1)(1)2f f g g -+=-,若数列(){}()f ng n 的前n 项和大于62,则n 的最小值为( ) A .6 B .7 C .8 D .9 【答案】A 【解析】()()()()f x g x f x g x ''>∵,∴()()()()0f x g x f x g x ''->,∴2()()()()()0()()f x f x g x f x g x g x g x '''⎛⎫-=> ⎪⎝⎭, 从而可得()()x f x a g x =单调递增,从而可得1a >, ∵1(1)(1)52(1)(1)2f f a a ag g --+=+==-,∴, 故2(1)(2)()(1)(2)()n f f f n a a a g g g n +++=+++L L 2222n =+++L 12(12)226212n n +-==->-,∴1264n +>,即165n n +>>,,n *∈N ,6n =∴, 故选A .【名师指点】由已知条件构造函数()()f x g x ,则'()()0()f x g x >,故函数()()f xg x 递增,即函数xy a =递增,从而确定1a >,结合已知条件可确定a 的值,数列(){}()f ng n 的前n 项和即等比数列{}n a 的前n 项和,通过计算可得关于n 的不等式,进而确定n 的最小值.【举一反三】【湖北省七校考试联盟”2018届高三2月联考】对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根, ()1n n a n x ⎡⎤=+⎣⎦, ()2,3n =L (符号[]x 表示不超过x 的最大整数).则2320182017a a a +++=L ( )A. 1010B. 1012C. 2018D. 2020 【答案】A类型二 数列与不等式的结合典例3 .(多选题)【2019·山东高三期中】下列结论正确的是( ) A .若0,0a b c d >><<,则一定有b ac d> B .若0x y >>,且1xy=,则()21log 2xyx x y y +>>+ C .设{}n a 是等差数列,若210a a >>,则213a a a >D .若[)0,x ∈+∞,则()21ln 18x x x +≥- 【答案】AC【解析】选项A ,由0c d <<,可得0c d ->->,则110d c->->, 又0a b >>,所以a b d c ->-,则b ac d>,故A 正确. 选项B ,取12,2x y ==,则221154,,log ()log 1282x y x x y y +==+=>,不等式不成立,故B 不正确.选项C ,由题意得1322a a a +=且13a a ≠, 所以213131311=()222a a a a a a a +>⨯=,故C 正确. 选项D ,设21()ln(1)8h x x x x =+-+,则1(3)()1144(1)x x x h x x x -'=-+=++, 当03x <<时,()0h x '<,则()h x 单调递减,()(0)0h x h <=,故D 不正确. 故选:AC.定理4.【2019山西怀仁模拟】在等差数列中,,公差,为的前项和.若向量,,且,则的最小值为( )A .B .C .D .【答案】A 【解析】由且得即又,所以.从而则,当且仅当即时,上式等号成立,所以的最小值为4,故选A 。
压轴题高分策略之数列与不等式相结合数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n 项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.预计在高考中,比较新颖的数列与不等式选择题或填空题一般会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题. 一、数列参与的不等式的证明问题【典例1】 【2016高考四川理数(19)】已知数列{n a }的首项为1,n S 为数列{n a }的前n 项和, 11n n S qS +=+,其中q >0,*n ∈N .(I )若2322,,2a a a +成等差数列,求数列{a n }的通项公式;(II )设双曲线2221ny x a -=的离心率为n e ,且253e =,证明:121433n n n n e e e --++⋅⋅⋅+>. 【答案】(I )1*2()n n a n -=?N ;(II )详见解析. 【审题指导】本题考查数列的通项公式、双曲线的离心率、等比数列的求和等基础知识,考查学生的分析问题和解决问题的能力、计算能力. 第(I )问第一步: 利用+1n n n a S S =-得到数列{}n a 为等比数列,第二步:结合2a 2,a 3,a 2+2成等差数列求出{}n a 的公比q ,从而利用等比数列的通项公式求解; 第(II )问,第一步:先利用双曲线的离心率得到n e 的表达式,再解出{}n a 的公比q 的值, 第二步:利用等比数列的求和公式计算证明. 【解析】(I )由已知,1211,1,n n n n S qS S qS +++=+=+ 两式相减得到21,1n n a qa n ++=?. 又由211S qS =+得到21a qa =,故1n n a qa +=对所有1n ³都成立. 所以,数列{}n a 是首项为1,公比为q 的等比数列. 从而1=n n a q -.由2322+2a a a ,,成等差数列,可得322=32a a +,即22=32,q q +,则(21)(2)0q +q -=, 由已知,0q >,故=2q . 所以1*2()n n a n -=?N .考点:数列的通项公式、双曲线的离心率、等比数列的求和、不等式证明 【得分策略】本题考查数列的通项公式、双曲线的离心率、等比数列的求和等基础知识,考查学生的分析问题、解决问题的能力、计算能力.在第(I )问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n +代换n ,然后两式相减,可得n a 的递推式;在第(II )问中,不等式的证明用到了放缩法,这是证明不等式常用的方法,本题放缩的目的是为了求数列的和.另外,放缩时要注意放缩的“度”,不能太大,否则得不到结果. 二 、求有数列参与的不等式恒成立条件下参数问题【典例2】已知单调递增的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设2log n n n b a a =⋅,其前n 项和为n S ,若()()211n n m S n -≤--对于2n ≥恒成立,求实数m 的取值范围.【答案】(Ⅰ)n n a 2=;(Ⅱ)1,7⎡⎫+∞⎪⎢⎣⎭. 【审题指导】本题考查等差数列等比数列的基本性质及数列求和有关知识,并结合对数函数运算,数列与不等式相结合恒成立条件下的参数问题,综合性较强,难度稍大。
函数与不等式相结合【典例1】 已知21()ln 2x f x x ae x =+-. (1)设12x =是()f x 的极值点,求实数a 的值,并求()f x 的单调区间: (2)0a >时,求证:()12f x >.【解析】(1)由题意,函数()f x 的定义域为()0,+∞, 又由()1xf x x ae x '=+-,且12x =是函数()f x 的极值点, 所以12112022f ae ⎛⎫=+'-= ⎪⎝⎭,解得a =,又0a >时,在()0,+∞上,()f x '是增函数,且102f ⎛⎫= ⎪⎭'⎝, 所以()0f x '>,得12x >,()0f x '<,得102x <<, 所以函数()f x 的单调递增区间为1,2⎛⎫+∞⎪⎝⎭,单调递减区间为10,2⎛⎫⎪⎝⎭. (2)由(1)知因为0a >,在()0,+∞上,()1xf x x ae x'=+-是增函数, 又()1110f ae '=+->(且当自变量x 逐渐趋向于0时,()f x '趋向于-∞), 所以,()00,1x ∃∈,使得()00f x '=,所以00010xx ae x +-=,即0001x ae x x =-, 在()00,x x ∈上,()0f x '<,函数()f x 是减函数, 在()0,x x ∈+∞上,()0f x '>,函数()f x 是增函数, 所以,当0x x =时,()f x 取得极小值,也是最小值, 所以()()022*******min 0111ln ln ,(01)22x f x f x x ae x x x x x x ==+-=+--<<, 令()211ln ,(01)2g x x x x x x=+--<<,则()()2211111x g x x x x x x+=---=--', 当()0,1x ∈时,()0g x '<,函数()g x 单调递减,所以()()112g x g >=, 即()()min 12f x f x ≥>成立, 【典例2】已知函数()ln xf x x=.(Ⅰ)求函数()f x 的极值;(Ⅰ)若0m n >>,且n m m n =,求证:2mn e >. 【解析】(Ⅰ)()ln x f x x Q =()f x ∴的定义域为()0,∞+且()21ln xf x x -'= 令()0f x '>,得0x e <<;令()0f x '<,得x e >()f x ∴在()0,e 上单调递增,在(),e +∞上单调递减∴函数()f x 的极大值为()ln 1e f e e e==,无极小值 (Ⅰ)0m n >>Q ,n m m n = ln ln n m m n ∴=l ln n m m nn∴=,即()()f m f n = 由(Ⅰ)知()f x 在()0,e 上单调递增,在(),e +∞上单调递减 且()10f =,则1n e m <<<要证2mn e >,即证2em en >>,即证()2e f m f n ⎛⎫< ⎪⎝⎭,即证()2e f n f n ⎛⎫< ⎪⎝⎭即证()22ln ln n n n n e-< 由于1n e <<,即0ln 1n <<,即证222ln 2ln e n n n n <- 令()()222ln 2ln 1G x e x x x x x e =-+<<则()()()()()2242ln 2ln 12ln 1e x e x e e G x x x x x x x x x x x x x +-⎛⎫'=-++=-+-=+- ⎪⎝⎭1x e <<Q ()0G x '∴>恒成立 ()G x ∴在()1,e 递增()()0G x G e ∴<=在()1,x e ∈恒成立2mn e ∴>【典例3】已知函数()xf x e ax b =++,曲线()y f x =在点()()1,1f 处的切线方程为20ex y --=.(1)求函数()f x 的解析式,并证明:()1f x x ≥-.(2)已知()2g x kx =-,且函数()f x 与函数()g x 的图象交于()11,A x y ,()22,B x y 两点,且线段AB 的中点为()00,P x y ,证明:()()001f x g y <<.【解析】(1)由题意得:()12f e a b e =++=-,即2a b +=- 又()xf x e a '=+,即()1f e a e '=+=,则0a =,解得:2b =-则()2xf x e =-.令()()11xh x f x x e x =-+=--,()1xh x e '=-令()0h x '=,解得:0x =则函数()h x 在(),0-∞上单调递减,在()0,∞+上单调递增()()00h x h ∴≥=,则:()1f x x ≥-(2)要证()()001f x g y <<成立,只需证:1212x 24222x x x e e ek ++--<-<即证121222x x x x e k e e++<<,即:1122122212xx x x x x e e e x e e x +-+<<- 只需证:212121221112x x x x x x e e x x e----+<<- 设210t x x =->,即证:2112tt t e e e t -+<<要证21t t e e t-<,只需证:22t t e e t -->令()22t t F t e et -=--,则()221102t tF t e e -⎛⎫'=+-> ⎪⎝⎭()F t ∴在()0,∞+上为增函数()()00F t F ∴>=,即21tt e e t -<成立;要证112t t e e t -+<,只需证明:112t t e t e -<+令()112tt e t G t e -=-+,则()()()()()()22222411210212121t t t tt tte e e e G t e e e -+--'=-==<+++()G t ∴在()0,∞+上为减函数 ()()00G t G ∴<=,即112t t e e t -+<成立 2112tt t e e e t -+∴<<,0t >成立 ()()001f x g y ∴<<成立【典例4】已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值; (2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+L L ,求证:()ln 212n nn T +<-⎡⎤⎣⎦. 【解析】解:(Ⅰ)()f x 的定义域为()1,-+∞,()()ln 12f x a x x +'=-.由()f x 是减函数得,对任意的()1,x ∈-+∞,都有()()ln 120f x a x x +-'=≤恒成立. 设()()ln 12g x a x x =+-.∵()2121a x g x x ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦'=+,由0a >知112a->-, ∴当1,12a x ⎛⎫∈-- ⎪⎝⎭时,()'0g x >;当1,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<, ∴()g x 在1,12a ⎛⎫-- ⎪⎝⎭上单调递增,在1,2a ⎛⎫-+∞ ⎪⎝⎭上单调递减, ∴()g x 在12ax =-时取得最大值.又∵()00g =,∴对任意的()1,x ∈-+∞,()()0g x g ≤恒成立,即()g x 的最大值为()0g . ∴102a-=,解得2a =. (Ⅰ)由()f x 是减函数,且()00f =可得,当0x >时,()0f x <, ∴()0f n <,即()()221ln 12n n n n ++<+.两边同除以()221n +得,()ln 1121211n n n n n n ++<⋅⋅+++,即12211n n n a n n +<⋅⋅++. 从而12311233452...............223412341n n nn n T a a a a n n +⎛⎫⎛⎫=<⋅⋅⋅⋅⋅ ⎪⎪++⎝⎭⎝⎭11221n n n ++=⋅+, 所以()()()212ln 2ln 21n n n n T n +⎡⎤+⎡⎤+<⎢⎥⎣⎦+⎢⎥⎣⎦()()()2ln 2ln 11ln2n n n =+-+-+①.下面证()()()2ln 2ln 11ln2102nn n n +-+-++-<;记()()()()2ln 2ln 11ln212xh x x x x =+-+-++-,[)1,x ∈+∞.∴()22111ln2ln2212322x h x x x x x =--+=-++'+++ 11ln2223x x=-+++,∵2y x x=+在[)2,+∞上单调递增,∴()h x '在[)2,+∞上单调递减, 而()()()()11112ln223ln22ln806233h x h ≤=-+=-=-'<', ∴当[)2,x ∈+∞时,()0h x '<恒成立, ∴()h x 在[)2,+∞上单调递减,即[)2,x ∈+∞时,()()22ln4ln33ln2ln2ln30h x h ≤=--=-<, ∴当2n ≥时,()0h n <. ∵()1912ln3ln22ln2ln 028h =---=-<, ∴当*n N ∈时,()0h n <,即()()()2ln 2ln 11ln212nn n n +-+-+<-②. 综上①②可得,()ln 212n nn T ⎡⎤+<-⎣⎦.课后训练1. 已知函数()()22122()2x f x x x e ax a R =-+-∈. (1)当a e =时,求函数()f x 的单调区间; (2)证明:当2a ≤-时,()2f x ≥.解:(1)当a e =时,()()221222xf x x x e ex =-+-, 所以()()2'xxf x x ex x x e e e =-=-,讨论:①当0x <时,0x xe e -<,有()'0f x >;②当01x <<时,由函数xy xe =为增函数,有0x xe e -<,有()'0f x <; ③当1x >时,由函数xy xe =为增函数,有0x xe e ->,有()'0f x >.综上,函数()f x 的增区间为(),0-∞,()1,+∞,减区间为()0,1. 证明:(2)当2a ≤-时,有112a -≥,所以2212ax x -≥, 所以()()2222xf x x x e x ≥-++.令()()2222xg x x x e x =-++,则()()2'22xxg x x x e e x x =+=+.令()2xh x xe =+,有()()'1xh x x e =+.令()'0h x =,得1x =-.分析知,函数()h x 的增区间为()1,-+∞,减区间为(),1-∞-.所以()()min 1120h x h e=-=->. 所以分析知,函数()g x 的增区间为()0,∞+,减区间为(),0-∞,所以()()()22min 0020202g x g e ==-⨯+⨯+=,故当2a ≤-时,()2f x ≥.2. 已知函数()ln ()af x x x a R x=++∈. (1)若函数()f x 在[1,)+∞上为增函数,求a 的取值范围;(2)若函数2()()(1)g x xf x a x x =-+-有两个不同的极值点,记作1x ,2x ,且12x x <,证明:2312x x e>(e 为自然对数).解析:(1)由题意可知,函数()f x 的定义域为()0,+∞,()22211a x x af x x x x='+-=+-,因为函数()f x 在[)1,+∞为增函数,所以()0f x '≥在[)1,+∞上恒成立, 等价于20x x a +-≥在[)1,+∞上恒成立,即()2mina x x≤+,因为2211224x x x ⎛⎫+=+-≥ ⎪⎝⎭,所以2a ≤, 故a 的取值范围为2a ≤.(2)可知()()222ln 1ln g x x x x a a x x x x ax x a =++-+-=--+,所以()ln 2g x x ax '=-,因为()g x 有两极值点12,x x ,所以1122ln 2,ln 2x ax x ax ==,欲证2312x x e ⋅>,等价于要证:()2312ln ln 3x x e ⋅>=,即12ln 2ln 3x x +>,所以12322ax ax +>,因为120x x <<,所以原式等价于要证明:12324a x x >+,① 由1122ln 2,ln 2x ax x ax ==,可得()2211ln 2x a x x x =-,则有2121ln2x x a x x =-(),② 由①②原式等价于要证明:212112ln32x x x x x x >-+,即证()2211221121313ln 212x x x x xx x x x x ⎛⎫- ⎪-⎝⎭>=++,令21x t x =,则1t >,上式等价于要证()31ln 12t t t->+, 令()()31ln 12t h t t t-=-+,则()()()()()()()223126114111212t t t t h t t t t t +----=-=++' 因为1t >,所以()0h t '>,所以()h t 在()1,+∞上单调递增, 因此当1t >时,()()10h t h >=,即()31ln 12t t t->+.所以原不等式成立,即2312x x e ⋅>.3.已知函数()x x f x e=. (1)求函数()f x 的单调区间; (2)证明:12ln xx e ex>-. 解析:(1)由题意可得()1'x xf x e-=,令()'0f x =,得1x =. 当(),1x ∈-∞时,()'0f x >,函数()f x 单调递增; 当()1,x ∈+∞时,()'0f x <,函数()f x 单调递减.所以()f x 的单调递增区间为(),1-∞,()f x 的单调递减区间为()1,+∞. (2)要证12ln x x e ex >-成立,只需证2ln x x x x e e>-成立. 令()ln g x x x =,则()'1ln g x x =+,令()'1ln 0g x x =+=,则1x e=, 当10,x e ⎛⎫∈ ⎪⎝⎭时,()'0g x <,当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()'0g x >,所以()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()11g x g e e ⎛⎫≥=- ⎪⎝⎭, 又由(1)可得在()0,+∞上()()max 11f x f e==, 所以max21x x e e e ⎛⎫-=-⎪⎝⎭,所以不等式得证. 4. 已知函数()x f x e ax a =--(其中e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)若对任意2(]0,x ∈,不等式()f x x a >-恒成立,求实数a 的取值范围; (3)设*n N ∈,证明:123()()()()1nnnnn e nnnne ++++<-L . 【解析】解:(1)因为()xf x e ax a =--,所以()xf x e a '=-,①当0a ≤时,()0f x '>,函数()f x 在区间(),-∞+∞上单调递增; ②当0a >时,()0ln xf x e a x a >⇒>⇒>',()0ln x f x e a x a <⇒<⇒<'所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)因为对任意的(]0,2x ∈,不等式()f x x a >-恒成立,即不等式()1xa x e +<恒成立.即当(]0,2x ∈时,1xe a x<-恒成立.令()(]()10,2x e g x x x =-∈,则()()21xx e g x x -'=.显然当()0,1x ∈时,()0g x '<,(]1,2x ∈时,()0g x '>, 所以()g x 在()0,1上单调递减,在(]1,2上单调递增. ∴1x =时()g x 取最小值1e -. 所以实数a 的取值范围是(),1e -∞-(3)在(1)中,令1a =可知对任意实数x 都有10x e x --≥,即1x x e +≤(等号当且仅当0x =时成立)令()11,2,3,,k x k n n +==L ,则1k n k e n -<,即nkk nn k e e n e -⎛⎫<= ⎪⎝⎭故123n n n nn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ()1231nn e e e e e <++++L ()()()111n ne e e e e e -=<--。
2020年高考数学 专题三 压轴解答题第六关 以数列与不等式相结合的综合问题【名师综述】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.预计在高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.类型一 求数列中的最值问题典例1【安徽省滁州市2018届高三上学期期末考试】已知数列{}n a 是递增的等差数列,23a =, 1a , 31a a -, 81a a +成等比数列.(1)求数列{}n a 的通项公式; (2)若13n n n b a a +=,数列{}n b 的前n 项和n S ,求满足3625n S >的最小的n 的值. 【解析】(1)设{}n a 的公差为d (0d >),由条件得()12113{27( 0a d a a d d +=+=>,∴11{2a d == ∴()12121n a n n =+-=-. (2)()()1332121n n nb a a n n +==-+ 31122121n n ⎛⎫=- ⎪-+⎝⎭∴311111312335212121n nS n n n ⎛⎫=-+-++-= ⎪-++⎝⎭. n由3362125n n >+得12n >. ∴满足3625n S >的最小值的n 的值为13【名师指点】求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用等差数列或等差数列的特征来求.【举一反三】【吉林省实验中学2018届高三上学期第五次月考】已知数列{}n a 中,()*111,3nn n a a a n N a +==∈+.(Ⅰ)求{}n a 的通项公式n a ; (Ⅱ)数列{}n b 满足()312n n n n nb a =-⋅⋅,数列{}n b 的前n 项和为n T , 若不等式()112nn n n T λ--<+对一切*n N ∈恒成立,求λ的取值范围. 【解析】(Ⅰ)证明:由()1*3nn n a a n N a +=∈+, 得13131n n n na a a a ++==+, 11111322n n a a +⎛⎫∴+=+ ⎪⎝⎭所以数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a ⎛⎫+= ⎪⎝⎭为首项的等比数列,从而1113232231n n n n a a -+=⨯⇒=-; (Ⅱ)12n n nb -=()0122111111123122222n n n T n n --=⨯+⨯+⨯++-⨯+⨯()121111112122222n n n T n n -=⨯+⨯++-⨯+⨯, 两式相减得 012111111222222222n n n n T n n -+=++++-⨯=-1242n n n T -+∴=-()12142nn λ-∴-<-若n 为偶数,则124,32n λλ-∴<-∴< 若n 为奇数,则124,2,22n λλλ-∴-<-∴-∴-23λ∴-<<类型二 求有数列参与的不等式恒成立条件下参数问题典例2 已知{}n a 为等差数列,且24a =,其前8项和为52, {}n b 是各项均为正数的等比数列,且满足124b b a +=, 36b a =. (1)求数列{}n a 和{}n b 的通项公式; (2)令22log log n nn n nb ac a b =+,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有2n T n λ-<成立,求实数λ的取值范围.【解析】(1)设等差数列{}n a 的公差为d , 由题意得114{82852a d a d +=+=,即1134{2713a d a d +=+=,解得13{1a d ==,所以()312n a n n =+-=+.设各项均为正数的等比数列{}n b 的公比为q , 则有124366{8b b a b a +====,解得12{2b q ==,所以2nn b =.(2)由(1)可知22224422n n n n n c n n n n +++=+=++ 1122.2n n ⎛⎫=+- ⎪+⎝⎭所以12n n T c c c =+++1111111221324112n n n n n ⎛⎫=+⨯-+-++-+- ⎪-++⎝⎭1123212n n n ⎛⎫=+-+ ⎪++⎝⎭.所以1123212n T n n n ⎛⎫-=-+⎪++⎝⎭, 因为对任意正整数n ,都有2n T n λ-<成立, 即113212n n λ⎛⎫>-+⎪++⎝⎭对任意正整数n 恒成立, 又1132312n n ⎛⎫-+<⎪++⎝⎭, 所以3λ≥.故实数λ的取值范围为[)3,+∞.【名师指点】求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数()f x 在定义域为D ,则当x D ∈时,有()f x M ≥恒成立()min f x M ⇔≥;()f x M≤恒成立()max f x M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【举一反三】【辽宁省实验中学2018届高三上学期期中考试】已知数列{a n }满足a 1=3,且a n+1﹣3a n =3n,(n∈N *),数列{b n }满足b n =3﹣na n .(1)求证:数列{b n }是等差数列; (2)设3123452n n a a a a S n =+++++,求满足不等式2111284n n S S <<的所有正整数n 的值. 【解析】(1)证明:由b n =3﹣na n 得a n =3nb n ,则a n+1=3n+1b n+1. 代入a n+1﹣3a n =3n中,得3n+1b n+1﹣3n+1b n =3n,即得113n n b b +-=。
数列与不等式的综合问题是考查的热点和重点内容,近几年,高考关于数列与不等式的综合应用的命题趋势是:(1)以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.(2)以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大.题型一 数列中的不等关系例1设等差数列}{n a 的前n 项和为n S ,104≥S ,155≤S ,则4a 的最大值是 . 点拨:数列与不等式的小题,主要是运用基本不等式、不等式的性质、线性规划等求范围或最值.本题明为数列,实为线性规划,着力考查了转化化归和数形结合思想.因约束条件只有两个,本题也可用不等式的方法求解.解法1:由题意,11434102545152a d a d ⨯⎧+≥⎪⎪⎨⨯⎪+≤⎪⎩,即11461051015a d a d +≥⎧⎨+≤⎩,1123523a d a d +≥⎧⎨+≤⎩,413a a d =+.建立平面直角坐标系1a od ,画出可行域1123523a d a d +≥⎧⎨+≤⎩(图略),画出目标函数即直线413a a d =+,由图知,当直线413a a d =+过可行域内(1,1)点时截距最大,此时目标函数取最大值44a =.解法2:前面同解法1设111213(23)(2)a d a d a d λλ+=+++,由121221323λλλλ+=⎧⎨+=⎩解得1213λλ=-⎧⎨=⎩,∴1113(23)3(2)a d a d a d +=-+++由不等式的性质得:1123523a d a d +≥⎧⎨+≤⎩ 11(23)53(2)9a d a d -+≤-⎧⇒⎨+≤⎩ 11(23)3(2)4a d a d ⇒-+++≤,即4134a a d =+≤,4a 的最大值是4.解法3:前面同解法1, ⎪⎩⎪⎨⎧+-≤+=+-≥+=dd d a a d d d a a 3)23(3323531414 ∴d a d +≤≤+32354 ∴d d +≤+3235,即1≤d∴41334=+≤+≤d a ,4a 的最大值是4.易错点:一方面得出不等式组,之后不知如何运用;另一方面用线性规划求最值时,用错点的坐标.变式与引申1:(1)等比数列}{n a 的公比1>q ,第17项的平方等于第24项,求使nn a a a a a a 1112121+++>+++ 恒成立的正整数n 的取值范围. (2)(2011年浙江文科卷第19题)已知公差不为0的等差数列}{n a 的首项为)(R a a ∈,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)对*N n ∈,试比较n a a a a 2322221...111++++与11a 的大小.题型二 数列、函数与不等式例2 已知函数),0(,12)(+∞∈++=x x x x f ,数列{}n x 满足*+∈=N n x f x n n ),(1,且11=x .(1)设2-=n n x a ,证明:n n a a <+1;(2)设(1)中的数列{}n a 的前n 项和为n S ,证明22<n S . 点拨:数列与不等式的证明问题常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法:一般是利用分析法分析,再利用综合法证明;(3)放缩法:利用迭代法、累加法、累乘法构建关系进行放缩.【解】(1)12)12(212211+--=-++=-=++n nn n n n x x x x x a 由条件知0>n x 故n n n n a x x a =-<--<+22)12(1 (2)由(1)的过程可知2)12(2)12(121--<--<-+n n n x x a 11)12(2)12(+-=--<<n n x ,n n S )12()12()12(2-++-+-< 22)12(112=---<. 易错点:不易找出放缩的方法,从而无法证明.放缩法可通过对分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.变式与引申2: 已知数列}{n a 是首项41=a 的等比数列,其前n 项和为n S ,且423,,S S S 成等差数列。
1/20高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题07数列与不等式相结合问题【典例1】记n S 为数列{}n a 的前n 项和.已知12n n S a +=.(1)求{}n a 的通项公式;(2)求使得22020n n a S >+的n 的取值范围.【思路引导】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩计算可得;(2)由(1)可得2122n n a -=,21nn S =-,从而得到不等式解得.2/20【典例2】已知等比数列{}n a 的前n 项和为n S ,且当*n N ∈时,n S 是12n +与2m 的等差中项(m 为实数).(1)求m 的值及数列{}n a 的通项公式;(2)令()*21log n n b a n N=+∈,是否存在正整数k ,使得1111210n n n kb b b n ++⋅⋅⋅+>+++对任意正整数n 均成立?若存在,求出k 的最大值;若不存在,说明理由.【思路引导】(1)根据等差中项的性质列方程,求得n S 的表达式.利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,结合{}n a 是等比数列,求得m 的值及数列{}n a 的通项公式.(2)由(1)求得n b 的表达式,将不等式1111210n n n kb b b n ++⋅⋅⋅+>+++左边看成()f n ,利用差比较法判断出()f n 的单调性,由此求得()f n 的最小值,进而求得k 的最大值.【典例3】已知等差数列{}n a 中,公差0d ≠,735S =,且2a ,5a ,11a 成等比数列.()1求数列{}n a 的通项公式;()2若n T 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.【思路引导】(1)由题意可得()()()1211176735,2410,a d a d a d a d ⨯⎧+=⎪⎨⎪+=++⎩解得1a d ,即可求得通项公式;(2)111112n n a a n n +=-++,裂项相消求和n T =()112222n n n -=++,因为存在*N n ∈,使得10n n T a λ--≥成立,所以存在*N n ∈,使得()()2022n n n λ-+≥+成立,即存在*N n ∈,使得()222n n λ≤+成立.求出()222n n +的最大值即可解得λ的取值范围.3/20【典例4】已知{}n a 是递增的等比数列,若3520a a +=,且12354a a a ,,成等差数列.(1)求{}n a 的前n 项和n S ;(2)设12n nb S =+,且数列{}n b 的前n 项和为n T ,求证:113n T ≤<.【思路引导】(1)利用等差中项可得21352a a a =+,再利用等比数列的通项公式代入求得q ,可代回3520a a +=中求得1a ,进而由公式求解即可;(2)由(1)可得121n nb =-,则1132nnb ≤<,从而求和即可证明【典例5】已知数列{}n a 为等差数列.(1)求证:()212n n n a a a ++ ;(2)设21n a n =-,且其前n 项和n S ,1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:2n T <.【思路引导】(1)利用等差数列的性质122n n n a a a ++=+,再根据基本不等式即可证明.(2)由等差数列的求和公式求解n S ,再由裂项相消的缩放法求证即可.4/20【典例6】已知等比数列{}n a 的各项均为正数,5462,,4a a a 成等差数列,且满足2434a a =,数列{}n b 的前n 项和(1)2n nn S b +=,*n N ∈,且11b =.(1)求数列{}n a 和{}n b 的通项公式;(2)设,,n n n b n c a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n c 的前n 项和n P .(3)设252123n n n n n b d a b b +++=,*n N ∈,{}n d 的前n 项和n T ,求证:13n T <.【思路引导】(1)根据题意列出方程组,求出1a 、q ,从而得到{}n a 的通项公式,当2n ≥时,11122n n n n n nb n b S S b --+=-=-,化简可得{}n b n是首项为1的常数列,即可求得{}n b 的通项公式;(2)分类讨论,当n 为偶数时,()()13124n n n p b b b a a a -=++⋯++++⋯+,分别利用等差数列、等比数列的前n 项和公式求和即可,当n 为奇数时,由1n n n P P b -=+可求得结果;(3)裂项法可得【典例7】已知数列{}n a 满足125a =,且*113220,N n n n n a a a a n ++-+=∈,数列{}n b 为正项等比数列,且123b b +=,34b =.(1)求数列{}n a 和{}n b 的通项公式;(2)令2n n n b c a =,12n n S c c c =+++ ,求证:101nS <<.【思路引导】(1)变形已知等式得数列2n a ⎧⎫⎨⎬⎩⎭为等差数列,从而可求通项公式,数列{}n b 是等比数列,用基本量法可求得通项公式;(2)用错位相减法求得和n S ,即可证结论成立.5/201.已知等差数列{}n a 满足13428,4a a a a +=-=.(1)求数列{}n a 的通项公式及前n 项和n S ;(2)记数列1{}n S 的前n 项和为n T ,若99100n T >,求n 的最小值.2.已知数列{}n a 是公比大于1的等比数列(*)n N ∈,24a =,且21+a是1a 与3a 的等差中项.I.求数列{}n a 的通项公式;II.设2log n n b a =,n S 为数列{}n b 的前n 项和,记1231111=++++ n nT S S S S ,证明:12n T ≤<.3.已知数列{}n a 的前n 项和为n S ,()*21n n S a n N +=∈.(1)求数列{}n a 的通项公式;(2)若11111n n n c a a +=++-,n T 为数列{}n c 的前n 项和.求证:123n T n >-.6/204.已知数列{}n a ,是一个等差数列,且22a=,145a a +=,数列{}n b 是各项均为正数的等比数列,且满足:112b =,24164b b ⋅=.(1)求数列{}n a 与{}n b 的通项公式;(2)求证:11222n n a b a b a b ++⋅⋅⋅+<.5.已知数列{}n a 中,11a =,其前n 项的和为n S ,且当2n ≥时,满足21nn n S a S =-.(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)证明:2221274n S S S +++<.6.设数列{}n a 的前n 项和n S ,数列{}n S 的前n 项和为{}n T ,满足*32,n n T S n n N =-∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求证:*1,n S n N ≥∈.7/207.已知数列{}n a 的前n 项和12n n S a a =-,且满足1a ,212a +,3a 成等差数列.(1)求数列{}n a 的通项公式;(2)设数列1{}n a 的前n 项和为n T ,求使1|2|500n T -<成立n 的最小值.8.若数列{an}是的递增等差数列,其中的a 3=5,且a 1,a 2,a 5成等比数列,(1)求{a n }的通项公式;(2)设b n=,求数列{b n }的前项的和T n .(3)是否存在自然数m ,使得<T n <5m对一切n ∈N*恒成立?若存在,求出m 的值;若不存在,说明理由.8/209.已知nS 为数列na 的前n 项和,已知0n a >,2243n n n a a S +=+,且1n n a b =.(1)求数列{}n b 的通项公式n b ;(2)求满足122311...7n n b b b b b b ++++<的n 的最大值.10.设()()1122,,,A x y B x y 是函数()21log 21xf x x =+-的图象上任意两点,且1()2OM OA OB =+ ,已知点M 的横坐标为12.(1)求证:M 点的纵坐标为定值;(2)若*121...,,2n n S f f f n N n n n n -⎛⎫⎛⎫⎛⎫=+++∈≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭且求n S ;(3)已知=12131 2(1)(1)nn n n S S +⎧⎪⎪⎨=≥++⎪⎪⎩,其中*n N ∈,n T 为数列{}n a 的前n 项和,若()11n n T S λ+<+对一切*n N ∈都成立,试求λ的取值范围.9/20参考答案【典例1】解:(1)由题知,12n n S a +=①,当1n =时,11a =当2n ≥时,1112n n S a --+=②①减②得,12n n a a -=,故{}n a 是以1为首项,2为公比的等比数列,所以12n n a -=(2)由(1)知,2122n n a -=,21nn S =-22020n n a S >+即210221202n n --+>等价于()2224038nn->易得()222n n -随n 的增大而增大而6n =,()2224038nn-<,7n =,()2224038n n ->故7n ≥,n N∈【典例2】解:(1) n S 是12n +与2m 的等差中项,∴1222n n S m +=+,即2n n S m =+,当1n =时,112S a m ==+,当2n ≥时,112n n n n a S S --=-=, {}n a 是等比数列,∴11a =,则21m +=,∴1m =-,且数列{}n a 的通项公式为12n n a -=.(2)存在正整数k ,使不等式恒成立,k 的最大值为4.21log n n b a n =+=()*.n N ∈()11111112122n n n f n b b b n n n n=++=++++++++ ,()()1111110212212122f n f n n n n n n +-=+-=->+++++ ∴()()1.f n f n +>∴数列(){}f n 单调递增,()()min 112f n f ∴==,由不等式恒成立得:1102k <,∴5k <.故存在正整数k ,使不等式恒成立,k 的最大值为4.【典例3】解:(1)由题意可得()()()1211176735,2410,a d a d a d a d ⨯⎧+=⎪⎨⎪+=++⎩即12135,2.a d d a d +=⎧⎨=⎩又因为0d ≠,所以12,1.a d =⎧⎨=⎩所以1n a n =+.(2)因为()()111111212n n a a n n n n +==-++++,所以10/20111111233412n T n n =-+-++-=++ ()112222n n n -=++.因为存在*N n ∈,使得10n n T a λ--≥成立,所以存在*N n ∈,使得()()2022nn n λ-+≥+成立,即存在*N n ∈,使得()222n n λ≤+成立.又()21114416222424nn n n n n =⋅≤⎛⎫⎛⎫+++++ ⎪ ⎪⎝⎭⎝⎭(当且仅当2n =时取等号).所以116λ≤,即实数λ的取值范围是1,16⎛⎤-∞ ⎥⎝⎦.【典例4】解:(1)设递增数列{}n a 的公比为()1q q >,由1a ,254a ,3a 成等差数列,可得21352a a a =+,即2111522a q a a q =+,则22520q q -+=,解得12q =(舍)或2q =,又因为3520a a +=,可得24112220a a +=,所以11a =,所以()1212121n n nS ⨯-==--(2)证明:由(1)可得11021221n n nb ==>-++,所以数列{}n T 是递增数列,所以1111213n T T b ≥===+,又因为11212n n nb =<+,2111221111111222212nnnn T ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦∴<+++==-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-…,综上所述:113n T ≤<【典例5】证明:(1)因为数列{}n a 为等差数列,所以122n n n a a a ++=+∴()()()()222212222424n n n n n n n n n a a a a a a a a a +++++=+=++11/20即()212n n n a a a ++ ,故结论成立.或:设数列{}n a 的公差为d ,则()()()()22221111n n n n n n a a a d a d a d a +++++=-+=- 即()212n n n a a a ++ ,故结论成立.(2)∵212(211)2n n n n S a a a n -+=+++== ∴211n S n=2n ≥时:211(1)n n n <-1n =时:11112T S ==<2n ≥时:211111(1)1n S n n n n n =<=---1211111111112231n n T S S S n n =++⋯+<+-+-++-- ,∴122n T n<-<.【典例6】解:(1)因为0n a >,所以0q >,24562431224210414a a a q q a a a q ⎧=+⎧+-=⎪⇒⎨⎨==⎪⎩⎩,解得11212q a ⎧=⎪⎪⎨⎪=⎪⎩所以12n n a ⎛⎫= ⎪⎝⎭,当2n ≥时,11122n n n n n nb n b S S b --+=-=-,即11n n b b n n -=-,∴{}n b n 是首项为1的常数列,1n bn=,∴n b n =;(2),1,2nn n n C n ⎧⎪=⎨⎛⎫⎪ ⎪⎝⎭⎩为奇数为偶数当n 为偶数时,()()13124n n n p b b b a a a -=++⋯++++⋯+24111[13(1)][()()()]222n n =+++-++++ 22111441112(11)12433214nnn n n ⎛⎫⎛⎫ ⎪- ⎪ ⎪⎝⎭⎛⎫⎝⎭=+-+=+⋅ ⎪⎝⎭-12/20当n 为奇数时,11221(1)111(1)11143324332n n n n n n n P P b n ----+⎛⎫⎛⎫=+=+-+=+-⋅ ⎪⎪⎝⎭⎝⎭(3)125111(21)(23)2(21)2(23)2n n n nn d n n n n -+=⋅=-++++211111113525272(21)2(23)2n n n T n n -=-+-++-⋅⋅⋅++ 1113(23)23n n =-<+【典例7】解:(1)∵113220n n n n a a a a ++-+=,∴*1223,n n n N a a +-=∈∴2n a ⎧⎫⎨⎬⎩⎭为等差数列,首项为125a =,公差为3∴253(1)32n n n a =+-=+,2,N *32n a n n =∈+∵{}n b 为正项等比数列,设公比为()0q q >,则121(1)3b b b q +=+=,2314b b q ==整理得23440q q --=,解得2q =,11b =,∴1*2,Nn n b n -=∈(2)12(32)2n nn nb c n a -==+⋅21582112(32)2n n S n -=+⨯+⨯+++⋅ ①2125282(31)2(32)2n n n S n n -=⨯+⨯++-⋅++⋅ ②①-②得215323232(32)2n n n S n --=+⨯+⨯++⨯-+⋅ 53(22)(32)2n n n =+--+⋅,∴(31)21nn S n =-⋅+∵*N n ∈,∴1n S >,∴101nS <<,得证.1.【思路引导】(1)根据等差数列的通项公式列出方程组结合前n 项和公式求解即可得到数列{}n a 的通项公式及前n 项和13/20n S ;(2)利用裂项求和得到111nT n =-+,解不等式即可得到最小值.解:(1)设等差数列{}n a 的公差为d .依题意有13428,4.a a a a +=⎧⎨-=⎩解得12,2.a d =⎧⎨=⎩所以22,n n a n S n n ==+.(2)因为211111n S n n n n ==-++,所以12111111111(1)((122311n n T S S S n n n =+++=-+-++-=-++L L .因为99100n T >,即19911100n ->+,所以99n >.所以n 的最小值为1002.【思路引导】I.根据等差中项性质得到()21321a a a +=+,再根据等比数列通项公式构造方程求得q ,从而可求得通项公式;II.根据n a 求得n b ,利用等差数列求和公式得到n S ;再根据裂项相消法求得n T ,根据2011n <≤+证得结论.解:I.由题意得:()21321a a a +=+设数列{}n a 公比为q ,则()22221a a a q q+=+,即22520q q -+=解得:12q =(舍去)或2q =则212a a q ==()1*12n n n a a q n N -∴==∈II.由I.得:2log 2nn b n ==,可知{}n b 为首项为1,公差为1的等差数列则()()1122n n n b b n n S ++==()1211211n S n n n n ⎛⎫∴==⨯- ⎪++⎝⎭1111111122121222334111n T n n n n ⎛⎫⎛⎫∴=⨯-+-+-+⋅⋅⋅+-=⨯-=- ⎪ ⎪+++⎝⎭⎝⎭14/202011n <≤+ ,21221n ∴≤-<+,即12n T ≤<3.【思路引导】(1)利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式.(2)先将n c 缩小即111233n n n c +⎛⎫>--⎪⎝⎭,由此结合裂项求和法、放缩法,证得不等式成立.解:(1)∵()*21n n S a n N+=∈,令1n =,得113a=.又()11212n n S a n --+=≥,两式相减,得113n n a a -=.∴13nn a ⎛⎫= ⎪⎝⎭.(2)∵111111133n nn c +=+⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭1113311231313131n n n n n n +++=+=-++-+-11123131n n +⎛⎫=-- ⎪+-⎝⎭.又∵11313n n <+,1111313n n ++>-,∴111233n n n c +⎛⎫>-- ⎪⎝⎭.∴22311111112333333n n n T n +⎡⎤⎛⎫⎛⎫⎛⎫>--+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111122333n n n +=+->-.∴123n T n >-.4.【思路引导】(1)因为{}n a 为等差数列,设公差为d ,则1112,35,a d a a d +=⎧⎨++=⎩即可求得首项和公差,即可求得{}n a .因为{}n b 为等比数列,2243164b b b ⋅==,23118b b q ==,即可求得公比,进而求得{}n b .(2)因为n a n =,12nn b ⎛⎫= ⎪⎝⎭,所以()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,根据数列求和错位相减法,即可求得n T ,进而求得答案.15/20解:(1){}n a 为等差数列,设公差为d ,∴1112,35,a d a a d +=⎧⎨++=⎩∴11,1,a d =⎧⎨=⎩∴()11n a a n d n =+-=. {}n b 为等比数列,0n b >,设公比为q ,则0q >,∴2243164b b b ⋅==,23118b b q ==,∴12q =,1111222n nn b -⎛⎫⎛⎫=⋅= ⎪⎪⎝⎭⎝⎭.(2)令112233n n n T a b a b a b a b =+++⋅⋅⋅+,∴()23111111123122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭——①可得:()2311111112122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭——②∴由①-②得:23111112211111111222222212nn n n n T n n ++⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=+++⋅⋅⋅+-⨯=-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,∴1112222n nn T n -⎛⎫⎛⎫=--⨯< ⎪⎪⎝⎭⎝⎭.故11222n n a b a b a b ++⋅⋅⋅+<.5.【思路引导】(1)当n ≥2时,S n ﹣S n ﹣121nn S S =-⇒S n ﹣S n ﹣1=S n •S n ﹣1(n ≥2),取倒数,可得111n n S S --=1,利用等差数列的定义即可证得:数列{1nS }是等差数列;(2)利用222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭进行放缩并裂项求和即可证明解:(1)当2n ≥时,211nn n n S S S S --=-,11n n n n S S S S ---=,即1111n n S S --=从而1n S ⎧⎫⎨⎬⎩⎭构成以1为首项,1为公差的等差数列.16/20(2)由(1)可知,()11111n n n S S =+-⨯=,1n S n∴=.则当2n ≥时222111111211n S n n n n ⎛⎫=<=- ⎪--+⎝⎭.故当2n ≥时22212111111111123224211n S S S n n ⎛⎫⎛⎫⎛⎫+++<+-+-++- ⎪⎪ ⎪-+⎝⎭⎝⎭⎝⎭1111137111221224n n ⎛⎫=++--<+⋅= ⎪+⎝⎭又当1n =时,21714S =<满足题意,故2221274n S S S +++< .法二:则当2n ≥时22211111n S n n n n n=<=---,那么222121111111717142334144n S S S n n n ⎛⎫⎛⎫⎛⎫+++<++-+-+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 又当1n =时,21714S =<,当时,21714S =<满足题意.6.【思路引导】(Ⅰ)由1n =得出11a =,由1n n T T --得出32n n S a =-,再由1n n S S --得出133n n n a a a -=-,由等比数列的定义,得出数列{}n a 是等比数列,即可写出数列{}n a 的通项公式;(Ⅱ)求出等比数列{}n a 的前n 项和,由函数3212n n S ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦为*n N ∈上的单调增函数,由函数n S 的最值,即可证明不等式.解:(Ⅰ)当1n =,由已知有,11321a a =-⨯∴11a =当2n ≥时,32nn T S n =-①1132(1)n n T S n --=--②①-②得:133232n n n n S S S a -=--=-③故1132n n S a --=-④③-④得:133n n n a a a -=-,则132n n a a -=∴{}n a 是以1为首项,公比为32的等比数列.132n n a -⎛⎫∴= ⎪⎝⎭,*()n N ∈17/20(Ⅱ)31123213212n nnS ⎡⎤⎛⎫⋅-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-312> ,∴函数3212n n S ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦为*n N ∈上的单调增函数∴33212(1)122n n S ⎡⎤⎛⎫=-≥-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故*1,n S n N ≥∈成立.7.【思路引导】(1)根据数列{}n a 的通项公式与前n 项和公式的关系求解即可.(2)由(1)有1112n n a -=,再根据等比数列求和可得n T ,再分析1|2|500n T -<的情况即可.解:(1)由已知12n n S a a =-有1122,(2)n n n n n a S S a a n --=-=- 即12(2)n n a a n -= ,从而213212,24a a a a a ===,又1231,,2a a a + 成等差数列.即13221a a a +=+,111441a a a ∴+=+,解得:11a =,{}n a ∴的通项公式12n n a -=.(2)由(1)得:1112n n a -=,所以1111221212nn n T -⎛⎫- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-,由12500n T -<,即1112500n -⎛⎫<⎪⎝⎭.12500n -∴>,即21000n >,n ∴的最小值为10.8.【思路引导】(1)由于{n a }为等差数列,35a =,1 a ,2 a ,5 a 成等比数列,可设出数列{n a }的公差为d ,列方程组即可求出1d a ,;(2)在求出{n a }的通项公式后,求出{n b }的通项公式,再应用裂项相消法即可求n T ;(3)需先求T n 的值域,要使得245n m m T -<<恒成立,则需区间(2,45m m-)包含T n 的值域即可.解:(1)在等差数列中,设公差为d≠0,18/20由题意215235a a a a ⎧=⎨=⎩,∴()()21111425a a d a d a d ⎧+=+⎪⎨+=⎪⎩,解得112a d =⎧⎨=⎩.∴a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1.(2)由(1)知,a n =2n ﹣1.则b n =()()()1111111122141n n a a n n n n +⎛⎫==-⎪++++⎝⎭所以T n =()1111111111422314141nn n n n ⎛⎫⎛⎫-+-+⋯+-=-= ⎪+++⎝⎭⎝⎭(3)T n+1﹣T n =()()()()1104241412n n n n n n +-=>++++,∴{T n }单调递增,∴T n ≥T 1=18.∵T n =()1414n n <+∴18≤T n <14,使得245n m m T -<<恒成立,只需1452148mm ⎧≤⎪⎪⎨-⎪<⎪⎩解之得55m 42≤<,又因为m 是自然数,∴m=2.9.【思路引导】(1)根据n a 与n S 的关系可推出12n n a a --=,写出等差数列的通项公式即可;(2)利用裂项相消法求和,解不等式即可.解:(1)当1n =时,13a =;当2n ≥时,2243n n n a a S +=+①2111243n n n a a S ---+=+②①-②整理得12nn a a --=21n a n =+,所以121n b n =+.(2)设111(21)(21)n n n c b b n n --==-+,所以122311111111......235572121n n b b b b b b n n +⎛⎫+++=-+-++- ⎪-+⎝⎭19/201112321n ⎛⎫=- ⎪+⎝⎭令1111023217n⎛⎫--< ⎪+⎝⎭,解得10n <所以n 的最大值为9.10.【思路引导】(1)利用中点坐标公式的表示,得到,然后代入求中点的纵坐标的过程,根据对数运算法则,可以得到常数;(2)利用上一问的结果,当时,,可以采用倒序相加法,求和;(3)根据上一问的结果,代入,求,然后跟形式,采用裂项相消法求和,并反解,转化为恒成立求最值的问题.(1)证明:设(),M x y 1()2OM OA OB =+12122{2x xx y y y +=+=由知,()()1222121212121222221211log log 112221log 1log log 1222x xf x f x y y x x y x x x xx x x x ++++--∴===⎛⎫+⋅++ ⎪⎝⎭===∴M 点的纵坐标为定值(2)由(1)知()()12121,1x x f x f x +=+=121...n n S f f f n n n -⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121n n n S f f f n n n --⎛⎫⎛⎫⎛⎫=++⋯+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:2n S =112211...n n n ff ff f f n n n n n n ⎡⎤⎡⎤⎡⎤---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦1n =-……7分∴()*12,2n n S n n N -=≥∈20/20(2)当2n ≥时,114114().(1)(1)(1)(2)12n n n a S S n n n n +===-++++++123...n n T a a a a =++++==(112.322nn n -=++由()11n n T S λ+<+得<λ·∴λ>∵4n n+≥4,当且仅当时等号成立,∴当1n =时,49λ>因此λ>,即λ的取值范围是(+∞)。
第33讲 数列的性质及综合应用以等差与等比数列的知识和规律为主体内容设计的综合试题是高考数列压轴题命制的一个热点,必须重视这两类数列的性质在解题中的应用,特别是性质中的一些对偶关系,可以给解题带来方便,下面把等差数列、等比数列的重要性质归纳如下,读者可以对照看看.1.等差数列的重要性质(1)在等差数列{}n a 中,任意两项,n m a a 之间的关系为()(,n m a a n m d m =+-,)*n ∈N(2)在等差数列{}n a 中,当()*,,,m n p q m n p q +=+∈N 时,则有m n p q a a a a +=+;特别地,当2m n p +=时,则有2m n p a a a +=.(3)若数列{}n a 是公差为d 的等差数列,则数列{}(,n a b b λλ+是常数)是公差为d λ的等差数列;若数列{}{},n n a b 分别是公差为,d m 的等差数列,则{}(1212,n n a b λλλλ+是常数)是公差为12d m λλ+的等差数列.(4)数列{}n a 是公差为d 的等差数列,每隔()*k k ∈N 项取出一项得到的,k k m a a +,2k m a +仍为等差数列,公差为md .(5)等差数列前n 项和211(1)222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭是关于n 的二次函数且常数项为0.(6)在等差数列{}n a 中,前n 项和为n S ,若项数为()*2n n ∈N ,则1nn S a S a +=奇偶,若项数为()*21n n +∈N ,则1S n S n+=奇偶. (7)在等差数列{}n a 中,数列232,,,n n n n n S S S S S --成等差数列.2.等比数列的重要性质(1)在等比数列{}n a 中,任意两项,n m a a 之间的关系为()*,n m n m a a q m n -=∈N . (2)在等比数列{}n a 中,若()*,,,m n p q m n p q +=+∈N ,则;m n p q a a a a =特别地,当2m n p +=时,则有2m n p a a a =.(3)若数列{}n a 是公比为q 的等比数列,则数列{}(n a λλ是常数)是公比为q 的等比数列;若数列{}{},n n a b 分别是公比为,q m 的等比数列,则{}n n a b 是公比为qm 的等比数列.(4)数列{}n a 是公比为q 的等比数列,每隔()*k k ∈N 项取出一项得到的,k k m a a +,2k m a +仍为等比数列,公比为m q .(5)等比数列前n 项和()1111111111nnn n n a q a a qa aS q A Aq qqq q--===-=-----(其中11a A q ⎫=⎪-⎭,系数和常数项是互为相反数的类指数函数,底数为公比q . (6)在等比数列{}n a 中,前n 项和为n S ,若项数为()*2n n ∈N,则S q S=偶奇(7)在等比数列{}n a 中,若0m S ≠,则数列232,,,m m m m m S S S S S --成等比数列.3.等差、等比数列的综合问题创新题型是高考命题的热点,数列又是创新题型的热点.近年来由等差、等比数列通过组合、类比或推广构造出一种新的数列,如等和数列、等积数列、等方比数列、积等差数列、商等差数列等,我们称之为由这两类基本数列演化出来的“生成数列”,解题的关键仍然是运用等差、等比数列知识解题,涉及哪个数列问题就灵活地运用相关知识特别是上述重要性质来解决.典型例题【例1】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和为n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【分析】数列在高考中的地位是比较重要的,其中数列的通项公式与前n 项和的求解方法是数列的核心问题,命题的重点为等差数列和等比数列的通项公式,前n 项和公式以及常见数列的求和方法.第(1)问,根据条件列出关于首项1a 和公比q 的方程组,求出首项1a 和公比q ,从而得到数列{}n a 的通项公式;第(2)问,解题的关键是写出{}n b 的通项公式,观察nn nb c a =的特点是等差⨯等比的形式,采用错位相减法是首选,也可考虑构造特殊数列的方法或裂项相消法求和,而采用导数法则属妙思巧解. 【解析】(1)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==,又0n a >,解得12, 2.2n n a q a ==∴=.(2)【解法一】(错位相减法)由题意知()121211(21):(21)2n n n n b b S n b +++++==+,又211,n n n S b b ++=10,n b +≠21n b n ∴=+,令n n n b c a =,则212n nn c +=, 因此1n T c =2231357212122222n n n n n c c --++++=+++++ 又234113572121222222n n n n n T +-+=+++++ 两式相减得211131112125,5.2222222n n n n nn n T T -+++⎛⎫=++++-∴=- ⎪⎝⎭ 【解法二】(构造法)同解法一得21.2n n n c +=. 又1121,.2n n n n n n n c T T T T --+=-∴=+① 设1111()[(1)]22n n n n T an b T a n b ---+=--+,即122n n nan b aT T ---+=+.② 比较①②得2,21a b a -=⎧⎨-+=⎩,解得2,1(25)5.2n n a T n b =-⎧⎧⎫∴---⎨⎨⎬=-⎩⎭⎩为常数列.则11111737(25)(215)522222n n T n T c ++=+⨯+=+=+=, 故2552n nn T +=-. 【解法三】(裂项相消法)1111212(1)12212(1)11222222112221122nn n n n n n n n n n c ++⎛⎫+++⋅- ⎪+++⎡⎤⎛⎫⎝⎭=+=-+ ⎪⎢⎥⎣⎦⎝⎭--12n n T c c c ∴=+++11122112112(11)12212(21)1212(1)12222222n n n n +++⨯+⨯++⨯+⨯+++++⎡⎤=-+-++-⎢⎥⎣⎦121112222n⎡⎤⎛⎫⎛⎫⎛⎫++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112112(1)12522225122212n n nn n -+⎛⎫- ⎪⨯++++⎡⎤⎝⎭=-+⨯=-⎢⎥⎣⎦- 【解法四】(拆项并运用导数法)由解法一得12111222n nn n n c n -+⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭, 01211112211111231222212nn n T n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦∴=+++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦-012111111123122222n n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦令1,2x =则()()1211121122n n n nnT x nxx x x'-=++++-=++++- ()1121(1)(1)(1)111112(1)2n n n n nn x x x x x x x x '++⎡⎤-+----⎛⎫-⎣⎦=+-=+- ⎪--⎝⎭再将x 换成12,得 1211111(1)122221251522112n n n n nn n T +⎡⎤⎛⎫⎛⎫⎛⎫-+-+-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎢⎥⎣⎦=+-=-⎛⎫- ⎪⎝⎭【例2】在数列{}n a 与{}n b 中,111,4a b ==.数列{}n a 的前n 项和{}n S 满足:1n nS +-1(3)0,2n n n S a ++=为n b 与1n b +的等比中项,n +∈Z .(1)求22,a b 的值;(2)求数列{}n a 与{}n b 的通项公式.n 项和的关系. 【分析】第(1)问比较简单,可直接求解;第(2)问可以在第(1)问的基础上继续运用归纳-猜想-证明的解题方法,也可以从条件1(3)0n n nS n S +-+=出发利用通项与前n 项和的关系转化为研究数列{}n a ,探求其通项,或先求出和数列{}n S 的通项再通过n a =1n n S S --求{}n a 的通项并结合其他条件求{}n b 的通项. 【解析】(1)由题设有121140,1a a a a +-==,解得23a =, 由题设又有222114,4a b b b ==,解得29b =. (2)【解法一】(归纳-猜想-证明)由题设1(3)0n n nS n S +-+=,111,4a b ==及223,9a b ==,进一步可得33446,16,10,25a b a b ====,由此猜想()21,(1),.2n n n n a b n n ++==+∈Z先证()1 ,,2n n n a n ++=∈Z当1n =时,()11112a ⨯+=,等式成立.当2n 时用数学归纳法证明如下: 【1】当2n =时,()22212a ⨯+=,等式成立;【2】假设当n k =时等式成立,即()1, 2.2k k k a k +=由题设有()()()113,12,k k k k S k S k S k S +-⎧=+⎪⎨-=+⎪⎩①② ①式减①式整理得()12k k ka k a +=+,从而有()()()111112222k k k k k k k k a a k k +⎡⎤++++++⎣⎦==⋅=这就是说,当1n k =+时等式也成立,根据【1】【2】可知,等式()12n n n a +=对任何的2n 成立.综上所述,等式()12n n n a +=对任何的n +∈Z 都成立.再用数学归纳法证明2(1),n b n n +=+∈Z .【3】当1n =时,21(11)b =+,等式成立 【4】假设当n k =等式成立,即2(1)k b k =+,那么()22221124(1)(2)[11](1)k k k a k k b k b k ++++===+++,也就是说,当1n k =+时等式也成立,根据【3】【4】可知,等式2(1)n b n =+对任何n +∈Z 都成立.【解法二】(由和数列{}n S 递推式求n a )由题设可知()()()1131,,2n n n n nS n S n S n S +-⎧=+⎪⎨-=+⎪⎩②①①式减①式,整理得()12,2n n na n a n +=+,()()3243124,35,,11, 3.n n a a a a n a n a n -∴==-=+将以上各式左右两端分别相乘,得()()21!1!6n n n a a+-=,由(1)并化简得()()()211362n n n n n a a n ++==,①①式对1,2n =也成立.由题设有2221114,(2)(1)n n n n n b b a b b n n +++=∴=++, 即1221(1)(2)n n b b n n +=++, n +∈Z 令2(1)nn b x n =+, 则11n n x x +=, 即11n nx x +=, 由11x =得1,2n x n =. 21(1)nb n ∴=+, 即2(1),1n b n n =+. 【解法三】(先求n S 再求n a )由题设有()13,n n nS n S n ++=+∈Z ,()()()213214,25,,122n n S S S S n S n S n -∴==-=+将以上各式左右两端分别相乘,得 ()()1121452n n S n S •••-=•••+化简得()()()()11212,3236n n n n n n n S a n ++++==⋅,由(1), 上式对1,2n =也成立,()11,22n n n n n a S S n -+∴=-=, 上式对1n =也成立.以下同解法二,可得2(1), 1.n b n n =+强化训练1. 设数列{}{},n n a b 满足41,3nn n a n b =+=,令{}n c 是由数列{}{},n n a b 中的公共项按照从小到大顺序排列而成的数列,求数列{}n c 的通项公式.【解析】 【解法一】首先寻找首项1329c a b ===;设k n m c a b ==,寻找后一项1k c +.由n m a b =,得413m n +=.由于等比数列的项相比等差数列的项要“稀疏”得多,故以等比数列{}n b 的项为标准来看是否为{}n a 中的项()()1:3333414333mod4m m n n +=⋅=+=+≡,故不是{}n a 中的项()()2;39394149211mod4m m n n +=⋅=+=++≡是{}n a 中的项.故221133,93m m k k k mc c c ++++=∴==是与n 无关的常数,故{}n c 是等比数列,有9n n c =.【解法二】对于关键式413m n +=,只要找出所有的m ,使得31mod4m ≡即可.()111113(41)4C 41C 4(1)(1)m m m m m m m m m ---=-=+⋅-++⋅-+-观察上述展开式可以看到:右边前m 项都是4的倍数,就取决于(1)m-,显然,()*2m k k =∈N 时,()*(1)1;21m m k k -==-∈N 时,(1)1m-=-;故()*2m k k =∈N ,有239nn n c ==.2.已知数列{}n a 的前n 项和{}238,n n S n n b =+是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令()()112n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .【解析】(1)由题意知当2n 时,165n n n a S S n -=-=+,当1n =时,1111a S ==,65n a n ∴=+.31n b n ∴=+.(2)【解法一】(错位相减法)由()1知()11(66)312(33)n n n nn c n n +++==+⋅+, 又12n n T c c c =+++,()2313223212,n n T n +⎡⎤∴=⋅+⋅+++⋅⎣⎦(1)()34223223212n n T n +⎡⎤=⋅+⋅+++⋅⎣⎦,(2)()23412(1)(2)32222212n n n T n ++⎡⎤--=+++++-+⋅⎣⎦得()()2241234123212nn n n n ++⎡⎤-⎢⎥=+-+⋅=-⋅-⎢⎥⎣⎦232n n T n +∴=⋅.【解法二】(裂项相消法)由()1得()612nn c n =+⋅,而()()161262612,nn n n c n n n +=+⋅=⋅--⋅,123n n T c c c c ∴=++++213243612602622612632622=⋅⋅-⋅⋅+⋅⋅-⋅⋅+⋅⋅-⋅⋅+()162612n b n n ++⋅--⋅126232n n n n ++=⋅=⋅【解法三】(待定系数法结合裂项相消法)()1332n n c n +=+⋅,令()()21212n n n c pn q p n q ++⎡⎤=+⋅--+⋅⎣⎦,解得3,0p q ==,()2132312n n n c n n ++∴=⋅--⋅()()32431232026232n n T c c c =+++=⋅-⋅+⋅-⋅+()2132312n n n n ++⎡⎤+---⋅⎣⎦222320232n n n n ++=⋅-⋅=⋅.解法四:(待定系数法)当2n 时,()1612nn n T T n --=+⋅.设存在常数,p q ,使得()()11212n nn n T pn q T p n q +-⎡⎤-+⋅=--+⋅⎣⎦,化简得()12nn n T T pn p q --=++⋅,由恒等式性质可解得6,0p q ==.{}162n n T n +∴-⋅是常数列,故12162620n n T n T +-⋅=-⨯=,即126232n n n T n n ++=⋅=⋅.。
专题三 压轴解答题第五关 以数列与不等式相结合的综合问题【名师综述】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.预计在高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.类型一 求数列中的最值问题典例1【四川省2016年普通高考适应性测试,17】(本小题满分12分)设数列{}n a 各项为正数,且214a a =,()2*12n n n a a a n N +=+∈.(Ⅰ)证明:数列(){}3log 1n a +为等比数列;(Ⅱ)令()321log 1n n b a -=+,数列{}n b 的前项和为n T ,求使345n T >成立时的最小值.(Ⅱ)由(Ⅰ)可知,()13log 12n n a -+=,()221321log 124n n n n b a ---=+==,则()211211444413n nn n T b b b -=+++=++++=-……. 不等式345n T >即为()*41036n n N >∈,所以6n ≥,于是345n T >成立时的最小值为6.…………………………12分【名师指点】求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用等差数列或等差数列的特征来求. 【举一反三】已知数列{}n a 满足1213,44a a ==, 112(2,)n n n a a a n n N +-+=+≥∈,数列{}n b 满足:10b <,13n n b b n --=(2,)n n N +≥∈,数列{}n b 的前项和为n S . (1)求证:数列{}n n b a -为等比数列; (2)求证:数列{}n b 为递增数列;(3)若当且仅当3n =时,n S 取得最小值,求1b 的取值范围. 【答案】(1)详见解析;(2)详见解析;(3)(47,11)-- 【解析】(1)112n n n a a a +-=+.∴{}n a 是等差数列.41221)1(41-=⋅-+=∴n n a n ),2(331*1N n n nb b n n ∈≥+=-)412(31121231412313111--=--=+-++=-∴++n b n b n n b a b n n n n n )(31n n a b -=.又111104b a b -=-≠,∴{}nn b a -是114b -为首项,以13为公比的等比数列. 412)31()41(11-+⋅-=∴-n b b n n . 211)31)(41(3221,2----=-≥n n n b b b n 时.10b <, 01>-∴-n n b b .{}n b 是单调递增数列.(3)由题意可知⎩⎨⎧><∴0043b b , 2131511()()0443711()()0443b b ⎧+-<⎪⎪⎨⎪+->⎪⎩,)11,47(1--∈∴b . 类型二 求有数列参与的不等式恒成立条件下参数问题典例2 【中原名校豫南九校2017届第四次质量考评】 设等差数列{}n a 的前项和为n S ,且55625S a a =+=. (1)求{}n a 的通项公式;(2)若不等式()()282714nn n S n k a ++>-+对所有的正整数都成立,求实数的取值范围.【名师指点】求解数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数()f x 在定义域为D ,则当x D ∈时,有()f x M ≥恒成立()min f x M ⇔≥;()f x M ≤恒成立()max f x M ⇔≤;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【举一反三】【广西南宁、梧州2017届高三毕业班摸底联考】(本小题满分12分)已知数列{}n a 的前项和为n S ,且122n n S +=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n b a a a =+++…,求使()8n n b nk -≥对任意*n N ∈恒成立的实数的取值范围.【解析】(Ⅰ)因为122n n S +=-,所以()12 2 2nn S n -=-≥,.……………………2分 所以当2n ≥时,()1122222n n nn n n a S S +-=-=---=,…………………………4分又211222a S ==-=,满足上式………………………………5分所以数列{}n a 的通项公式()*2n n a n N =∈…………………………6分(Ⅱ)()212221log log log 1232n n n n b a a a n +=+++=++++=…………8分由()8n n b nk -≥对任意*n N ∈恒成立,即使()()812n n k -+≥对*n N ∈恒成立,…………10分设()()1812n c n n =-+,则当3n =或4时,n c 取得最小值为10-,所以10k ≤-.……12分 类型三 数列参与的不等式的证明问题典例3【广西柳州市2017届高三10月模拟,17】已知数列{}n a 中,11a =,47a =,且1n n a a n λ+=+.(1)求λ的值及数列{}n a 的通项公式; (2)设111n n b a +=-,数列{}n b 的前项和为n T ,证明2n T <.【解析】(1)∵11a =,1n n a a n λ+=+, ∴21a λ=+,313a λ=+,416a λ=+, 由4167a λ=+=,∴1λ=, 于是1n n a a n +=+,∴11a =,211a a =+,322a a =+,433a a =+,…,1(1)n n a a n -=+-,以上各式累加得11234(1)n a n =++++++-…2(1)(11)2122n n n n -+--+=+=. (2)112112()1(1)1n n b a n n n n +===--++,∴123n n T b b b b =++++...11111112(1)2()2()2()223341n n =-+-+-++-+ (1)2(1)1n =-+,∴2n T <.【名师指点】此类不等式的证明常用的方法:(1)比较法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【举一反三】【山西大学附属中学2017级上学期11月模块诊断,17】(本小题满分12分) 已知数列}{n a 的前项和为n S ,且满足)()1(42*∈+=N n a n nS n n .11=a(Ⅰ)求n a ; (Ⅱ)设nn a nb =,数列}{n b 的前项和为n T ,求证:47<n T .【解析】 (1); n n a n nS 2)1(4+=, (1) 1-21-1-4n n a n S n =)((2) (1)-(2),得,221(1)44(1)n n n n n a a a n n -+=--, 11)1(1313==-=-a n a n a n n ,3n a n = (2)21n b n =,47147)1(14313212112<-=⨯-++⨯+⨯++<n n n T n【精选名校模拟】1.【天津六校2017届高三上学期期中联考,19】已知各项都是正数的数列{}n a 的前项和为n S ,212n n n S a a =+,n N *∈(1) 求数列{}n a 的通项公式;(2) 设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前项和n T ,求证:2n T <; (3) 若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围. 【解析】(1)时,是以为首项,为公差的等差数列………………………………………………4分(3)由得, 当且仅当时,有最大值, ………………………………14分2.【山东省枣庄市2017届高三上学期期末,17】(本小题满分12分)已知n S 为各项均为正数的数列{}n a 的前项和,()210,2,326n n n a a a S ∈++=.(1)求{}n a 的通项公式; (2)设11n n n b a a +=,数列{}n b 的前项和为n T ,若对,4n n N t T *∀∈≤恒成立,求实数的最大值.【解析】 (1)当1n =时,由2326n n n a a S ++=,得2111326a a a ++=,即211320a a -+=. 又()10,2a ∈,解得11a =.由2326n n n a a S ++=,可知2111326n n n a a S +++++=.两式相减,得()2211136n n n n n a a a a a +++-+-=,即()()1130n n n n a a a a +++--=.由于0n a >,可得130n n a a +--=,即13n n a a +-=,所以{}n a 是首项为,公差为的等差数列,所以()13132n a n n =+-=-. (2)由32n a n =- ,可得()()12111111,...323133231n n n n n b T b b b a a n n n n +⎛⎫===-=+++ ⎪-+-+⎝⎭1111111...3447323131n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎣⎦. 因为()()()1110311313134n n n n T T n n n n ++-=-=>+++++,所以1n n T T +>,所以数列{}n T 是递增数列,所以1141444n n t t t T T T t ≤⇔≤⇔≤=⇔≤,所以实数的最大值是. 3.【四川省凉山州2017届高中毕业班第一次诊断性检测,17】已知数列{}n a 满足11a =,12n n n a a +=,*n N ∈.(1)若函数()sin(2)f x A x ϕ=+(0A >,0ϕπ<<)在6x π=处取得最大值41a +,求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域; (2)求数列{}n a 的通项公式.【解析】(1)∵12n n n a a +=,则1122n n n a a +++=, ∴22n na a +=, 又11a =,故1122a a =,即22a =, ∴32a =,44a =,∴415A a =+=,故()5sin(2)f x x ϕ=+, 又6x π=时,()5f x =,∴sin()13πϕ+=,且0ϕπ<<,解得6πϕ=,∴()5sin(2)6f x x π=+,而,122x ππ⎡⎤∈-⎢⎥⎣⎦,故720,66x ππ⎡⎤+∈⎢⎥⎣⎦,从而1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦, 综上知5(),52f x ⎡⎤∈-⎢⎥⎣⎦.(2)由(1)得:11a =,22a =,12n na a +=, ∴当为奇数时,1122122n n n a a --=⨯=;当为偶数时,222222n n n a a -=⨯=.∴数列{}n a 的通项公式为1222,2,n n n n a n -⎧⎪=⎨⎪⎩为奇数,为偶数.4. 【河南省豫北名校联盟2017届高三年级精英对抗赛,17】(本小题满分12分) 已知各项均不相等的等差数列{}n a 的前五项和520S =,且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)若n T 为数列11{}n n a a +的前项和,且存在*n N ∈,使得10n n T a λ+-≥成立,求实数λ的取值范围.【解析】(1)设数列{}n a 的公差为d ,则1211154520,2(2)(6),a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩即12124,2.a d d a d +=⎧⎨=⎩………………2分 又因为0d ≠,所以12,1.a d =⎧⎨=⎩………………4分所以1n a n =+.………………5分 (2)因为11111(1)(2)12n n a a n n n n +==-++++, 所以11111111233412222(2)n n T n n n n =-+-++-=-=++++.………………7分 因为存在*n N ∈,使得10n n T a λ+-≥成立, 所以存在*n N ∈,使得(2)02(2)nn n λ-+≥+成立,即存在*n N ∈,使22(2)nn λ≤+成立.………………9分又2142(2)2(4)n n n n =+++,114162(4)n n≤++(当且仅当2n =时取等号), 所以116λ≤.即实数λ的取值范围是1(,]16-∞.………………12分5.【辽宁盘锦市高中2017届11月月考,19】已知数列{}n a ,0n a >,其前项和n S 满足122n n n S a +=-,其中*n N ∈.(1)设2nn n a b =,证明:数列{}n b 是等差数列; (2)设2n n n c b -=⋅,n T 为数列{}n c 的前项和,求证:3n T <; (3)设14(1)2n b n n n d λ-=+-⋅(λ为非零整数,*n N ∈),试确定λ的值,使得对任意*n N ∈,都有1n n d d +>成立.(2)12(1)2nn n nc b n -=⋅=+⋅, 2231222n n n T +=+++…,211212222n n n n n T ++=+++…,相减得212311111(1)1111113112211122222222212n n n n n n n n n n T -+++-+++=++++-=+-=---…,∴213333222n n n n n n T ++=--=-<.(2)由1n n d d +>,得12114(1)24(1)2n n n n n n λλ++-++-⋅>+-⋅,2134(1)2(1)20n n n n n λλ++⋅+-⋅+-⋅>,134(1)230n n n λ+⋅+-⋅⨯>,12(1)0n n λ-+->,当为奇数时,12n λ-<,∴1λ<;当为偶数时,12n λ->-,∴2λ>-,∴21λ-<<,又λ为非零整数,∴1λ=-.6. 【河南八市重点高中2017届上学期第三次测评,21】(本小题满分12分)设公比为正数的等比数列{}n a 的前项和为n S ,已知328,6a S ==,数列{}n b 满足2log n n b a =.(1)求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足sin n n n b c a π⎛⎫=⎪⎝⎭,n S 为数列{}n c 的前项和,求证:对任意*,2n n N S π∈<+.【解析】(1)设{}n a 的公比为,则有211186a q a a q ⎧=⎨+=⎩,解得122a q =⎧⎨=⎩,则22,log 2n n n n a b n ===.即数列{}n a 和{}n b 的通项公式为22,log 2n n n n a b n ===…………………………5分 (2)证明:sin sin 2n n n n b n c a ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,∴12343411sinsin sin8162n n n n S c c c c c πππ=+++++=+++++, 易知当0,2x π⎛⎫∈ ⎪⎝⎭时,有sin x x <成立,∴3428162n n n S πππ<++++, 令348162n n n T πππ=+++ ① 则1134216322n n T L πππ+=+++ ② ①-②得311111621331281632228212n n n n n n n T ππππππππ-++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++++-=+--,从而22n nn T πππ+=-<,即2n S π<+…………………………12分 7.【湖南百所重点中学2017届高三上学期阶段诊测,21】(本小题满分12分) 已知正项数列{}n a 的前项和为n S ,且2(1)(2)n n n S a a =-+.(1)求证:不论λ取何值,数列1{+}n n a a λ+总是等差数列,并求此数列的公差;(2)设数列(1)2{}n nn na -•的前项和为n T ,试比较n T 与12(18)221n n n n +---+的大小. 【答案】(1)证明见解析,1λ+;(2)当17n <时,12(18)221n n n n T n +---<+,当17n =时,12(18)221n n n n T n +---=+,当17n >时,12(18)221n n n n T n +--->+.(2)解:∵1(1)2(1)222(1)1n n n nn n n na n n n n+--==-++••,………………7分∴2321122222222213211n n n n T n n n ++=-+-++-=-++,………………9分 11112(18)2222(18)222(17)21111n n n n n n n n n n T n n n n ++++--------=--=++++,当17n <时,12(17)01n n n +-<+,∴12(18)221n n n n T n +---<+;………………10分当17n =时,12(17)01n n n +-=+,∴12(18)221n n n n T n +---=+;………………11分当17n >时,12(17)01n n n +->+,∴12(18)221n n n n T n +--->+.………………12分8.【河北武邑中学2017届高三上学四调,17】(本小题满分10分)已知数列{}n a 的前项和为n S ,且()12n n S n λ=+-⋅,又数列{}n b 满足n n a b n ⋅=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当为何值时,数列{}n b 是等比数列?并求此时数列{}n b 的前项和n T 的取值范围. 【解析】(Ⅰ)由()12n n S n λ=+-⋅,当1n =时,11a S λ==;当2n ≥时,()()11112222n n n n n n a S S n n n ---=-=-⋅--⋅=⋅, 故数列{}n a 的通项公式为()()11,22n n n a n n λ-=⎧⎪=⎨⋅≥⎪⎩(Ⅱ)由n n a b n ⋅=有()()111,122n n n b n λ-⎧=⎪⎪=⎨⎛⎫⎪≥ ⎪⎪⎝⎭⎩则数列{}n b 为等比数列, 则首项为11b λ=满足2n ≥的情况,故1λ=,则()112111122111212nn n n b q b b q --⎛⎫++===- ⎪-⎝⎭-…+b 而1212n⎛⎫- ⎪⎝⎭是单调递增的,故[)121211,22n nb b ⎛⎫++=-∈ ⎪⎝⎭…+b 9.【山西大学附中2017届高三第二次模拟测试数学(理)试题】(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<. 【解析】(1)∵3339,S 22a ==, ∴()3312113111113233622q S a a a a q q a a a q a ⎧=⎧-=+=+=⎧=-⎪⎪⎪⇒⎨⎨⎨===⎪⎪⎪=⎩⎩⎩或, ∴131622n n n a a -⎛⎫==- ⎪⎝⎭或.(2)由题意知222222166log log log 22162n n nn b n a +====⎛⎫- ⎪⎝⎭,∴()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,∴()123111111111111142231414414n c c c c n n n n ⎛⎫⎛⎫++++=-+-++-=-=-< ⎪ ⎪+++⎝⎭⎝⎭. 10.【河北省武邑中学2017届高三上学期第三次调研考试数学(理)试题】(本小题满分12分)已知数列{}n a 是等比数列,首项11a =,公比0q >,其前项和为n S ,且113322,,S a S a S a +++,成等差数列.(1)求{}n a 的通项公式;(2)若数列{}n b 满足11,2n na b n n a T +⎛⎫= ⎪⎝⎭为数列{}n b 前项和,若n T m ≥恒成立,求m 的最大值. 【解析】(1)由题意可知:()()()331122313212322S a S a S a S S S S a a a +=+++∴-+-=+-,即314a a =,于是12311111,0,,1,422n n a q q q a a a -⎛⎫==>∴==∴= ⎪⎝⎭.11.【浙江省绍兴市柯桥区2016届高三教学质量调测(二模)数学(理)试题】(本小题满分15分)已知数列{}n a 满足:()111,n a a b n N *+==∈.(1)若1b =,求证数列(){}21na -是等差数列;(2)若1b=-,求证:132134...6n n a a a -++++<. 【解析】(1)()()(){}222111,112,1nn n n aa a a ++=-=-+∴-是首项为,公差为的等差数列.(2)显然()10,1,1n na a fx +>==在[]0,1x ∈上单调递减,()1f x ⎤∴∈⎦,故当01n a <≤时,()101n n a f a +<=<,即当101a <≤时,11n a +- 与1na -同号01n a ∴<<,22n n a a a a a a +----==11220,n n n n a a a a +-++-<+与11n n a a +--异号,且310a a -<,{}2222121210,0,n n n n n a a a a a ++--∴->-<∴单调递减,{}2n a 单调递增, 113111122,32222nn n n a a a a ++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭-==∴-与12n a -异号,121222111110,0,0,,2222n n n n a a a a a n N *--->∴->-<<<∴∈. 222212121313311222233322222nn n n n n a a a a a a +++⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪ ⎪⎪⎛⎫⎝⎭⎝⎭⎝⎭⎝⎭-==- ⎪⎫⎝⎭⎪⎭2212125111224232n n a a --⎫⎪⎛⎫⎛⎫⎝⎭≤-<- ⎪ ⎪⎝⎭⎝⎭⎫⎪⎭ 113211141111111112 (1222224242314)n n n a a a --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭∴-+-++-≤+++=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-132134...6n n a a a -+∴+++<12.【长春市普通高中2017届高三质量检测(二)】已知数列{}n a 满足()113,31.2n n a a a n N *+==-∈(1)若数列{}n b 满足12n n b a =-,求证:{}n b 是等比数列;(2)若数列{}n c 满足312log ,n n n n c a T c c c ==+++,求证:()1.2n n n T ->【试题解析】(1) 由题可知*1113()()22N +-=-∈n n a a n ,从而有13+=n n b b ,11112=-=b a ,所以{}n b 是以1为首项,3为公比的等比数列.(6分)(2) 由(1)知13-=n n b ,从而1132-=+n n a ,11331log (3)log 312--=+>=-n n n c n ,有12(1)01212-=+++>+++-=n n n n T c c c n ,所以(1)2->n n n T .13.【湖南师大附中2017届高三月考试卷(七)】已知等差数列{a n }中,a 2=6,a 3+a 6=27.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围. 【解析】(Ⅰ)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3, ∴a n =3n .5分(Ⅱ)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n,8分∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n =(n +1)(2-n )2n +1,∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故m ≥32.12分14.已知数列{}n a 的前项和()2*24n n S n N +=-∈,函数()f x 对R x ∈∀有()(1)1f x f x +-=,数列{}n b 满足12(0)()()n b f f f n n=+++1()(1)n f f n-++. (1)分别求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足n n n b a c ⋅=,n T 是数列{}n c 的前项和,若存在正实数,使不等式n n a n T n n k 226)369(>+-对于一切的*n N ∈恒成立,求的取值范围.【答案】(1)()1*2n n a n N +=∈ (2)12nn b+=试题解析:(1) 12111,244n a S +===-= 1分()()21112,24242n n n n n n n a S S +++-≥=-=---=1n =时满足上式,故()1*2n n a n N +=∈ 3分∵()(1)f x f x +-=1∴11()()1n f f nn -+= 4分 ∵12(0)()()n b f f f n n=+++1()(1)n f f n -++ ① ∴12(1)()()n n n b f f f n n--=+++(1)(0)f f ++ ② ∴①+②,得1212n n n b n b +=+∴= 6分(2)n n n c a b =⋅(1)2n n c n ∴=+⋅ 7分123223242(1)2n n T n ∴=⋅+⋅+⋅+⋅⋅⋅++⋅ ①2n T = 2341223242(1)2n n +⋅+⋅+⋅+⋅⋅⋅++⋅ ②①-②得231422(1)2n n T n +-=+++⋅⋅⋅-+⋅ 8分 即 12n n T n +=⋅ 10分 要使得不等式n n a n T n n k 226)369(>+-恒成立,26936n k n n ∴>-+对于一切的*n N ∈恒成立, 即6369k n n >+- 11分令6()369g n n n =+-,则6()2369g n n n=≤=+-当且仅当6n =时等号成立,故max ()2g n = 13分 所以2k >为所求. 14分。
专题3.3 数列与函数、不等式相结合问题一.方法综述数列与函数、不等式相结合是数列高考中的热点问题,难度较大,求数列与函数、不等式相结合问题时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数列中的恒成立问题、数列中的最值问题、数列性质的综合问题、数列与函数的综合问题、数列与其他知识综合问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略类型一 数列中的恒成立问题【例1】【2018河南省豫南豫北联考二】数列{}n a 满足()*1116,51n n n a a a n N a +-==∈-,若对*n N ∈,都有12111nk a a a >+++ 成立,则最小的整数k 是( ) A. 3 B. 4 C. 5 D. 6又对*n N ∈,都有12111nk a a a >+++ 成立, ∴5k ≥.故最小的整数k 是5.选C. 【答案】C【指点迷津】对于数列中的恒成立问题,仍要转化为求最值的问题求解,解答本题的关键是如何对12111n a a a +++ 求和,根据题目的条件经过变形得到111111n n n a a a +-=--,可利用列项相消求和,在求得数列和的基础上可得到k 的取值范围,解题时要注意等号是否可以取得.【举一反三】【2017陕西洛南永丰中学高三月考】已知数列{}n a 的首项1a a =,其前n 项和为n S ,且满足()2142,n n S S n n n N -++=≥∈,若对任意1,n n n N a a ++∈<恒成立,则a 的取值范围是( )A .()3,5B .()4,6C .[)3,5D .[)4,6【答案】A类型二 数列中的最值问题【例2】【辽宁省葫芦岛第六高级中学2018届高三上学期第二次阶段(期中)】已知数列{}n a 的前n 项和1,0n S a <且22n n a a S S =+,对一切正整数n 都成立,记1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则数列1n n T T ⎧⎫-⎨⎬⎩⎭中的最大值为( )-当n 为奇数时, n T 随n 的增大而增大,所以11122n n n T T T T ≤<∴-≤-<-当n 为偶数时, n T 随n 的增大而减小,所以11222n n n T T T T <<=-∴-<-≤综上,当*n N ∈时,总有12n n T T -≤-≤故选A 【答案】A【指点迷津】本题利用数列的递推公式求解数列的通项公式及利用数列的单调性求解数列的和的最大项,在解题时需要一定的逻辑运算与推理的能力,其中根据n 的奇偶判断n T 的单调性是解题的关键【举一反三】【2017届安徽省宣城市高三下学期第二次调研】设数列{}n a 为等差数列, n S 为其前n 项和,若113S ≤, 410S ≥, 515S ≤,则4a 的最大值为( ) A. 3 B. 4 C. 7- D. 5-【答案】B类型三 数列性质的综合问题【例3】【福建省福州市闽侯第六中学2018届高三上学期期中考试】若数列{}n a 满足: 10a =且()*121,2n n a a n n N n -=+-∈≥,数列{}n b满足1811n n b -⎛⎫= ⎪⎝⎭,则数列{}n b 的最大项为第__________项.【解析】由10a =,且()*121,2n n a a n n N n -=+-∈≥,得()1212n n a a n n --=-≥,则213243221,231,241,...a a a a a a -=⨯--=⨯--=⨯-, ()1212n n a a n n --+-≥,累加得()()()()22123 (1211)2n n n a n n n n +-=+++--=⨯-+=-,11881111n n n b --⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭()12811n n n -⎛⎫=+⋅ ⎪⎝⎭,由11{n n n n b b b b -+≥≥,得()()()()1222122881111{88321111n n n nn n n n n n n n ---⎛⎫⎛⎫+⋅≥+⋅ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫+⋅≥++⋅ ⎪⎪⎝⎭⎝⎭,即161933n ≤≤, *,6,n N n ∈∴=∴ 数列{}n b 的最大项为第6项,故答案为6. 【答案】6【指点迷津】本题主要考查已知数列的递推公式求通项以及数列最大项问题,属于难题题.由数列的递推公式求通项常用的方法有:(1)累加法(相邻两项的差成等差、等比数列);累乘法(相邻两项的积为特殊数列);(3)构造法,形如()10,1n n a qa p p q -=+≠≠的递推数列求通项往往用构造法,即将()10,1n n a qa p p q -=+≠≠利用待定系数法构造成()1n n a m q a m -+=+的形式,再根据等比数例求出{}n a m +的通项,进而得出{}n a 的通项公式.【举一反三】【福建省2017届高三4月单科质量检测】已知数列{}{},n n a b 满足11111,2,n nn n n na b a a b b a b ++===+=+,则下列结论正确的是( ) A. 只有有限个正整数n使得n n a B. 只有有限个正整数n使得n n a C.数列{}n n a 是递增数列 D.数列n n a b ⎧⎪⎨⎪⎩是递减数列【答案】D类型四 数列与函数的综合问题【例4】【陕西省西安市西北工业大学附属中学2017届高三下学期第七次模拟】已知函数的定义域为,当时,,且对任意的实数,等式成立,若数列满足,且,则下列结论成立的是( )A. B. C.D.【答案】D【指点迷津】(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向. (2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去“f ”,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系. 【举一反三】【四川省内江市高中2018届高三第一次模拟】设*n N ∈,函数()1x f x xe =, ()()'21f x f x =,()()'32f x f x =,…, ()()'1n n f x f x +=,曲线()n y f x =的最低点为n P , 12n n n P P P ++∆的面积为n S ,则A. {}n S 是常数列B. {}n S 不是单调数列C. {}n S 是递增数列D. {}n S 是递减数列 【解析】根据题意得()()()'211xf x f x x e ==+, ()()()'322xf x f x x e ==+…,类型五 数列与其他知识综合问题【例5】【安徽省巢湖市柘皋中学2018届高三上学期第三次月考】将向量12,,,n a a a组成的系列称为向量列{}n a ,并定义向量列{}n a 的前n 项和12n n S a a a =+++ .若()*1,n n a a R n N λλ+=∈∈ ,则下列说法中一定正确的是( )A. ()111nn a S λλ-=-B. 不存在*n N∈,使得0n S =C. 对*m n N ∀∈、,且m n ≠,都有m n S SD. 以上说法都不对【解析】 由()*1,n n a a R n N λλ+=∈∈ ,则1n na a λ+=,所以数列{}n a 构成首项为1a ,公比为λ的等比数列,所以()11,1{ 1,11nn na S a λλλλ==-≠-,又当1λ=-时, 20n S =,所以当*m n N ∀∈、,且m n ≠时, m n S S是成立的,故选C.【答案】C【举一反三】【湖南省长沙市长郡中学2018届高三第三次月考】将正整数12分解成两个正整数的乘积有112⨯, 26⨯, 34⨯三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解.当p q ⨯(p q ≤且*,N p q ∈)是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如()12431f =-=.数列(){}3nf 的前100项和为__________. 【答案】5031- 【解析】当n 为偶数时, ()30nf =;当n 为奇数时, ()11122233323n n n nf +--=-=⨯,()5001495010031233 (3)23131S -∴=+++=⨯=--,故答案为5031-.【例6】【福建省泉州市2017届高三高考考前适应性模拟(一)】斐波那契数列{}n a 满足:()*12121,1,3,n n n a a a a a n n N --===+≥∈.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n 项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则下列结论错误的是( )A. 2111·n n n n S a a a +++=+ B. 12321n n a a a a a +++++=- C. 1352121n n a a a a a -++++=- D. ()1214?n n n n c c a a π--+-=12331131...1121n n a a a a a a a --⇔++++=-⇔⇔=-⇔=- ,所以B 正确;对于C, 1n = 时,121a a ≠- ;C 错误;对于D, ()()()22211112144?44n n n n n n n n n n a a c c a a a a a a ππππ-----+⎛⎫-=-=+-= ⎪⎝⎭,D 正确.故选C. 【答案】C【指点迷津】本题通过对多个命题真假的判断考察数列的各种性质及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.【举一反三】【青海省西宁市2017届高三下学期复习检测一】如图所示,矩形n n n n A B C D 的一边n n A B 在x 轴上,另外两个顶点,n n C D 在函数()1(0)f x x x x=+>的图象上.若点n B 的坐标为()(),02,n n n N +≥∈,记矩形n n n n A B C D 的周长为n a ,则2310a a a +++= ( )A. 220B. 216C. 212D. 208【答案】B三.强化训练1.【2017届河北沧州市高三9月联考】已知函数()y f x =的定义域为()0+∞,,当1x >时,()0f x >,对任意的()0x y ∈+∞,,,()()()f x f y f x y +=⋅成立,若数列{}n a 满足()11a f =,且()()()*121N n n f a f a n +=+∈,则2017a 的值为( )A .20141a -B .20151a -C .20161a -D .20171a - 【答案】C2.【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ⎛⎫=-⎪⎝⎭,若一个各项均为正数的数列{}n a 满足()()()()*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =( ) A.136B. 9C. 18D. 36 【答案】C【解析】 对任意的正数,x y 均有()()()fx y f x f y =+且112f ⎛⎫=-⎪⎝⎭,又0n a > 且()()()()()11112n n n n n f S f a f a f a f a f ⎛⎫=++-=+++ ⎪⎝⎭ ()()212n n n f S f a a ⎡⎤∴=+⨯⎢⎥⎣⎦,又()f x 是定义在(]0,+∞上的单调增函数, ()212n n n S a a ∴=+ ①,当1n =时, ()211112a a a =+, 211110,0,1a a a a ∴-=>∴= ,当2n ≥时, ()211112n n n S a a ---∴=+ ②,①-②可得22111222n n n n n n n a S S a a a a ---=-=+--,()()1110n n n n a a a a --∴+--=,()10,12n n n a a a n ->∴-=≥ {}n a ∴为等差数列11,1a d ==, n a n ∴=, 1818a =,故选C.3.【贵州省遵义市遵义四中2018届高三第三次月考】已知()3201725x f x x +=-,函数()g x 对任意x R ∈有()()20182322013g x g x -=--成立, ()y f x =与()y g x =的图象有m 个交点为()11,x y ,()22,x y …,(),m m x y ,则()1mi i i x y =+=∑( )A. 2013mB. 2015mC. 2017mD. 4m 【答案】D4.【河南省洛阳市2018届高三期中考试】用[]x 表示不超过x 的最大整数(如[][]2.12,3.54=-=-).数列{}n a 满足143a =, ()111n n n a a a +-=-(*n N ∈),若12111n nS a a a =+++ ,则[]n S 的所有可能值得个数为( )A. 4B. 3C. 2D. 1 【答案】B5.【四川省成都市第七中学2017届高三6月1日高考热身考试】已知等差数列{}n a 中,254,7,,a a m n N +==∈,满足1231m m m m m n n a a a a a +++++= ,则n 等于( )A. 1 和2B. 2和3C. 3和4D. 2和4 【答案】B【解析】由题意得公差()741,421252n d a n n -===+-⋅=+- ,即()()3423m mm m n n ++⋯++=+ ,代入验证得当23{{23m m n n ====或 时成立,选B. 6.【湖北省襄阳四中2017届高三下学期5月适应性考试】若数列{}n a , {}n b 的通项公式分别为()20161n n a a +=-⋅, ()201712n nb n+-=+,且n n a b <对任意*n N ∈恒成立,则实数a 的取值范围是( )A. 11,2⎡⎫-⎪⎢⎣⎭B. [)1,1-C. [)2,1- D. 32,2⎡⎫-⎪⎢⎣⎭【答案】D【解析】,n n a b < 可得()()2017201611?2n n a n++--<+,若n 是偶数,不等式等价于12a n<-恒成立,可得13222a <-= ,若n 是奇数,不等式等价于12a n -<+ ,即2,2a a -≤≥- ,所以3-22a ≤< ,综上可得实数a 的取值范围是32,2⎡⎫-⎪⎢⎣⎭,故选D .7.【河北省石家庄市第二中学2017届高三下学期模拟联考】某计算器有两个数据输入口12M M ,,一个数据输出口N ,当12M M ,分别输入正整数1时,输出口N 输出2,当1M 输入正整数1m , 2M 输入正整数2m 时, N 的输出是n ;当1M 输入正整数1m , 2M 输入正整数21m +时, N 的输出是5n +;当1M 输入正整数11m +, 2M 输入正整数2m 时, N 的输出是4n +;当1M 输入60, 2M 输入50时, N 的输出是____________. 【答案】4838.【2017届天津市六校高三理上学期期中联考】已知数列{}n a 满足:11a =,12nn n a a a +=+()n N *∈.若11(2)(1)n nb n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( ) A.23λ>B.32λ>C.32λ<D.23λ< 【答案】D9.【广东省深圳市高级中学2018届高三11月考】已知等比数列{}n a 的公比为()0,1q ∈,且数列第11项的平方等于第6项,若存在正整数k 使得1212111k ka a a a a a +++>+++ ,则k 的取值范围是________. 【答案】031k <<【解析】∵数列{}n a 第11项的平方等于第6项,即2116a a =, ∴220511a q a q =,∴1511a q =,∴()121112111111111k kk k k q q a a a a q a a a a q q ---+++=+++=-- ,。