微型半球陀螺仪的误差源研究
- 格式:pdf
- 大小:197.67 KB
- 文档页数:3
陀螺仪误差分析、处理与选型imu误差的效果陀螺仪的偏移对于速度的影响是⼆次的,对于位置的影响是三次的。
对于收敛的并且设计很好的滤波器,估计和去除imu的误差,能够提⾼姿态的精度和长期稳定性常见误差项:⾸先介绍⼏个常见的概念:1.重复性假设所有的条件⼀样,对于相同的输⼊,传感器输出相同的值的能⼒(对于每次启动都相同)。
陀螺仪的零偏不具有重复性。
2.稳定性对于同样的输⼊,在同⼀次启动,输出值都是相同的。
3.漂移输出随着时间的变化(零漂是输⼊为0的时候的输出)确定性误差传感器⾮正交性(安装误差):三轴加速度计和陀螺仪的三个轴不是完全的正交的,例如对于加速度计,理想情况下其中⼀个轴测量重⼒,其他两个轴不应该有输出。
传感器不正交会出现在安装和封装的时候。
⽣产和标定能够⼀定程度的解决这个问题,在系统运⾏的时候持续的估计和矫正也是⼀种解决⽅法。
尺度误差(scale)随机噪声《Notes on Stochastic Errors of Low Cost MEMS Inertial Units》陀螺仪的噪声分析不适⽤arma模型,应该使⽤allan variance。
因为arma模型假设所有的误差都是完全客观的,然⽽在实际中:传感器的输出受到噪声的影响,⽽且是不同的独⽴随机过程的和;⽬前的arma模型能够解决噪声的影响,但是不能够解决独⽴随机过程的系数问题。
误差中最主要的是:(1)零偏、温漂;(2)⾓速率噪声,也叫作随机游⾛所有噪声可以建模为:\begin{equation}y(t) = u(t) +e(t)+b(T) + N(a,\omega, T,t)\end{equation}allan variance 建模\(b(T)\)表⽰温漂,⼀般不考虑,可以通过温度补偿来做\(N(a,\omega, T,t)\)表⽰加速度,⾓速度,温度和时间等总的因素造成的影响(\(G\) 的依赖性(加速度影响),对于mems陀螺仪来说,有可能受到重⼒的影响,可以通过建模并采⽤⼀定的⽅法去除这个影响)\(e(t)=ARW(t)+F(t)+Q(t)+S(t)\)表⽰随机噪声陀螺仪的误差分类a。
半球谐振陀螺谐振子误差分析与性能评估半球谐振陀螺谐振子误差分析与性能评估引言:陀螺是一种利用陀螺效应来测量方向、稳定运动或者导航的装置,具有广泛的应用领域,例如导航系统、惯性导航等。
作为陀螺的一种改进型,半球谐振陀螺谐振子在较大转速范围内具有更好的误差性能和较高的精度。
1. 谐振原理及结构半球谐振陀螺谐振子是一种基于谐振原理工作的陀螺仪器。
其结构由一个半球形的壳体和一根悬挂在其中的陀螺转子组成。
当谐振子转子受到外界扰动时,谐振子壳体会根据陀螺效应的作用力引导转子在壳体内保持自由旋转。
通过测量转子的旋转状态变化,可以获知外界扰动信息。
2. 误差源分析在实际应用中,半球谐振陀螺谐振子的运动状态往往受到各种误差的影响,包括器件误差、环境误差等。
对这些误差源进行分析是评估其性能的关键。
2.1 器件误差器件误差是指因制造、安装或使用不当等原因导致的陀螺谐振子的运动状态发生偏差的误差。
例如,由于壳体和转子之间的制造偏差或者装配误差,使得谐振子在工作过程中受到非均匀的摩擦力。
此外,传感器的灵敏度固有偏差和跨度非线性等也会对谐振子的准确度产生影响。
2.2 环境误差环境误差是指由于谐振子所处环境的因素导致其运动状态发生偏差的误差。
例如,温度变化会引起壳体和转子材料的热膨胀,从而影响谐振子壳体和转子的相对位置。
此外,谐振子受到的振动、加速度等外部扰动也会对其运动状态产生干扰。
3. 误差影响分析分析误差源对半球谐振陀螺谐振子的性能影响可以帮助我们更好地了解其在不同应用场景下的适用性。
3.1 器件误差对性能影响器件误差的存在会导致谐振子输出信号与实际扰动信号之间存在偏差,降低了测量的准确性。
例如,传感器的固有偏差会导致输出信号始终存在一个常量的偏移,而传感器的非线性特性则会导致输出信号的非线性变化,影响对扰动信号的精确度测量。
3.2 环境误差对性能影响环境误差会直接影响谐振子的运动状态,进而影响对外部扰动信号的测量。
例如,温度变化引起的热膨胀会改变谐振子壳体和转子之间的相对位置,从而导致输出信号偏移。
激光陀螺测角仪测角误差来源研究谢启华;李卫升;黄云【摘要】激光陀螺动态测角仪是近几十年来发展起来的高精度、高灵敏度的动态测角系统.为了充分利用激光陀螺高精度的优良性能来提高角度测量的精度,对激光陀螺测角仪系统的结构和工作原理进行了介绍,综合国内外文献中对各主要误差源进行了定性的分析,估算了各误差的大小,由此得到了系统总的测角不确定度约为0.3″.结果表明,量化误差对测角精度影响较大.这一结果对探索进一步提高系统精度的方法具有指导性的作用.%With decades of development, a dynamic ring laser goniometer ( DLG) becomes a kind of dynamic angle measuring system with high precision and sensitivity. The structure and principle of DLG system were introduced. In order to increase the accuracy of angle measurement and make the best use of the ring laser gyro, the major errors were analyzed qualitatively and calculated quantificationally, and the total angle measure uncertainty of the system was about 0. 3". The result shows that the quantization error will influence the accuracy of angle measurement significantly, and it' s instructive to find the methods to increase the angle measuring accuracy further.【期刊名称】《激光技术》【年(卷),期】2012(036)002【总页数】5页(P174-178)【关键词】测量与计量;测角仪;误差源;激光陀螺;角度测量【作者】谢启华;李卫升;黄云【作者单位】国防科学技术大学光电科学与工程学院,长沙410073;九江职业技术学院信息工程系,九江332007;国防科学技术大学光电科学与工程学院,长沙410073【正文语种】中文【中图分类】TH741.2引言角度是计量科学所要测量的一个重要的物理量,它广泛地运用于生产和生活的各个方面,如物体方位与姿态的确定、精密机械加工中刀片方位的控制、舰船甲板变形的测量等[1-3]。
8摘要陀螺经纬仪是一种将陀螺仪和经纬仪结合成为一体的、全天候,并且不依赖于其他条件就能测定真北方向的精密定向仪器,有着广泛的应用。
随着科学和技术、工程建设与经济建设的快速发展,对陀螺经纬仪定向精度要求越来越高,而国内外在高精度陀螺经纬仪定向精度方面的研究较少,尤其是在陀螺经纬仪定向精度评定规范以及外界因素对陀螺经纬仪定向精度的影响方面的研究成果欠缺。
因此,本文探讨了陀螺经纬仪定向精度的有关问题。
本论文主要研究情况如下:首先,对于陀螺经纬仪的具体构造和陀螺经纬仪的具体工作原理做出了相应的理论分析。
详细阐述了陀螺仪的结构和功能以及陀螺经纬仪的定向原理。
其次,在相应的理论指导之下,详细的介绍了几种具体的测量方法。
分别根据陀螺仪经纬仪的跟踪和不跟踪两种情况来具体来进行数据的获取和处理。
在不跟踪状态下对中天法、时差法以及三点法等进行具体的理论分析和实际操作。
最后,在对中天法和逆转点法两种工作方式做理论上的分析。
在定向精度和误差等具体环节上分析,得出比较适合应用的数据获取方法,也就所谓的观测方法。
关键字:陀螺经纬仪,结构和功能,定向原理,观测方法,误差分析AbstractThe theodolite is a gyro and theodolite combined into one , all-weather , and does not depend on other conditions can be measured precision orientation apparatus to true north , has a wide range of applications .With the rapid development of science and technology, engineering, construction and economic construction , the directional accuracy of the theodolite have become increasingly demanding , and less at home and abroad in high-precision gyro theodolite directional accuracy , especially in the directional gyro theodolite accuracy assessment lack of research results of the specification and the impact of external factors on the directional gyro theodolite accuracy . Therefore, this article discusses the issues related to directional accuracy of the theodolite . This thesis is as follows : First, for the specific structure of the gyro theodolite and gyro theodolite works to make the theoretical analysis . Elaborated on the structure and function of the gyroscopes and orientation principle .Second, under the theoretical guidance , described in detail several specific methods of measurement . Gyro theodolite tracking and not tracking the two situations specific to the data acquisition and processing , respectively . For example, in the state does not track the transit method, difference method , and three-point method of theoretical analysis and practical .Finally, the theoretical analysis of the two methods of work of the transit law and reverse the point method . Directional accuracy and error analysis of the specific areas of analysis, to draw more suitable for data acquisition applications , there is theso-called methods of observation .Keywords: Theodolite , the structure and function , directional principle , observation method , error analysis目录目录摘要 (I)Abstract (II)目录 (II)第一章绪论................................................................................................................................ - 1 -1.1本课题研究的背景及意义........................................................................................... - 1 -1.2陀螺经纬仪精密定向的研究现状及发展趋势........................................................... - 2 - 第二章陀螺经纬仪的构成........................................................................................................ - 4 -2.1陀螺经纬仪的分类....................................................................................................... - 4 -2.2 陀螺经纬仪结构组成.................................................................................................. - 4 -2.2.1 灵敏部.............................................................................................................. - 5 -2.2.2 光学观测系统.................................................................................................. - 5 -2.2.3 紧锁限幅结构.................................................................................................. - 7 -2.2.4 机体外壳.......................................................................................................... - 7 - 第三章陀螺经纬仪精密定向原理............................................................................................ - 8 -3.1 陀螺仪简介.................................................................................................................. - 8 -3.1.1 陀螺仪的基本特征(陀螺仪的进动性和定轴性)...................................... - 8 -3.1.2 陀螺仪转动的微分方程................................................................................ - 10 -3.1.3 摆式陀螺仪的运动方程................................................................................ - 10 -3.2 陀螺经纬仪定向观测方程........................................................................................ - 13 -3.2.1 陀螺轴的自由摆动方程................................................................................ - 14 -3.2.2 跟踪状态下陀螺轴的摆动方程.................................................................... - 15 -3.2.3 经纬仪照准部固定状态下陀螺轴的摆动方程............................................ - 16 - 第四章陀螺经纬仪定向实验.................................................................................................. - 19 -4.1逆转点法数据获取及数据处理方法......................................................................... - 19 -4.1.1逆转点法数据获取(陀螺经纬仪的操作步骤)......................................... - 19 -4.1.2 逆转点法数据处理方法................................................................................ - 20 -4.2 中天法的数据获取以及数据处理方法.................................................................... - 21 -4.2.1 中天法的数据获取(陀螺经纬仪的操作步骤)........................................ - 21 -4.2.2 中天法数据处理方法.................................................................................... - 22 -4.3 具体数据获取处理.................................................................................................... - 25 -4.4 总结不跟踪式观测的几种简易方案........................................................................ - 30 -4.4.1 中天法............................................................................................................ - 33 -4.4.2 时差法............................................................................................................ - 35 -4.4.3 改化振幅法.................................................................................................... - 36 -4.4.4 三点快速法.................................................................................................... - 37 - 第五章陀螺经纬仪定向方法的精度分析.............................................................................. - 39 -5.1 影响陀螺经纬仪定向精度的各种因素.................................................................... - 39 -5.2 陀螺经纬仪精密定向中误差来源分析................................................................ - 40 - 第六章陀螺经纬仪定向方法对比分析结论.......................................................................... - 41 - 参考文献.................................................................................................................................... - 43 - 致谢及声明................................................................................................................................ - 44 -第一章绪论1.1本课题研究的背景及意义陀螺经纬仪是一种将陀螺仪和经纬仪结合成一体的、并且不依赖其他条件能够测定真北方位的精密物理定向仪器,广泛应用于测绘工作中,特别是矿山、隧道、海洋、森林和军事等隐秘地区的定向测量和快速测量,解决了传统定向方法精度低、工作量大及定向时间长等缺点。
科技资讯 SCIENCE & TECHNOLOGY INFORMATION34工程技术随着科学技术和各种测量技术的发展,陀螺经纬仪的出现改变了传统采用的几何定向方式,并在矿井的多种测量中得到了广泛的应用。
而定向精度是评价陀螺经纬仪质量的重要指标,但是在测量过程中,很多因素都会影响其测量精度。
通常情况下,陀螺经纬仪的定向精度误差都控制在出厂时的标称范围之内,但是由于受制造工艺水平的限制、仪器的使用状况、以及外界条件的影响,均可能导致定向精度降低,满足不了测量的实际要求。
所以对陀螺经纬仪定向精度的分析与研究具有重要的理论价值和实践意义。
1 陀螺经纬仪组成与测量原理陀螺经纬仪是带有陀螺仪装置、用于测定直线真方位角的经纬仪,主要应用于矿山施工测量、隧道施工测量以及盾构掘进中的水平及真北方向测量,不受时间和环境的影响,观测简单方便,效率高。
经纬仪上安置悬挂式陀螺仪,其关键装置是陀螺仪,简称陀螺,主要由一个绕陀螺轴高速旋转的刚体转子支撑在一个或两个框架上而构成。
陀螺经纬仪精密定向方法目前常采用跟踪逆转点法、中天法和陀螺静止位置法等三种。
定向原理主要是利用其具有的指北性来确定真子午线北方向,再用经纬仪测定出真子午线北方向至待定方向所夹的水平角,即真方位角。
其转子通常由陀螺马达驱动,使之绕陀螺轴高速旋转,转速高达每分钟几千转至几万转。
定向方法由陀螺本身的定轴性和进动性两个基本特性决定。
陀螺的定轴性指的是当匀速自转的陀螺在不受任何外力作用时,也就是外加力矩为零时,力图在它本身转动惯量的维持下,使其自转轴指向惯性空间恒定的初始方向的特性,也就是稳定性;陀螺的进动性是指当陀螺受外力矩作用时,陀螺的自转轴向外加力矩的方向运动。
2 影响测量精度的因素陀螺经纬仪的测量精度是指陀螺经纬仪定向观测值与真值的偏离程度。
通常有很多因素会直接影响陀螺经纬仪的测量精度。
(1)环境因素。
某些陀螺经纬仪对环境的要求较高,影响测量精度的环境因素很多,其中温度对其影响最大,有的仪器厂家在仪器内部对测量结果进行了温度补偿处理,但温度对测量结果的影响是多方面的,非常复杂,仅依靠厂家采取的温度补偿不能很好的消除这种影响。
MEMS陀螺仪零位误差分析与处理陈旭光;杨平;陈意【摘要】Study on zero position error of MEMS gyroscope has a great value on improving the accuracy of inertial navigation system. Allan variance analysis melhod was adopted to evaluate on zero position error of MEMS gyroscope. A kind of dynamic zero offset compensation algorithm was presented to eliminate the zero offset error. HDR( Heuristic Drift Reduction) was also improved and the compensation accuracy of original algorithm was increased effectively. Finally, Allan variance analysis method was adopted to evaluate on the compensated zero position error. Test had been done with the platform of gyro-equipped indoor mobile robot Voyager-lIA and the results show precision was increased significantly with the improved algorithm.%研究微机械陀螺仪的零位误差对提高惯性导航精度具有重要意义.采用Allan方差分析法对MEMS陀螺仪的零位误差做了综合评定,提出了一种动态的零值偏移误差补偿算法来滤除陀螺仪的零值偏移误差,还对启发式漂移消减法HDR(Heuristic Drift Reduction)做了改进,有效地提高了原算法的补偿精度.最后,再次采用Allan方差分析法对补偿后的零位误差进行评定,并以Voyager-IIA机器人为平台进行试验,结果证明了改进后的算法能显著的提高陀螺仪的输出精度.【期刊名称】《传感技术学报》【年(卷),期】2012(025)005【总页数】5页(P628-632)【关键词】MEMS陀螺仪;零位误差;启发式漂移消减法;动态补偿;Allan方差分析【作者】陈旭光;杨平;陈意【作者单位】电子科技大学机械电子工程学院,成都 611731;电子科技大学机械电子工程学院,成都 611731;电子科技大学机械电子工程学院,成都 611731【正文语种】中文【中图分类】V241.5微电子机械系统MEMS(Micro-Electro-Mechanical System)陀螺仪以其尺寸小、质量轻、价格低的优点越来越受到人们的重视,但是精度较低限制了它的应用领域。
陀螺仪芯片漂移误差-概述说明以及解释1.引言1.1 概述概述陀螺仪芯片是一种常用的传感器,在许多电子设备和导航系统中被广泛应用。
它可以测量物体的角速度,并提供重要的姿态信息。
然而,由于各种因素的干扰和不完美的设计,陀螺仪芯片会存在漂移误差问题。
这种误差会导致陀螺仪芯片输出的姿态信息与实际姿态有一定的偏差,严重影响了其测量精度和可靠性。
本文将对陀螺仪芯片漂移误差进行深入研究,并探讨其对陀螺仪芯片性能的影响。
首先,我们将介绍陀螺仪芯片的工作原理,解释其如何测量角速度和提供姿态信息。
然后,我们将详细定义陀螺仪芯片漂移误差,并分析其产生原因和影响因素。
在正文的第二部分,我们将讨论影响陀螺仪芯片漂移误差的因素。
这些因素包括温度变化、机械振动、电磁干扰等,它们会扰乱陀螺仪芯片的精确测量。
我们将分析每个因素的影响程度和可能的解决方法,以期降低漂移误差并提高陀螺仪芯片的性能。
最后,在结论部分,我们将总结陀螺仪芯片漂移误差的影响和解决方法。
我们将指出陀螺仪芯片漂移误差对导航系统、无人机等应用领域的重要性,并提出一些可能的改进方向,以进一步减少漂移误差,提高其测量精度和可靠性。
通过对陀螺仪芯片漂移误差的深入研究和讨论,本文旨在增加人们对陀螺仪芯片性能的认识,并对相关领域的研究和实践工作提供有益的指导。
我们相信,通过更好地理解和解决陀螺仪芯片漂移误差问题,我们将能够推动相关技术的发展并取得更好的应用效果。
文章结构部分可以简要介绍整篇文章的组织结构和各个章节的主要内容。
具体内容如下:1.2 文章结构本文将主要围绕陀螺仪芯片漂移误差展开讨论,并按以下章节进行组织和阐述:2.1 陀螺仪芯片的工作原理本节将介绍陀螺仪芯片的基本工作原理,包括其内部构造和运作方式等。
通过对陀螺仪芯片工作原理的介绍,读者可以更好地理解漂移误差的产生机制和影响因素。
2.2 陀螺仪芯片漂移误差的定义在本节中,将详细介绍陀螺仪芯片漂移误差的概念和定义。
陀螺经纬仪定向的误差分析及导线平差摘 要:井下经纬仪导线通常是由井底车场开始的向井田边界推进的,根据误差累计原理,导线点位的误差离井底车场越远误差越大。
利用陀螺经纬仪定向时,对其进行误差分析及平差,能有效地控制误差,并提供最优定向法!关键词:陀螺经纬仪;定向误差;导线平差1 陀螺经纬仪定向的精度平定陀螺经纬仪的定向精度主要以陀螺方位角一次测定中误差m T 和一次定向中误差m α表示。
1.1 陀螺方位角一次测定中误差在待定边进行陀螺定向前,陀螺仪需在地面已知坐标方位角边上 测定仪器常数△。
按《煤矿测量规程》规定,前后共需测4~6次,这样就可按白赛尔公式求算陀螺方位角一次测定中误差,即仪器常数一次测定中误差(简称一次测定中误差)为:[]1vv n ±∆- 式中 v i —仪器常数的平均值与各次仪器常数的差值;n △—测定仪器常数的次数。
则测定仪器常数平均值的中误差为:m △平= m T 平=mT n ±∆1.2 一次定向中误差一次定向中误差可按下式计算:式中 —仪器常数平均中误差; —待定边陀螺方位角平均值中误差;m α= 222·m m T m λ∆±平+平+—确定子午线收敛角的中误差。
因确定子午线收敛角的误差m γ较小,可以忽略不计,故上式可写为:m α= 22·m T m ∆±平+平 2 陀螺经纬仪一次测定方位角的中误差分析如前所述,陀螺经纬仪的测量精度,以陀螺方位角一次测定中误差表示。
不同的定向方法,其误差来源也有差异。
目前国内最常用的是跟踪逆转点法和中天法,其中所用的一些数据是根据具体的仪器试验分析所得,有一定得局限性,但对掌握误差分析方法而言,却是无关紧要的。
2.1 跟踪逆转点法定向时的误差分析以JT 15型陀螺经纬仪为例进行探讨。
按跟踪逆转点法进行陀螺定向时,主要误差来源有:①经纬仪测定方向的误差;②上架式陀螺仪与经纬仪的连接误差;③悬挂带零位变动误差;④灵敏部摆动平衡位置的变动误差;⑤外界条件,如风流、气温及震动等因素的影响。
陀螺经纬仪定向精度的分析张 明,陈亚楠(平顶山煤业(集团)公司,河南平顶山 467000)摘要:文中介绍了陀螺经纬仪的定向误差来源,及一次定向总中误差的预计。
关键词:陀螺定向误差;仪器常数;摆动逆转点;悬带零位;测线方向值中图分类号:P213 文献标识码:B 文章编号:1001-358X(2006)02-0043-02 摆式陀螺经纬仪的定向精度,通常是用一次定向中误差来衡量。
一般来说,陀螺经纬仪的一次定向中误差都在出厂时的精度指标之内,如瑞士wild厂的G AK-1在20″-30″之内。
但是,每一台仪器的实际质量情况有很大差别的。
因为仪器制造时的工艺水平,出厂后震动和外界条件的影响,都会影响定向的精度。
下面就分析一下陀螺经纬仪的定向误差来源和计算一次定向中误差的方法。
1 陀螺定向误差来源误差来源与陀螺经纬仪定向产生的误差和观测方法有关。
若采用跟踪逆转点法,一条测线一次测定的程序为:a1在己知方位角的基线上测定仪器常数;b1在定向边上二测回测定测线方向值;c1以5个摆动逆转点测定子午线方向值(陀螺北方向读数);测前和测后对悬带零位的测定。
由观测过程可知,对测前测后两测回的测线方向取平均值得:L0=1/2(L前+L后)(1)由5个逆转点读数,求算子午线方向值N0=1/12(u1+3u2+4u3+3u4+u5)(2)而测线的地理方位角为:A=L-L±Δ(3)式中L为测线的陀螺方向值。
分析(3)式可知,影响定向精度的误差可分三大类:测定测线方向值的误差mL0;测定陀螺北方向的误差mL;仪器常数误差mΔ。
引起上述三类误差的因素有许多,若将整个作业过程中各种误差因素考虑进去,则可以归纳出陀螺经纬仪的定向误差来源有:用经纬仪测定测线方向值引起的定向误差mL0;由5个逆转点确定陀螺北方向值引起的定向误差m N;上架式陀螺仪与经纬仪联接引起的定向误差m b;悬挂带零位变动引起的定向误差m0;陀螺摆动平衡位置不稳定性引起的定向误差mc;仪器常数不准引起的定向误差mΔ;仪器对中与整平引起的定向误差me;风力、震动等其它外界因素引起的定向误差。