北师版七年级数学5.5“希望工程”义演.导学案
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
5 应用一元一次方程—“希望工程”义演-北师大版七年级数学上册教案一、教学目标1.通过了解“希望工程”义演活动,拓宽学生的视野,引导学生体验做公益的快乐;2.理解一元一次方程的概念,能够解决简单的一元一次方程问题;3.获得一些实际应用问题的解题经验,特别是在义演活动中的应用;4.养成良好的思维习惯和解题方法,培养学生的数学逻辑思维能力。
二、教学重难点1.难点:学生对于实际应用问题的理解和解题;2.重点:培养学生讲解解题思路和训练逻辑思维。
三、教学准备1.提前准备好义演活动的介绍,包括活动的意义、支持的对象和实现的方式等;2.准备足够的黑板粉笔和教学用具,如计算器、直尺和圆规等;四、教学过程1. 引入通过介绍“希望工程”义演活动,让学生了解公益活动的重要性,引导学生从小学会奉献和助人为乐,体验做公益的快乐。
2. 讲解一元一次方程1.引出一元一次方程的概念,引导学生从公式的意义上了解概念;2.指导学生掌握解一元一次方程的基本步骤和方法;3.给学生提供一些简单的练习题,在解决问题的过程中深化对一元一次方程的理解和应用。
3. 应用一元一次方程——“希望工程”义演活动1.教师讲解义演活动的背景和意义;2.将义演活动中遇到的一些问题抽象出来,转化成一元一次方程;3.引导学生通过解一元一次方程解决义演活动中实际应用的问题。
4. 总结与归纳1.结合义演活动,对学生进行总结展示;2.让学生讲解自己的解题思路,培养学生训练逻辑思维的能力;3.教师对学生的解题思路和方法做出评价和提出建议。
五、课堂作业1.答完课本上的相关习题,提交练习册;2.围绕“希望工程”义演活动,自己编写一些应用问题,并用一元一次方程解决。
六、教学反思通过本次教学,学生们对“希望工程”义演活动有了更深刻的理解和认识,掌握了一元一次方程的基本概念和解题方法。
在应用一元一次方程解决实际问题的过程中,学生们逐步养成了良好的思维习惯和解题方法,并培养了数学逻辑思维能力。
七年级数学(上)5.5应用一元一次方程——希望工程”义演导
学案
一、学习目标
1.明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.
2.会列一元一次方程解有关分配问题的应用题.
3.能借助图表分析复杂问题的数量关系,建立方程解决实际问题,并进一步体会数学与现实生活的紧密联系,培养学习数学的兴趣。
二、温故知新
总价、单价、数量的关系:总价= ×
1、一支钢笔10元,一支铅笔2元,买5支钢笔和3支铅笔共用元。
2、一支钢笔10元,一支铅笔2元,小明用56元钱买了4支钢笔和若干支铅笔,则小明买了支铅笔。
3、一支钢笔10元,一支铅笔2元,小明用56元钱共买了12支钢笔和铅笔,求小明买了钢笔和铅笔各多少支。
4、解下列方程:
(1)6950
)
1000
(8
5=
-
+x
x(2)
6950
1000 58
y y
-
+=
三、自主探究:阅读课本147-148,完成下列问题。
北师大版数学七年级上册第五章5.应用一元一次方程— “希望工程”义演导学案(无答案)5 应用一元一次方程— “希望工程”义演课题5应用一元一次方程——希望工程义演学习目标1、学会借助列表分析复杂问题中的数量关系和等量关系. 2、通过解决实际问题,使学生进一步明确检验方程的解的合理性的必要。
3.通过建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程模型的作用。
从情感上认识希望工程,懂得珍惜今天的良好学习生活环境。
学习策略理解概念,掌握形式,主动探索学习过程课堂导入1989年成立的“希望工程”让他们圆了上学梦.希望工程旨在救助失学儿童,援建希望小学,影响遍及海内外,成为当今中国最具影响力的公益事业。
新课学习问题一:通过列表分析数量关系如果本次义演共售出1000张票,筹得票款6950元,成人票与学生票各售出多少张 1.分析题意可得此题中的等量关系有: 成人票数+______=1000张.① _______+学生票款=________.② 解:设售出的学生票为x张. 根据等量关系②,可列方程__________ 解这个方程,得_______. 因此售出学生票______张,成人票_____张. 2.设所得的学生票款为y元,填写下表:学生成人票款/元票数/张根据等量关系①,可列出方程:________________. 解得___________.因此,售出成人票_________张,学生票______张. 3.如果票价不变,那么售出1000张票所得票款可能是6930元吗为什么用一元一次方程解决实际问题的一般步骤: 范例应用例1小丽在水果店用36元买了苹果和橘子共6千克,已知苹果每千克6.4元,橘子每千克5.2元.小丽买了苹果和橘子各多少千克?【方法归纳】题目中的两个数量关系,一个用来设未知数并表示出相关量,另一个用来列方程尝试应用 1.2023年9月19日,太原城中“远去”的钟声,今又响起,随着钟楼街上钟楼的复建,承载着一代代太原人记忆的这条老街,经过17个月的修整,盛装迎客.小亮和同学在钟楼街的一家店铺购买了2杯奶茶和3杯橙汁,一共花了29元,已知一杯奶茶比一杯橙汁贵2元,求奶茶和橙汁的单价. 2.元旦期间某超市售出甲、乙两种品牌水杯300个,共获利9654元.已知两种水杯的售价和进价如表所示:品牌甲种乙种售价/元12088进价/元7065求甲、乙两种品牌水杯各售出多少个?达标测试 1.《孙子算经》是中国古代重要的数学著作.书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,则可列方程为()A.3x+3(100﹣x)=100 B.x+3(100﹣x)=100 C.D.3x+(100﹣x)=100 2、两本书厚度共9 cm,其中一本厚度是另一本书厚度的2倍,则这两本书的厚度分别是cm和cm. 3、小明买了笔记本和练习本共12本,共花了13.1元,笔记本单价是1.5元,练习本单价是0.8元,则小明买了笔记本本,练习本本. 4、一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则大人有个,幼儿有个. 5.小明花了30元买了两种书,共5本,单价分别为3元和8元,每种书各买了多少本?解:设3元的买了x本,则8元的买()本. 根据题意列方程为(). 解方程(). x=( ). ∴3元的买了()本,8元的买了()本. 6.某公园成人票价20元,儿童票价8元,某旅行团共有60人,买门票共花了960元,问:成人与儿童各多少人?解:设有儿童x人,则成人()人. 根据题意列出方程:()解方程:()()x=( ) ∴成人有()人,儿童有()人. 7.今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价几何?这道题的意思是:今有若干人共同买羊,如果每人出5枚钱,则相差45枚钱;如果每人出7枚钱,则仍然相差3枚钱,求买羊人数和羊价.。
“希望工程”义演教材分析《“希望工程”义演》是一元一次方程应用的第三课时,学习本课时内容,要进一步熟练用一元一次方程解应用题的方法步骤,学会将求解的结果代入实际问题中去检验,是用一元一次方程解应用题的巩固和提高及进一步完善。
学情分析通过前几课时的学习,学生对一元一次方程的应用有了一定的基础,但分析问题和解决问题的能力还不十分强,尤其是分析题意,找出比较隐含的等量关系的能力较差,好在学生的兴趣比较浓厚,只要教师加强引导,一定能顺利完成本课时教学任务。
教学目标知识技能目标:1. 明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.2. 会列一元一次方程解有关分配问题的应用题.过程性目标:能借助图表分析复杂问题的数量关系,建立方程解决实际问题.情感态度价值观目标:1. 进一步体会数学与现实生活的紧密联系,培养学习数学的兴趣.2. 养成科学严谨的学习态度.教学重难点教学重点:进一步熟练掌握列一元一次方程解应用题的一般方法步骤,学会用图表分析数量较为复杂的应用题.教学难点:用图表分析数量关系较为复杂的应用题.关键问题通过本课时的学习,培养解决实际问题的能力.感悟数学与生活的紧密联系,了解用数学知识解决生活中的实际问题的基本方法步骤.教学方法引导——自主探究法教学准备教师准备:《问题导读生成评价单》、《问题训练评价单》. 学生准备:教材、笔记本、练习本等文具。
教学过程设计程序设计时间创设情境教师行为期望的学生行为《5.5“希望工程”义演》问题导读生成——评价单设计者:班级: 姓名: 时间:一.某文艺团体为“希望工程”募捐组织了一场义演,共售出了解1000张票,筹得票款6950元.成人票和学生票各售出了多少张?(成人:8元; 学生:5元)(1)想一想:上面问题中包含哪些等量关系?(2)设售出的学生票为X张,填写下表:学生成人票数(张)票款(元)(3)设所得的学生票款为Y元,填写下表:学生成人票数(张)票款(元)二.集体探究:1.在以上问题中,如果票价和票的总数不变,票款能不能是6930元或6932元?为什么?如果可能,成人票比学生票多售出多少张?小结:解答的结果一定要代入实际问题中去检验.如果与实际问题不符,则要检查是否解答有误或是不可能发生.三.试一试:小明用172元钱买了两种书,共10本,单价分别为18元、10元.每种书小明各买了多少本?自我评价:小组评价:《5.5“希望工程”义演》问题训练拓展——评价单设计者:班级: 姓名: 时间:1.小明买了笔记本和练习本共12本,共花了13.1元,笔记本单价是1.5元,练习本单价是0.8元,则小明买了笔记本多少本?练习本多少本?2.一个大人一餐能吃四个面包,两个幼儿一餐共吃一个,大人和幼儿共7人,14个面包,则大人有多少个?幼儿有多少个?3.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,应从乙队抽调人4.小亮家今年承包的鱼塘到期了,共起出鲫鱼和鳊鱼500千克,共卖了2800元,已知鲫鱼和鳊鱼每千克分别为6元和5元,则鲫鱼多少千克?鳊鱼多少千克?5.小菲和同学去参观科学宫和博物馆,买10张门票共花了98元,已知大门票每张20元,小门票每张3元,则大门票买了多少张?小门票买了多少张?6.某校组织师生春游,如果单独租用45座车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余30个空座位,求该学校参加春游的人数.自我评价:小组评价:教师评价:。
“希望工程”义演教学设计教学设计思想本节课以“希望工程”义演为例引入课题,通过学生自主探索、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动。
对“想一想”由学生独立完成,并通过这个问题,使学生进一步明确必须检验方程的解是否符合实际。
教学目标知识与技能1.用列表格分析实际问题中的等量关系.2.用不同的设未知数的方法列方程.过程与方法情感态度价值观(二)能力训练要求1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.体会不同的设未知数的方法,通过比较,选择最优.(三)情感与价值观要求1.通过体会方程模型的实际价值,提高学习数学的兴趣.2.提高遇到较复杂数学问题的良好心理素质以及面对复杂问题时克服困难的勇气.教学重点1.借助表格分析复杂问题的数量关系.2.选择比较恰当的设未知数的方法.教学难点面对若干个等量关系,如何恰当地应用它们设出未知数并列出方程.教学方法引导—自主探索相结合方法.学生在教师的引导下,找出若干个较直接的等量关系,然后用不同的设未知数的方法让学生通过列表格自主探索根据等量关系,列出方程,从中体会设未知数方法的不同,方程的复杂程度也不同.教具准备投影片一张:(记作§)“希望工程”义演.教学过程Ⅰ创设情境,引入新课[师]上一节课,我们讨论过了用一元一次方程解决实际问题的一般步骤谁来给大家简单的陈述一下.[生]当用一元一次方程解决实际问题时,首先要从实际问题中抽象出数学问题;然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性,合理就用以解决实际问题,不合理需重新开始讨论.[师]应用一元一次方程解决实际问题的关键步骤是什么[生]根据题意,首先寻找“等量关系”同时,解出方程后应注意检验求出的值是不是方程的解,是否符合实际.[师]接下来,我们就用一元一次方程解决生活中一个献爱心的问题——“希望工程”义演.Ⅱ讲授新课[师]在我们的生活中,还有不少贫困地区的孩子因为贫穷而上不起学,也有不少有爱心的好人为了他们而献出自己的一片“爱心”下面我们就来看投影:“希望工程”义演.出示投影片(§)分析:售出的票包括成人票和学生票,所得票款包括成人票款和学生票款由第(1)问和第(2)问可知:票款=票数×价格/张因此上述问题存在两个等量关系.成人票数学生票数=总票数,①成人票款学生票款=总票款②解:(1)填写下表:由上表可知共得票款:600×5300×8=30002400=5400(元).(2)填写下表:由上表可知共卖出学生和成人票为:2500÷56400÷8=500800=1300(张).(3)解法一:设售出的学生票为张,填写下表:根据等量关系②,可列出方程:58(1000-)=6950解,得=350.1000-350=650(张)答:售出的成人票650张,学生票350张.解法二:设所得学生票款元,填写下表根据等量关系①可得869505y y =1000解,得=17501750÷5=3501000-350=650答:售出的学生票数为350张,成人票650张.讨论:从上述(3)的两种设未知数方法,同时根据自己的亲身体验,相互交流各自的意见.[生]我认为第二种方法比第一种方法复杂.[师]在以前,我们列方程时,通常找一个等量关系即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有何用途.[生]我们在填表的时候就可以看出:如果设售出的学生票数为张,根据等量关系①就可设成人票数为(1000-)张这时,等量关系②元,则根据等量关系②就可设成人票款为(6950-)元,此时,等量关系①就用来列方程.[生]我认为这个问题中有两个未知量:售出的学生票和成人票,可我们现在只设一个未知数,而另一个未知数就需要题意中的等量关系用含有第一个未知数的代数式来表示.[师]同学们的分析很好现在我们遇到的这个问题比前面的问题要复杂,含有两个未知量,而只设一个未知数表示一个量,另一个量就需用题中的等量关系,用含有第一个未知数的代数式来表示,而另一个等量关系则用来列方程.[师]在这个较为复杂的实际问题中,为了搞清楚各个量之间的关系,我们采用了一个非常清楚明了的方法——列表格希望同学们慢慢地学着用它来分析较复杂的问题.想一想:如果票价不变,那么售出1000张票所得的票款可能是6930元吗我们也列表来完成(由两个学生板演)解:可设售出的学生票为元,填写下表:根据题意,可得方程:58(1000-)=6930解,得=35632显然,=35632是不符合题意的因此如果票价不变,售出1000张票所得票款不可能是6930元.[师]因此,我们用方程这样的数学模型解决实际问题时,一定要注意检验方程的解是否符合实际.Ⅲ课堂练习、1课本P171解:单价为18元的本买了本,单价为10元的本买了(10-)本,列表如下:根据题意,得1810(10-)=172解,得=9.10-9=1答:单价为18元、10元的本各买9本、1本.Ⅳ课时小结这节课我们通过列表的方式分析实际问题中的等量关系,使题中的已知条件与未知条件的关系清晰明了同时我们还尝试着用多种方法去解决问题.Ⅴ课后作业1.课本P习题1712.到网上收集有关方程史的资料.Ⅵ活动与探究小张在商店中买了14瓶汽水,又知每3个空汽水瓶可换1瓶汽水,问小张最多能够喝到多少瓶汽水过程:乍看题目觉得甚为简单,有同学就认为是18瓶汽水,原因是14瓶水喝完后可换4瓶,故可喝18瓶那么4瓶喝完后呢应该是4瓶喝完后,总共还有6个空瓶可换2瓶汽水,总共可喝20瓶其实这还不是最多,最后2个空瓶虽不能换一瓶汽水,但我可以用“先借后还”的方法多喝一瓶汽水,即先借商店一瓶汽水喝完,还三个瓶,换一瓶汽水,再将那一瓶汽水还掉.结果:通过分析,我们会发现最后的14个空瓶,通过先借后还,实际总共可换七瓶汽水即平均2个空瓶换1瓶汽水.板书设计三、课时小结:(由学生先来完成)。
七上 5.5 应用一元一次方程——“希望工程”义演班级:课时:时间:学、讲、练1:1:1 导学案随笔学习目标会借助表格分析复杂的数量关系,从而建立方程解决实际问题.学习重点学会利用列表法分析数量关系复杂的应用问题.学习流程一、课前预习1.一支钢笔10元,一支铅笔2元,买5支钢笔和3支铅笔共用_____元.2.一支钢笔10元,一支铅笔2元,小明用56元钱买了4支钢笔和若干支铅笔,则小明买了_______支铅笔.3. 一支钢笔10元,一支铅笔2元,小明用56元钱共买了12支钢笔和铅笔,求小明买了钢笔和铅笔各多少支.二、反馈交流1.课前预习题.2.189页例题.(根据下面问题在自主学习的基础上小组交流)①该题中包含哪几个等量关系?每个等量关系的用途是什么?②你喜欢哪一种解法?为什么?三、达标训练1.某商场在卖2008年北京奥运会的纪念品时,小华买了一盒福娃和一枚奥运徽章共用了170元,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是元.2.二班举办了一次书展,展出的册数是人均3册还多24册,人均4册差26册,若设该班人数为x人,则展出的书的册数可表示为_____________或____________,可列方程为__________________________________.3. 学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元,已知每张甲票比乙票贵2元,求甲票、乙票两种票的的票价分别是多少元.四、总结提升当堂检测1.某班为希望工程共捐款131元,比每人平均2元还多35元,设这个班学生有x人,根据题意列方程为__________________________________.2.某三轮车厂有95名工人,每人每天能生产车身9个或车轮30个,要使每天生产的车身和车轮恰好配套(一个车身配三个车轮),应安排生产车身和车轮各多少人?3.某校组织师生外出参观,如果单独租用45座的客车若干辆,刚好坐满,如果单独租用60座的客车可少租一辆,且余30空座,求该校外出参观的人数作业必做题习题5.6“数学理解”1,“问题解决”1、2选做题反思收获困惑改进补充作业:1.五一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为10000元的商品,共节省2800元,则用贵宾卡又享受了 ________折优惠.2.某商场按标价的9折出售,为了促销,在此基础上再让利100元,仍能获利7.5%,若该商品的标价为2500元,该商品的进价是多少元?3. 初三(2)班的一个综合实践活动小组去A 、B 两个超市调查去年和今年“五一节”期间的销售情况,如图是调查后小敏与其他两位同学进行交流的情景,根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”期间的销售额4.甲组人数是乙组人数的2倍,从甲组抽调8人到乙组,这时甲组剩下的人数恰是乙组人数的一半多3人,求乙组原有的人数x .5. 在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元. 求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?B超市销售额今年比去年增加10%..两个超市销售额去年共为150万元,今年共为170万元.A 超市销售额今年比去年增加15%..。
北师大版七年级第五章第六节“希望工程”义演教案教学目标:1、知识与技能:1.用列表格分析实际问题中的等量关系.2.用不同的设未知数的方法列方程.2、过程与方法:引导—自主探索相结合方法.1.借助表格分析复杂问题中的数量关系,从而建立方程解决实际问题,发展分析问题、解决问题的能力,进一步体会方程模型的作用.2.体会不同的设未知数的方法,通过比较,选择最优.3、情感态度与价值观:1.通过体会方程模型的实际价值,提高学习数学的兴趣.2.提高学生遇到较复杂数学问题的良好心理素质以及面对复杂问题时克服困难的勇气.教学重点:1.借助表格分析复杂问题的数量关系.2.选择比较恰当的设未知数的方法.教学难点:面对若干个等量关系,如何恰当地应用它们设出未知数并列出方程.教学过程:一、引入新课上一节课,我们讨论过了用一元一次方程解决实际问题的一般步骤.谁来给大家简单的陈述一下.[生]当用一元一次方程解决实际问题时,首先要从实际问题中抽象出数学问题;然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性,合理就用以解决实际问题,不合理需重新开始讨论.[师]应用一元一次方程解决实际问题的关键步骤是什么?[生]根据题意,首先寻找“等量关系”.同时,解出方程后应注意检验求出的值是不是方程的解,是否符合实际.二、应用新知[师]接下来,我们就用一元一次方程解决生活中一个献爱心的问题——“希望工程”义演.在我们的生活中,还有不少贫困地区的孩子因为贫穷而上不起学,也有不少有爱心的好人为了他们而献出自己的一片“爱心”.下面我们就来看投影:“希望工程”义演.和第(2)问可知:票款=票数×价格/张.因此上述问题存在两个等量关系.成人票数+学生票数=总票数,①成人票款+学生票款=总票款.②解:(1)(2)填写下表:).(3)5x+8(1000-x)=6950解,得x=350.1000-350=650(张)答:售出的成人票650张,学生票350张.869505y y +=1000 解,得y=17501750÷5=350 1000-350=650答:售出的学生票数为350张,成人票650张.讨论:从上述(3)的两种设未知数方法,同时根据自己的亲身体验,相互交流各自的意见.[生]我认为第二种方法比第一种方法复杂.[师]在以前,我们列方程时,通常找一个等量关系即可列出方程,为什么在这个题中寻找到了两个等量关系,它们各有何用途.[生]我们在填表的时候就可以看出:如果设售出的学生票数为x 张,根据等量关系①就可设成人票数为(1000-x)张.这时,等量关系②可用来列方程.但如果设所得学生票款为y 元,则根据等量关系②就可设成人票款为(6950-y)元,此时,等量关系①就用来列方程.[生]我认为这个问题中有两个未知量:售出的学生票和成人票,可我们现在只设一个未知数,而另一个未知数就需要题意中的等量关系用含有第一个未知数的代数式来表示.[师]同学们的分析很好.现在我们遇到的这个问题比前面的问题要复杂,含有两个未知量,而只设一个未知数表示一个量,另一个量就需用题中的等量关系,用含有第一个未知数的代数式来表示,而另一个等量关系则用来列方程.[师]在这个较为复杂的实际问题中,为了搞清楚各个量之间的关系,我们采用了一个非常清楚明了的方法——列表格.希望同学们慢慢地学着用它来分析较复杂的问题.变式练习:变式1:将开始的实际问题中的“共售1000张票”改为“成人票比学生票多300张”,成人票与学生票各售出多少张?学生思考后,让一位学生作答:设学生票售X 张,则可得方程:5X+8(X+300)=6950解得:X=350350+300=650因此,售出成人票650张,学生票350张。
5.5 一元一次方程“希望工程”义演【学习目标】1.借助表格分析复杂问题中的数量关系,建立方程解决实际问题,发展分析问题、解决问题的能力.2.对同一问题设不同未知数列出不同的方程,体会算法多样化.3.归纳利用方程解决实际问题的一般步骤,进一步体会模型思想.【学习方法】1学生分组合作,2教师指导。
一、课前学习;复习巩固题。
回顾前两节课的内容:1.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元,巧克力每块3元,则班主任分别买了多少果冻和巧克力?课堂学习。
2.刘成用150元买了甲、乙两种书,共20本,甲种书单价10元,乙种书单价5元,则刘成买了这两种书各多少本?二、【合作探究】探究一、问题1:某文艺团体为“希望工程”募捐义演,成人票8元,学生票5元.(1)成人票卖出600张,学生票卖出300张,共得票款多少元?(2)成人票款共得6400元,学生票款共得2500元,成人票和学生票共卖出多少张?(3)如果本次义演共售出1000张票,筹得票款6950元,成人票与学生票各售出多少张?三.当堂检测1.修一条排水渠,甲队需要10天,乙队需要15天,现由两队合修,中途乙队因有事被调走,余下的任务由甲队单独做,5天后完成任务,在这个过程中,甲、乙两队合修了()A.2天B.3天C.4天D.5天2.已知有大、小两种纸杯与甲、乙两桶果汁,其中小纸杯与大纸杯的容量比为2∶3,甲桶果汁与乙桶果汁的体积比为4∶5,若甲桶内的果汁刚好装满小纸杯120个,则乙桶内的果汁最多可装满大纸杯()A.64个B.100个C.144个D.225个3.足球比赛的计分规则是胜1场得3分,平1场得1分,负1场得0分,一个队进行了20场比赛,负7场,共得27分,则这个队平场.4.诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答几盏灯.四、课后巩固5.某希望中学为办公室安装电灯,准备一个办公室装五个灯泡,其中有40瓦和60瓦两种,总的瓦数是260瓦,则40瓦和60瓦的灯泡各装多少个?6.一班有40位同学,新年时开晚会,班主任到超市花了115元买果冻与巧克力共40个,若果冻每2个5元,巧克力每块3元,则班主任分别买了多少果冻和巧克力?。
5. 应用一元一次方程
——“希望工程”义演
温故互查
回顾下列知识,先独立完成后二人小组复述,
1、填空:
(1)一支钢笔10元,一支铅笔2元,买x支钢笔和5支铅笔共用_____元.
(2)今有鸡兔同笼,共有35头,设鸡有x只,则兔有___只。
2、解方程:5x+8(1000-x)=6950
二、设问导读
阅读教材P147~P148,完成下列问题
1.先独立审题,
①已知量是_______,未知量是_____
解题方法一、:
如设售出学生票为x张,则成人票为________,则选用书中的等量关系
___________可得方程______。
解题方法二、:
如所得的学生票款为y元,则成人票款为_______,则选用书中的等量关系
___________可得方程______。
2.用一元一次方程解决实际问题的一般步骤是什么?
3.你认为设未知数有哪几种方法?并指出1中的方法各属哪种?
三、自学检测
1.今有鸡兔同笼,上35头,下94足,问今有
鸡兔几何?
分析:等量关系(1)————(2)————
解法一
如果设鸡有x只,则兔有___只,则选用等量
关系________列方程_________
解法二
如果设鸡足有y只,则兔足有___只,则选用
等量关系_________列方程_________
四、巩固练习
1.在本节“希望工程”义演的问题中,如果票价和售出的总票数都不变,那么所得票款可能是6932元吗?为什么?如果所得票款可能是6930元吗?为什么?
2.二班举办了一次书展,展出的册数是人均3册还多24册,人均4册差26册,若设该班人数为x人,则展出的书的册数可表示为
_____________或____________,可列方程为
_____________________________
小结
用一元一次方程解决实际问题的一般步骤是什么?。