高中数学第二章推理与证明2.1.2演绎推理预习导航新人教B版选修2-2资料
- 格式:doc
- 大小:560.00 KB
- 文档页数:2
数学人教B选修2-2第二章2.1.2 演绎推理1.掌握演绎推理的基本模式,特别是三段论模式,并学会运用这些推理模式进行推理.2.了解合情推理、演绎推理之间的联系和区别.1.演绎推理根据概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,叫做________.它的特征是:当前提为____时,结论______为真.演绎推理的特点:(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系,只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方法,它的创造性较少,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化.【做一做1】演绎推理是().A.部分到整体,个别到一般的推理B.特殊到特殊的推理C.一般到特殊的推理D.一般到一般的推理2.演绎推理的四种推理规则(1)假言推理:用符号表示这种推理规则就是“如果p q,p真,则q真”.假言推理的本质是,通过验证结论的充分条件为真,判断结论为真.(2)三段论推理:用符号表示这种推理规则就是“M是P,S是M,所以______”.(3)传递性关系推理:用符号表示推理规则是“如果aRb,bRc,则______”,其中“R”表示具有传递性的关系。
(4)完全归纳推理:把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.三段论推理是演绎推理的一般模式,在数学证明中,以上四种演绎推理规则是经常用到的,一道证明题,往往要综合应用这些推理规则.如果违背了这些规则,那么证明就是错误的.【做一做2-1】下面几种推理过程是演绎推理的是().A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A +∠B=180°B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数都超过50人C.由平面三角形的性质,推测空间四面体的性质D.在数列{a n}中a1=1,a n=12⎝⎛⎭⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式【做一做2-2】“因为a⊥α,b⊥α,所以a∥b,又因为b∥c,所以a∥c.”以上推理的两个步骤分别遵循的推理规则是().A.第一步遵循假言推理,第二步遵循传递性关系推理B.第一步遵循三段论推理,第二步遵循假言推理C.第一步遵循三段论推理,第二步遵循传递性关系推理D.第一步遵循传递性关系推理,第二步遵循三段论推理合情推理与演绎推理有哪些区别与联系?相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.在数学中,演绎推理可以验证合情推理的结论的正确性,合情推理可以为演绎推理提供方向和思路.题型一假言推理【例题1】设数列{a n}为等差数列,求证:以b n=a1+a2+…+a nn为通项的数列{b n}为等差数列.分析:由{a n}为等差数列,推证{b n}为等差数列,只要证得b n+1-b n=d为常数即可.反思:假言推理的规则为“如果p q,p真,则q为真”.题型二三段论推理【例题2】已知A,B,C,D四点不共面,M,N分别是△ABD和△BCD的重心,求证MN∥平面ACD.分析:应用线面平行的判定定理证明.反思:“三段论”是演绎推理的一般模式,包括:(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.题型三传递性关系推理【例题3】设a,b,c为正实数,求证:a2+b2+b2+c2+a2+c2>a+b+c.分析:应用均值不等式找出a2+b2与a+b,b2+c2与b+c,a2+c2与a+c的关系,再应用同向不等式相加法则可证明.反思:传递性关系推理论证时必须保证各量间的关系能正确传递.题型四完全归纳推理【例题4】已知函数f(x)=(12x-1+12)·x3.(1)判断f(x)的奇偶性;(2)证明f(x)>0.反思:完全归纳推理必须把所有情况都考虑在内.完全归纳推理不同于归纳推理,后者仅仅证明了几种特殊情况,它不能说明结论的正确性,而前者则把所有情况都作了证明.题型五易错辨析易错点:在应用三段论推理证明问题时,应明确什么是问题中的大前提和小前提.在推理的过程中,大前提、小前提和推理形式之一错误,都可能导致结论错误.【例题5】如图,在△ABC中,AC>BC,CD是AB边上的高,求证:∠ACD>∠BCD.错证:在△ABC中,因为CD⊥AB,AC>BC,所以AD>BD,于是∠ACD>∠BCD.1如图,因为AB ∥CD ,所以∠1=∠2,又因为∠2=∠3,所以∠1=∠3.所用的推理规则为( ).A .三段论推理、假言推理B .三段论推理、传递性关系推理C .三段论推理、完全归纳推理D .三段论推理、三段论推理2“因指数函数y =a x 是减函数(大前提),且y =3x 是指数函数(小前提),所以y =3x 是减函数(结论).”上面推理的错误是( ).A .大前提错导致结论错B .小前提错导致结论错C .推理形式错导致结论错D .大前提和小前提都错导致结论错3下面的推理是传递性关系推理的是( ).A .在同一三角形中若三角形两边相等,则该两边所对的内角相等,在△ABC 中,AB =AC ,所以在△ABC 中,∠B =∠CB .因为2是偶数,所以2是素数C .因为a ∥b ,b ∥c ,所以a ∥cD .因为2是有理数或无理数,且2不是有理数,所以2是无理数4因为当a >0时,|a |>0;当a =0时,|a |=0;当a <0时,|a |>0,所以当a 为实数时,|a |≥0.此推理过程运用的是演绎推理中的__________推理.5关于函数f (x )=lg x 2+1|x |(x ≠0),有下列命题: ①其图象关于y 轴对称;②当x >0时,f (x )是增函数;当x <0时,f (x )为减函数;③f (x )的最小值是lg 2;④当-1<x <0或x >1时,f (x )是增函数;⑤f (x )无最大值,也无最小值.其中所有正确结论的序号是__________.答案:基础知识·梳理1.演绎推理 真 必然【做一做1】C2.(2)S 是P (3)aRc【做一做2-1】A 选项D 是归纳推理,选项C 是类比推理,选项B 既不是合情推理也不是演绎推理.【做一做2-2】C典型例题·领悟【例题1】证明:设数列{a n }的首项为a 1,公差为d ,因为b n -b n -1=n (a 1+a n )2·1n -(n -1)(a 1+a n -1)2·1n -1=a 1+a n 2-a 1+a n -12=a n -a n -12 =d 2(n ≥2),而d 2是个常数,所以数列{b n }为等差数列. 【例题2】证明:如图,连结BM ,BN ,并延长,分别交AD ,DC 于P ,Q 两点,连结PQ .因为M ,N 分别是△ABD 和△BCD 的重心,所以P ,Q 分别是AD ,DC 的中点,又因为BM MP =2=BN NQ,所以MN ∥PQ .又因为MN ⃘平面ADC ,PQ ⊆平面ADC ,所以MN ∥平面ACD .【例题3】证明:因为a 2+b 2≥2ab ,a ,b ,c 为正实数,所以2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2.所以a 2+b 2≥(a +b )22.所以a 2+b 2≥22(a +b ).同理a 2+c 2≥22(a +c ).b 2+c 2≥22(b +c ),所以有a 2+b 2+b 2+c 2+c 2+a 2≥22(2a +2b +2c )=2(a +b +c ).即a 2+b 2+b 2+c 2+c 2+a 2≥2(a +b +c ).又2(a +b +c )>a +b +c ,所以a 2+b 2+b 2+c 2+c 2+a 2>a +b +c .【例题4】(1)解:函数f (x )的定义域为2x -1≠0,即{x |x ≠0},f (-x )-f (x )=⎝⎛⎭⎫12-x -1+12(-x )3-⎝⎛⎭⎫12x -1+12x 3=⎝⎛⎭⎫2x 1-2x +12(-x )3-⎝⎛⎭⎫12x -1+12x 3=2x2x -1·x 3-12x 3-12x -1x 3-12x 3 =x 3-x 3=0.所以f (-x )=f (x ).所以f (x )是偶函数.(2)证明:因为x ≠0,所以当x >0时,2x >1,2x -1>0,x 3>0,所以f (x )>0;当x <0时,-x >0,f (x )=f (-x )>0,所以f (x )>0.【例题5】错因分析:错证中由AD >BD 得出∠ACD >∠BCD 是错误的,因为只有在同一个三角形中才有大边所对的角较大这一结论成立.正确证法:在△ABC 中,因为CD ⊥AB ,所以∠ACD +∠A =∠BCD +∠B =90°.又AC >BC ,所以∠B >∠A ,于是∠ACD >∠BCD .随堂练习·巩固1.B 本题前面证∠1=∠2用的是三段论推理,后半部分证∠1=∠3用的是传递性关系推理.2.A y =a x (a >0,a ≠1)的单调性与a 有关,若a >1,则为增函数;若0<a <1,则为减函数.3.C4.完全归纳5.①③④ 显然f (-x )=f (x ),∴其图象关于y 轴对称.当x >0时,f (x )=lg x 2+1x=lg ⎝⎛⎭⎫x +1x . ∵φ(x )=x +1x在(0,1)上是减函数,在(1,+∞)上是增函数, ∴f (x )在(0,1)上是减函数,在(1,+∞)上是增函数.∴f(x)min=f(1)=lg 2.∵f(x)为偶函数,∴f(x)在(-1,0)上是增函数.。
高中数学 第二章 推理与证明本章整合 新人教B 版选修2-2知识网络专题探究专题一 合情推理与演绎推理1.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳,然后提出猜想的推理,我们统称为合情推理.合情推理常常能为我们提供证明的思路和方向.归纳推理的思维过程大致如下:实验,观察→概括,推广→猜测一般性结论 类比推理的思维过程大致如下:观察,比较→联想,类推→猜测新的结论 2.演绎推理是由一般到特殊的推理,又叫逻辑推理.其中三段论推理是演绎推理的主要形式.演绎推理具有如下特点: (1)演绎的前提是一般性原理,演绎所得的结论完全蕴涵于前提之中.(2)演绎推理中,前提与结论之间存在必然的联系,演绎推理是数学中严格证明的工具. (3)演绎推理是一种收敛性的思维方法,它创造性较少,但却具有条理清晰、令人佩服的论证作用,有助于科学的理论化和系统化.【例1】 证明下列各等式,并从中归纳出一个一般性的结论. 2cos π4=2,2cos π8=2+2,2cos π16=2+2+ 2.证明:2cos π4=2×22=2,2cos π8=2×1+cosπ42=2×1+222=2+2,2cos π16=2×1+cosπ82=2×1+122+22=2+2+ 2.……从以上各式归纳可得一般性的结论如下: 2cos π2n +1=2+2+2+… (n ∈N +,n ≥1).【例2】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P的位置无关的定值.试对双曲线x 2a 2-y 2b2=1写出具有类似特性的性质,并加以证明.解:类似的性质为:若M ,N 是双曲线x 2a 2-y 2b2=1上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标为(m ,n ),(x ,y ), 则N (-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2.同理y 2=b 2a2x 2-b 2.因为k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值),所以k PM 与k PN 之积是与点P 的位置无关的定值. 专题二 直接证明与间接证明1.直接证明的两种基本方法是综合法与分析法. 综合法与分析法的区别与联系:分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件.综合法的特点是:从“已知”看“可知”,逐步推向“未知”,其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点.有些具体的问题,用分析法或综合法都可以证明出来,人们往往选择比较简单的一种.在解决问题时,我们经常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由Q 可以推出P 成立,就可以证明结论成立.2.反证法是一种间接证明命题的方法,它的理论基础是互为逆否命题的两个命题为等价命题,反证法反映了“正难则反”的证明思想.用反证法证明问题时要注意以下三点:(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能的情况,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实矛盾等,推导出的矛盾必须是明显的.【例3】 设集合S ={x |x ∈R 且|x |<1},若S 中定义运算“*”,使得a *b =a +b 1+ab.证明:(1)如果a ∈S ,b ∈S ,那么a *b ∈S ;(2)对于S 中的任何元素a ,b ,c ,都有(a *b )*c =a *(b *c )成立. 证明:(1)由a ∈S ,b ∈S ,则|a |<1,|b |<1,a *b =a +b1+ab, 要证a *b ∈S ,即证|a *b |=⎪⎪⎪⎪⎪⎪a +b 1+ab <1,只需证|a +b |<|1+ab |, 即只需证(a +b )2<(1+ab )2, 即证(1-a 2)(1-b 2)>0. ∵|a |<1,|b |<1, ∴a 2<1,b 2<1,∴(1-a 2)(1-b 2)>0成立, ∴a *b ∈S . (2)(a *b )*c =⎝⎛⎭⎪⎫a +b 1+ab *c =a +b +c +abc 1+ab +ac +bc ,同理a *(b *c )=a *⎝⎛⎭⎪⎫b +c 1+bc =a +b +c +abc 1+ab +ac +bc,∴(a *b )*c =a *(b *c ).【例4】 有10只猴子共分了56个香蕉,每只猴子至少分到1个香蕉,最多分到10个香蕉,试证:至少有两只猴子分到同样多的香蕉.证明:假设10只猴子分到的香蕉都不一样多.∵每只猴子最少分到一个香蕉,至多分到10个香蕉, ∴只能是分别分到1,2,3,…,10个香蕉.此时10只猴子共分了:1+2+3+…+10=55(个),这与共分了56个香蕉相矛盾, 故至少有两只猴子分得同样多的香蕉. 专题三 归纳—猜想—证明的方法探索性命题是近几年高考试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论.它的解题思路是:从所给条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.【例5】 若不等式1n +1+1n +2+1n +3+…+13n +1>a24对一切正整数n 都成立,求正整数a 的最大值,并证明你的结论.解:取n =1,11+1+11+2+13×1+1=2624.令2624>a24,得a <26,而a ∈N +, 所以取a =25,下面用数学归纳法证明 1n +1+1n +2+…+13n +1>2524. (1)当n =1时,已证结论正确. (2)假设当n =k (k ∈N +)时,结论成立, 即1k +1+1k +2+…+13k +1>2524, 则当n =k +1时,有 1k ++1+1k ++2+…+13k +1+13k +2+13k +3+1k ++1=⎝⎛⎭⎪⎫1k +1+1k +2+…+13k +1+⎝ ⎛⎭⎪⎫13k +2+13k +3+13k +4-1k +1>2524+⎣⎢⎡⎦⎥⎤13k +2+13k +4-2k +. 因为13k +2+13k +4=k +9k 2+18k +8>k +k 2+2k +=2k +,所以13k +2+13k +4-2k +>0,所以1k ++1+1k ++2+…+1k ++1>2524, 即当n =k +1时,结论也成立. 由(1)(2)可知,对一切n ∈N +,都有1n +1+1n +2+…+13n +1>2524, 故a 的最大值为25.。
高中数学第二章推理与证明 2.1.2 演绎推理预习导航新人教B
版选修2-2
1.演绎推理
(1)定义:根据概念的定义或一些真命题,依照一定的逻辑规则得到正确结论的过程,叫做演绎推理.
(2)特征:当前提为真时,结论必然为真.
2.三段论推理
(1)三段论推理是演绎推理的一般模式.
(2)三段论的构成:
①大前提:提供一般性原理;
②小前提:指出一个特殊的对象;
③结论:结合大前提和小前提,得出一般性原理和特殊对象之间的内在联系.
(3)“三段论”的常用格式
大前提:M是P;
小前提:S是M;
结论:S是P.
思考三段论推理得出的结论一定正确吗?
提示:不一定.三段论推理得出的结论的正确性与大前提、小前提、推理形式是否正确有关.只有当大前提正确,小前提正确,推理形式也符合要求时,得出的结论才是正确的.点拨在实际应用三段论推理时,为了简洁起见,有时会省略大前提或小前提,甚至两者都略去不写.
3.演绎推理的常见模式
(1)三段论推理.
(2)传递性关系推理:用符号表示推理规则是“如果aRb,bRc,则aRc”,其中“R”表示具有传递性的关系.
(3)完全归纳推理:把所有情况都考虑在内的演绎推理规则叫做完全归纳推理.
总结:演绎推理与合情推理的区别与联系.
区别:从推理形式和推理所得结论的正确性上讲,二者有差异.
得的.在数学中,演绎推理可以验证合情推理的结论的正确性,合情推理可以为演绎推理提供方向和思路.。